• WARNING: Tube/Valve amplifiers use potentially LETHAL HIGH VOLTAGES.
    Building, troubleshooting and testing of these amplifiers should only be
    performed by someone who is thoroughly familiar with
    the safety precautions around high voltages.

Vacuum Tube SPICE Models

Mazda 30L15 model, using paint_kit.jar, from Ediswan datasheet. Decent match below 10mA, that's the best compromise I could find.
 

Attachments

  • 30L15.txt
    30L15.txt
    1.3 KB · Views: 65
  • 30L15_paint_kit.png
    30L15_paint_kit.png
    544 KB · Views: 67
Hi Sorento
Thank you for your spice model services … Regarding the above Question: When both DL96 models should provide correct triodenlode curves, why then separated models for different Vg2? 🧐
Perhaps I understand something wrong…
BR Adrian
The Philips data sheet has 2 sets of pentode curves, for Vg2 64 and 85.
Yes, when I do the best curve fit I can for both, they produce slightly different triode curves.
That is why I posted both models.
Take your pick.
Screen current fitting is tricky with the paint tool.
Or the two curve plots in the ds just don' t go together...
By the way, the paint tool also gives a triode model calculated from tetrode model which I didn't post because of this.
 
Last edited:
7EK7(30L15) SPICE Models.

Code:
**** 7EK7 ******************************************
* Created on 09/26/2024 17:18 using paint_kit.jar 3.1
* www.dmitrynizh.com/tubeparams_image.htm
* Plate Curves image file: 7EK7.jpg
* Data source link:
*----------------------------------------------------------------------------------
.SUBCKT TRIODE_7EK7 1 2 3 ; Plate Grid Cathode
+ PARAMS: CCG=6P  CGP=1.4P CCP=1.2P RGI=2000
+ MU=29.87 KG1=331.2 KP=95.88 KVB=480 VCT=0.08468 EX=1.386
* Vp_MAX=200 Ip_MAX=30 Vg_step=2 Vg_start=0 Vg_count=4
* Rp=4000 Vg_ac=55 P_max=2 Vg_qui=-48 Vp_qui=300
* X_MIN=41 Y_MIN=212 X_SIZE=705 Y_SIZE=529 FSZ_X=1357 FSZ_Y=805 XYGrid=false
* showLoadLine=n showIp=y isDHT=n isPP=n isAsymPP=n showDissipLimit=y
* showIg1=n gridLevel2=n isInputSnapped=n 
* XYProjections=n harmonicPlot=n dissipPlot=n
*----------------------------------------------------------------------------------
E1 7 0 VALUE={V(1,3)/KP*LOG(1+EXP(KP*(1/MU+(VCT+V(2,3))/SQRT(KVB+V(1,3)*V(1,3)))))}
RE1 7 0 1G  ; TO AVOID FLOATING NODES
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1}
RCP 1 3 1G   ; TO AVOID FLOATING NODES
C1 2 3 {CCG} ; CATHODE-GRID
C2 2 1 {CGP} ; GRID=PLATE
C3 1 3 {CCP} ; CATHODE-PLATE
D3 5 3 DX ; POSITIVE GRID CURRENT
R1 2 5 {RGI} ; POSITIVE GRID CURRENT
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
.ENDS
*$

7EK7.jpg
 
  • Like
Reactions: jcalvarez
6463 SPICE Models.

Code:
**** 6463 ******************************************
* Created on 09/27/2024 10:23 using paint_kit.jar 3.1
* www.dmitrynizh.com/tubeparams_image.htm
* Plate Curves image file: 6463.jpg
* Data source link:
*----------------------------------------------------------------------------------
.SUBCKT TRIODE_6463 1 2 3 ; Plate Grid Cathode
+ PARAMS: CCG=3.4P  CGP=5.2P CCP=0.8P RGI=2000
+ MU=20.41 KG1=690 KP=144 KVB=2676 VCT=0.17 EX=1.372
* Vp_MAX=400 Ip_MAX=30 Vg_step=2 Vg_start=0 Vg_count=11
* Rp=4000 Vg_ac=55 P_max=4.4 Vg_qui=-48 Vp_qui=300
* X_MIN=45 Y_MIN=93 X_SIZE=561 Y_SIZE=410 FSZ_X=1323 FSZ_Y=600 XYGrid=false
* showLoadLine=n showIp=y isDHT=n isPP=n isAsymPP=n showDissipLimit=y
* showIg1=n gridLevel2=n isInputSnapped=n 
* XYProjections=n harmonicPlot=n dissipPlot=n
*----------------------------------------------------------------------------------
E1 7 0 VALUE={V(1,3)/KP*LOG(1+EXP(KP*(1/MU+(VCT+V(2,3))/SQRT(KVB+V(1,3)*V(1,3)))))}
RE1 7 0 1G  ; TO AVOID FLOATING NODES
G1 1 3 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1}
RCP 1 3 1G   ; TO AVOID FLOATING NODES
C1 2 3 {CCG} ; CATHODE-GRID
C2 2 1 {CGP} ; GRID=PLATE
C3 1 3 {CCP} ; CATHODE-PLATE
D3 5 3 DX ; POSITIVE GRID CURRENT
R1 2 5 {RGI} ; POSITIVE GRID CURRENT
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
.ENDS
*$

屏幕截图 2024-09-27 102342.jpg
 
EF37 EF36 EF6 LTspice models

@Zoran posted this Pspice triode-strapped model in tubes/valves section yesterday:

Here's a repost of it for LTspice/Pspice with some minor editorial changes
and
LTspice / Pspice pentode models for Vg2=100V (also contains an alternative triode model derived from pentode)
 

Attachments

Hi Folks,

Back on DiyAudio after ~10 year hiatus and new to this thread.

I am looking for PSPICE (or LTSPICE as I can convert) models for:
1) CK6419 - Pentode that will be used in triode mode - https://bms.isjtr.ro/sheets/138/6/6419.pdf
2) 6J5GT - triode - https://frank.pocnet.net/sheets/127/6/6J5.pdf

Would anyone happen to have these?

I see that folks here appear to use a program to graphically fit the IV curve images from data sheets.
Does this program have a name and is it available as open source?

There are currently 197 pages to this thread and it is quite the thing to sort through!

Thanks in advance for any assistance!

Robert
 
6J5GT should be electrically identical to 6SN7GT (or GTA, GTB).

Here are a couple of good 6SN7 models.

Here's Adrian Immler's 6SN7WGT model:

Code:
*6SN7WGT LTspice model based on the generic triode model from Adrian Immler, version i4
*A version log is at the end of this file
*Params fitted to the datasheet by Adrian Immler, Febr. 2020
*The high fit quality is presented at adrianimmler.simplesite.com
*History's best of tube decribing art (plus some new ideas) is merged to this new approach.
*@ neg. Vg, Ia accuracy is similar to Koren or Ayumi models.
*@ small neg. Vg, the "Anlauf" current is considered.
*@ pos. Vg, Ig and Ia accuracy is on a unrivaled level.
*This offers new simulation possibilities like bias point setting with MOhm grid resistor,
*Audion radio circuits, low voltage amps, guitar distortion stages or pulsed stages.
anode (plate)
| grid
| | cathode
| | |
.subckt 6SN7WGT.RAi4 A G K
.params
*Parameters for the space charge current @ Vg <= 0
mu   = 21.3 ;Determines the voltage gain @ constant Ia
rad  = 6k2  ;Differential anode resistance, set @ Iad and Vg=0V
Vct  = 0.83 ;Offsets the Ia-traces on the Va axis. Electrode material's contact potential
kp   = 147  ;Mimics the island effect
xs   = 1.5  ;Determines the curve of the Ia traces. Typically between 1.2 and 1.8
*
*Parameters for assigning the space charge current to Ia and Ig @ Vg > 0
kB   = 0.14 ;Describes how fast Ia drops to zero when Va approaches zero.
radl = 370  ;Differential resistance for the Ia emission limit @ very small Va and Vg > 0
tsh  = 10   ;Ia transmission sharpness from 1th to 2nd Ia area. Keep between 3 and 20. Start with 20.
xl   = 1.5  ;Exponent for the emission limit
*
*Parameters of the grid-cathode vacuum diode
kvdg  = 188 ;virtual vacuumdiode. Causes an Ia reduction @ Ig > 0.
kg = 2k15   ;Inverse scaling factor for the Va independent part of Ig (caution - interacts with xg!)
Vctg = 0.83 ;Offsets the log Ig-traces on the Vg axis. Electrode material's contact potential
xg   = 1.2  ;Determines the curve of the Ig slope versus (positive) Vg and Va >> 0
VT   = 0.1  ;Log(Ig) slope @ Vg<0. VT=k/q*Tk (cathodes absolute temp, typically 1150K)
Vft2 = 0 gft2 = 7  ;finetunes the gridcurrent @ low Va and Vg near zero
*
*Parameters for the caps
cag  = 3p7  ;From datasheet
cak  = 0p8  ;From datasheet
cgk  = 2p5  ;From datasheet
*
*special purpose parameters
+ os = 1      ;Overall scaling factor, if a user wishes to simulate manufacturing tolerances
*
*Calculated parameters
Iad = 100/rad  ;Ia where the anode a.c. resistance is set according to rad.
ks = pow(mu/(rad*xs*Iad**(1-1/xs)),-xs) ;Reduces the unwished xs influence to the Ia slope
ksnom = pow(mu/(rad*1.5*Iad**(1-1/1.5)),-1.5) ;Sub-equation for calculating Vg0
Vg0 = Vct + (Iad*ks)(1/xs) - (Iad*ksnom)(2/3) ;Reduces the xs influence to Vct.
kl = pow(1/(radl*xl*Ild**(1-1/xl)),-xl) ;Reduces the xl influence to the Ia slope @ small Va
Ild = sqrt(radl)*1m ;Current where the Il a.c. resistance is set according to radl.
*
*Space charge current model
Bggi GGi 0 V=v(Gi,K)+Vg0 ;Effective internal grid voltage.
Bahc Ahc 0 V=uramp(v(A,K)) ;Anode voltage, hard cut to zero @ neg. value
Bst   St 0 V=uramp(max(v(GGi)+v(A,K)/(mu), v(A,K)/kp*ln(1+exp(kp*(1/mu+v(GGi)/(1+v(Ahc)))))));Steering volt.
Bs    Ai K I=os/ks*pow(v(St),xs) ;Langmuir-Childs law for the space charge current Is
*
*Anode current limit @ small Va
.func smin(z,y,k) {pow(pow(z+1f, -k)+pow(y+1f, -k), -1/k)} ;Min-function with smooth trans.
Ra  A Ai 1
Bgl Gi A I=min(i(Ra)-smin(1/kl*pow(v(Ahc),xl),i(Ra),tsh),i(Bgvd)*exp(4*v(G,K))) ;Ia emission limit
*
*Grid model
Bvdg G Gi I=1/kvdg*pwrs(v(G,Gi),1.5) ;Reduces the internal effective grid voltage when Ig rises
Rgip G Gi 1G ;avoids some warnings
.func Ivd(Vvd, kvd, xvd, VTvd)  {if(Vvd < 3, 1/kvd*pow(VTvd*xvd*ln(1+exp(Vvd/VTvd/xvd)),xvd), 1/kvd*pow(Vvd, xvd))} ;Vacuum diode function
Bgvd Gi K I=Ivd(v(G,K) + Vctg - uramp(-v(A,K)/mu), kg/os, xg, VT)
.func ft2() {gft2*(1-tanh(3*(v(G,K)+Vft2)))} ;Finetuning-func. improves ig-fit @ Vg near -0.5V, low Va.
Bgr Gi Ai I=ivd(v(GGi),ks/os, xs, 0.8*VT)/(1+ft2()+kB*v(Ahc));Is reflection to grid when Va approaches zero
Bs0 Ai K  I=ivd(v(GGi),ks/os, xs, 0.8*VT)/(1+ft2()) - os/ks*pow(v(GGi),xs) ;Compensates neg Ia @ small Va and Vg near zero
*
*Caps
C1 A G {cag}
C2 A K {cak}
C3 G K {cgk}
.ends
*
*Version log
*i1 :Initial version
*i2 :Pin order changed to the more common order „A G K“ (Thanks to Markus Gyger for his tip)
*i3 :bugfix of the Ivd-function: now also usable for larger Vvd
*i4: Rgi replaced by a virtual vacuum diode (better convergence). ft1 deleted (no longer needed)
;2 new prarams for Ig finetuning @ Va and Vg near zero. New overall skaling factor os for aging etc.


You can find a collection of Ayumi Nakabayashi model in the pctubes zip file, in post #1 of this thread.

Here's the Ayumi N. 6SN7 model:

Code:
*
Generic triode model: 6SN7_AN
Copyright 2003--2008 by Ayumi Nakabayashi, All rights reserved.
Version 3.10, Generated on Sat Mar  8 22:40:58 2008
Plate
| Grid
| | Cathode
| | |
.SUBCKT 6SN7_AN A G K
BGG   GG   0 V=V(G,K)+0.54900933
BM1   M1   0 V=(0.020494606*(URAMP(V(A,K))+1e-10))**-0.76277031
BM2   M2   0 V=(0.66290422*(URAMP(V(GG)+URAMP(V(A,K))/16.448024)+1e-10))**2.2627703
BP    P    0 V=0.0012465111*(URAMP(V(GG)+URAMP(V(A,K))/24.812067)+1e-10)**1.5
BIK   IK   0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00074417047*V(M1)*V(M2)
BIG   IG   0 V=0.0003834058*URAMP(V(G,K))*1.5(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4)
BIAK  A    K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.0006816103*URAMP(V(A,K))**1.5)))+1e-10*V(A,K)
BIGK  G    K I=V(IG)
* CAPS
CGA   G    A 4p
CGK   G    K 3p
CAK   A    K 1.2p
.ENDS

And here's Wayne Clay's Koren model of a GE 6SN7:


Code:
6SN7_GE LTSpice model
Modified Koren model (8 parameters): mean fit error 0.0771164mA
Traced by Wayne Clay on 10/11/2013 using Curve Captor v0.9.1
from General Elctric data sheet
.subckt 6SN7_GE  P G K
    Bp  P K  I=
(0.01996138472m)*uramp(V(P,K)*ln(1.0+(-0.06003194624)+exp((4.721146098)+
(4.721146098)*((20.78010878)+(-111.9910206m)*V(G,K))*V(G,K)/sqrt((29.06231184)**2+
(V(P,K)-(6.821890538))2)))/(4.721146098))(1.378722311)
  Cgk G K 2.8p ; 0.2p added
  Cpk P K 2.2p ; 0.5p added
  Cgp G P 4.5p ; 0.5p added
  Rpk P K 1G ; to avoid floating nodes
  d3  G K dx1
.model dx1 d(is=1n rs=2k cjo=1pf N=1.5 tt=1n)
.ends


I hope that helps.