• WARNING: Tube/Valve amplifiers use potentially LETHAL HIGH VOLTAGES.
    Building, troubleshooting and testing of these amplifiers should only be
    performed by someone who is thoroughly familiar with
    the safety precautions around high voltages.

Vacuum Tube SPICE Models

Ex-Moderator
Joined 2011
D3a SPICE Models

Triode-Connected
Code:
*
* Generic triode model: D3A_PT_AN
* Copyright 2003--2008 by Ayumi Nakabayashi, All rights reserved.
* Version 3.10, Generated on Tue Dec 24 08:47:57 2013
*                 Plate
*                 | Grid
*                 | | Cathode
*                 | | |
.SUBCKT D3A_PT_AN A G K
BGG   GG   0 V=V(G,K)+0.38087015
BM1   M1   0 V=(0.0021582473*(URAMP(V(A,K))+1e-10))**-0.28773641
BM2   M2   0 V=(0.83904987*(URAMP(V(GG)+URAMP(V(A,K))/74.574462)+1e-10))**1.7877364
BP    P    0 V=0.03039942*(URAMP(V(GG)+URAMP(V(A,K))/88.879654)+1e-10)**1.5
BIK   IK   0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.018902992*V(M1)*V(M2)
BIG   IG   0 V=0.01519971*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4)
BIAK  A    K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.015714194*URAMP(V(A,K))**1.5)))+1e-10*V(A,K)
BIGK  G    K I=V(IG)
* CAPS
CGA   G    A 2.7p
CGK   G    K 7.3p
CAK   A    K 3.1p
.ENDS

Pentode
Code:
*
* Generic pentode model: D3A_AN
* Copyright 2003--2008 by Ayumi Nakabayashi, All rights reserved.
* Version 3.10, Generated on Mon Dec 23 07:04:01 2013
*              Plate
*              | Screen Grid
*              | |  Control Grid
*              | |  |  Cathode
*              | |  |  |
.SUBCKT D3A_AN A G2 G1 K
BGG   GG   0 V=V(G1,K)+0.38087015
BM1   M1   0 V=(0.0021582473*(URAMP(V(G2,K))+1e-10))**-0.28773641
BM2   M2   0 V=(0.83904987*(URAMP(V(GG)+URAMP(V(G2,K))/74.574462)))**1.7877364
BP    P    0 V=0.03039942*(URAMP(V(GG)+URAMP(V(G2,K))/88.879654))**1.5
BIK   IK   0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.018902992*V(M1)*V(M2)
BIG   IG   0 V=0.01519971*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4)
BIK2  IK2  0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15)))
BIG2T IG2T 0 V=V(IK2)*(0.79212298*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.20787702)
BIK3  IK3  0 V=V(IK2)*(URAMP(V(A,K))+4970)/(URAMP(V(G2,K))+4970)
BIK4  IK4  0 V=V(IK3)-URAMP(V(IK3)-(0.015714194*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5))
BIP   IP   0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.015714194*URAMP(V(A,K))**1.5)))
BIAK  A    K I=V(IP)+1e-10*V(A,K)
BIG2  G2   K I=URAMP(V(IK4,IP))
BIGK  G1   K I=V(IG)
* CAPS
CGA   G1  A  0.035p
CGK   G1  K  4.1p
C12   G1  G2 2.7p
CAK   A   K  0p
.ENDS
 
Triode-Connected
Code:
*
* Generic triode model: D3A_PT_AN
* Copyright 2003--2008 by Ayumi Nakabayashi, All rights reserved.
* Version 3.10, Generated on Tue Dec 24 08:47:57 2013
*                 Plate
*                 | Grid
*                 | | Cathode
*                 | | |
.SUBCKT D3A_PT_AN A G K
BGG   GG   0 V=V(G,K)+0.38087015
BM1   M1   0 V=(0.0021582473*(URAMP(V(A,K))+1e-10))**-0.28773641
BM2   M2   0 V=(0.83904987*(URAMP(V(GG)+URAMP(V(A,K))/74.574462)+1e-10))**1.7877364
BP    P    0 V=0.03039942*(URAMP(V(GG)+URAMP(V(A,K))/88.879654)+1e-10)**1.5
BIK   IK   0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.018902992*V(M1)*V(M2)
BIG   IG   0 V=0.01519971*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4)
BIAK  A    K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.015714194*URAMP(V(A,K))**1.5)))+1e-10*V(A,K)
BIGK  G    K I=V(IG)
* CAPS
CGA   G    A 2.7p
CGK   G    K 7.3p
CAK   A    K 3.1p
.ENDS
Pentode
Code:
*
* Generic pentode model: D3A_AN
* Copyright 2003--2008 by Ayumi Nakabayashi, All rights reserved.
* Version 3.10, Generated on Mon Dec 23 07:04:01 2013
*              Plate
*              | Screen Grid
*              | |  Control Grid
*              | |  |  Cathode
*              | |  |  |
.SUBCKT D3A_AN A G2 G1 K
BGG   GG   0 V=V(G1,K)+0.38087015
BM1   M1   0 V=(0.0021582473*(URAMP(V(G2,K))+1e-10))**-0.28773641
BM2   M2   0 V=(0.83904987*(URAMP(V(GG)+URAMP(V(G2,K))/74.574462)))**1.7877364
BP    P    0 V=0.03039942*(URAMP(V(GG)+URAMP(V(G2,K))/88.879654))**1.5
BIK   IK   0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.018902992*V(M1)*V(M2)
BIG   IG   0 V=0.01519971*URAMP(V(G1,K))**1.5*(URAMP(V(G1,K))/(URAMP(V(A,K))+URAMP(V(G1,K)))*1.2+0.4)
BIK2  IK2  0 V=V(IK,IG)*(1-0.4*(EXP(-URAMP(V(A,K))/URAMP(V(G2,K))*15)-EXP(-15)))
BIG2T IG2T 0 V=V(IK2)*(0.79212298*(1-URAMP(V(A,K))/(URAMP(V(A,K))+10))**1.5+0.20787702)
BIK3  IK3  0 V=V(IK2)*(URAMP(V(A,K))+4970)/(URAMP(V(G2,K))+4970)
BIK4  IK4  0 V=V(IK3)-URAMP(V(IK3)-(0.015714194*(URAMP(V(A,K))+URAMP(URAMP(V(G2,K))-URAMP(V(A,K))))**1.5))
BIP   IP   0 V=URAMP(V(IK4,IG2T)-URAMP(V(IK4,IG2T)-(0.015714194*URAMP(V(A,K))**1.5)))
BIAK  A    K I=V(IP)+1e-10*V(A,K)
BIG2  G2   K I=URAMP(V(IK4,IP))
BIGK  G1   K I=V(IG)
* CAPS
CGA   G1  A  0.035p
CGK   G1  K  4.1p
C12   G1  G2 2.7p
CAK   A   K  0p
.ENDS

Super! Thanks for the quick reply.
 
Cordell Models/Mosfet Modelling

Can someone point me in the right direction on how do use the following models posted. Or for that matter, how to use an external transistor or mosfet device.
Do I need to find the set of symbols for this or use the ones in LTSpice?

* Cordell Models - 04/20/2011
*
* copyright Cordell Audio April 2011
 
Does anyone have a collection of all the latest and most accurate models for LTSpice? I was looking for a 12AU7A model.

There are tons of tube SPICE models in this "sticky" thread:

http://www.diyaudio.com/forums/tubes-valves/243950-vacuum-tube-spice-models.html

I've found the triode models from Ayumi Nakabayashi to be as accurate as any. Here is a workable model for the 12AU7, which should get you started. Note that the model is named 12AU7, and not 12AU7A. The "A" suffix isn't important here.

Code:
*
* Generic triode model: 12AU7
* Copyright 2003--2008 by Ayumi Nakabayashi, All rights reserved.
* Version 3.10, Generated on Sat Mar  8 22:41:08 2008
*             Plate
*             | Grid
*             | | Cathode
*             | | |
.SUBCKT 12AU7 A G K
BGG   GG   0 V=V(G,K)+0.89005722
BM1   M1   0 V=(0.028826571*(URAMP(V(A,K))+1e-10))**-0.90897681
BM2   M2   0 V=(0.622671*(URAMP(V(GG)+URAMP(V(A,K))/13.089625)+1e-10))**2.4089768
BP    P    0 V=0.00087237591*(URAMP(V(GG)+URAMP(V(A,K))/21.021735)+1e-10)**1.5
BIK   IK   0 V=U(V(GG))*V(P)+(1-U(V(GG)))*0.00055330711*V(M1)*V(M2)
BIG   IG   0 V=0.00043618795*URAMP(V(G,K))**1.5*(URAMP(V(G,K))/(URAMP(V(A,K))+URAMP(V(G,K)))*1.2+0.4)
BIAK  A    K I=URAMP(V(IK,IG)-URAMP(V(IK,IG)-(0.00049917061*URAMP(V(A,K))**1.5)))+1e-10*V(A,K)
BIGK  G    K I=V(IG)
* CAPS
CGA   G    A 1.5p
CGK   G    K 1.6p
CAK   A    K 0.4p
.ENDS
 
Still looking for models of soviet 6P9 (6Π9) output pentode and 6F5P (6Φ5Π) triode-pentode ?
Does anybody have ?

Try this for 6P9:

Code:
.SUBCKT PENT_6P9 1 4 2 3 ; P G K G2
+ PARAMS: CCG=13P  CGP=0.06P CCP=7.5P RGI=2000
+ MU=30.4 KG1=275.7 KP=91.4 KVB=23.3 EX=1.15 KG2=4500 
* Vp_MAX=480 Ip_MAX=80 Vg_step=1 Vg_start=0 Vg_count=7
* Rp=1600 Vg_ac=23.5 P_max=9 Vg_qui=-23.4 Vp_qui=240 UL=0.43 EG2=150
* X_MIN=33 Y_MIN=41 X_SIZE=368 Y_SIZE=239 FSZ_X=1053 FSZ_Y=709 XYGrid=false
* showLoadLine=n showIp=y isDHT=n isPP=n isAsymPP=n isUL=n showDissipLimit=y 
* showIg1=n gridLevel2=n isInputSnapped=n  
* XYProjections=n harmonicPlot=y harmonics=y
*----------------------------------------------------------------------------------
RE1  7 0  1MEG    ; DUMMY SO NODE 7 HAS 2 CONNECTIONS
E1   7 0  VALUE=  ; E1 BREAKS UP LONG EQUATION FOR G1.
+{V(4,3)/KP*LOG(1+EXP((1/MU+V(2,3)/V(4,3))*KP))}
G1   1 3  VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1*ATAN(V(1,3)/KVB)}
G2   4 3  VALUE={(EXP(EX*(LOG((V(4,3)/MU)+V(2,3)))))/KG2}
RCP  1 3  1G      ; FOR CONVERGENCE
C1   2 3  {CCG}    ; CATHODE-GRID 1
C2   1 2  {CGP}  ; GRID 1-PLATE
C3   1 3  {CCP}   ; CATHODE-PLATE
R1   2 5  {RGI}   ; FOR GRID CURRENT
D3   5 3  DX      ; FOR GRID CURRENT
.MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N)
.ENDS
*$
 
I can't say anything about the typo. The model work as it is now.

I compared the simulated plate current to the triode curves from here:

http://www.mif.pg.gda.pl/homepages/frank/sheets/113/6/6P9.pdf

I tried to follow the 50 mA anode current line by the following voltage settings and got the currents:

1. Ua = 102 V, Ug1 = 0 : Ia = 40 mA
2. Ua = 171 V, Ug1 = -3 : Ia = 38 mA
3. Ua = 242 V, Ug1 = -6 : Ia = 38 mA

So my results show too low anode currents.
 
Last edited: