If I put my notes here, I might be able to find them again later!
Doin' a "Gilmore" : a discrete transistor headphone amplifier
Recently I spent some time updating the diamond buffer of Sapphire headphone amp circuit. Later I stumbled on Kevin Gilmore's headphone amp circuit. Well, I'd read it before, but it had slipped my mind.
On seeing the Gilmore circuit again the thought process re. a Sapphire+Gilmore went something as follows,
"Toss out op amp, convert the Gilmore dual-LTP front end to bipolar, bolt the Sapphire3 buffer stage to the back, and substitute in the Sapphire3 current sources. Wrap in a mild feedback loop."
The result is shown attached. The Vbe multiplier is still a simple resistor (R33) ... that may need to be refined to add thermal throttling. The offset servo is not shown, but the action is shown as Vadj. Alternatively a trim pot would be placed between R30 and R32 to provide a small measure of offset adjustment. Most of the open loop gain is controlled by R14,R15 ... it seems to me that some work could still be done in that area. Despite going to BJT the input impedance is still high, and there's no obvious performance hits. However, you would normally add a coupling capacitor and input resistor between the input and the volume control to avoid the DC offset changing with volume position. Finally, the PSRR is still terrible, just like the original...
On seeing the Gilmore circuit again the thought process re. a Sapphire+Gilmore went something as follows,
"Toss out op amp, convert the Gilmore dual-LTP front end to bipolar, bolt the Sapphire3 buffer stage to the back, and substitute in the Sapphire3 current sources. Wrap in a mild feedback loop."
The result is shown attached. The Vbe multiplier is still a simple resistor (R33) ... that may need to be refined to add thermal throttling. The offset servo is not shown, but the action is shown as Vadj. Alternatively a trim pot would be placed between R30 and R32 to provide a small measure of offset adjustment. Most of the open loop gain is controlled by R14,R15 ... it seems to me that some work could still be done in that area. Despite going to BJT the input impedance is still high, and there's no obvious performance hits. However, you would normally add a coupling capacitor and input resistor between the input and the volume control to avoid the DC offset changing with volume position. Finally, the PSRR is still terrible, just like the original...
Total Comments 0