Background - skip if you want: One way of making a push-pull SMPS is to use two N-type FET switches, one called the "low side" driver (source referenced to actual ground) and the other called the "high side" driver (source referenced to the output). Some IC FET gate driver chips come with the bootstrapping option to control the high side FET switch, which can be very convenient (all you have to do is install the bootstrapping capacitor - the rest of the gate drive is already taken care of).
==> Instead of using this kind of high-side/low-side driver method, has anyone had success in switch-driving using optocouplers with their SMPS? The advantage I am looking for due to isolation is the fact that the PWM IC itself can be referenced to regular ground, while neither FET switch has to be referenced to ground because of the isolation provided by the optocouplers. This might be usable for regulating a bipolar +/- supply, instead of a unipolar + supply.
For instance, Avago makes a few optocouplers that are designed to drive FET gates at reasonable switching frequencies (the HCPL-3120 is rated at 2A max output current at up to 250kHz switching freq). Is this possible to use in an SMPS, at say, 100kHz switching frequency?
==> Instead of using this kind of high-side/low-side driver method, has anyone had success in switch-driving using optocouplers with their SMPS? The advantage I am looking for due to isolation is the fact that the PWM IC itself can be referenced to regular ground, while neither FET switch has to be referenced to ground because of the isolation provided by the optocouplers. This might be usable for regulating a bipolar +/- supply, instead of a unipolar + supply.
For instance, Avago makes a few optocouplers that are designed to drive FET gates at reasonable switching frequencies (the HCPL-3120 is rated at 2A max output current at up to 250kHz switching freq). Is this possible to use in an SMPS, at say, 100kHz switching frequency?