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Abstract 

 

The goal of this research is to provide a framework for vibro-acoustical analysis and 

design of a multiple-layer constrained damping structure. The existing research on  

damping and viscoelastic damping mechanism is limited to the following four 

mainstream approaches: modeling techniques of damping treatments/materials; 

control through the electrical-mechanical effect using the piezoelectric layer; 

optimization by adjusting the parameters of the structure to meet the design 

requirements; and identification of the damping material’s properties through the 

response of the structure.  This research proposes a systematic design methodology 

for the multiple-layer constrained damping beam giving consideration to 

vibro-acoustics.  

 

A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic 

laminated beams using the Biot damping model is presented using a hybrid 

numerical model.  The boundary element method (BEM) is used to model the 

acoustical cavity whereas the Finite Element Method (FEM) is the basis for 

vibration analysis of the multiple-layered beam structure. Through the proposed 



Abstract 

iv 

 

procedure, the analysis can easily be extended to other complex geometry with 

arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping 

materials is represented by the Biot damping model taking into account the effects 

of frequency, temperature and different damping materials for individual layers. A 

curve-fitting procedure used to obtain the Biot constants for different damping 

materials for each temperature is explained.  The results from structural vibration 

analysis for selected beams agree with published closed-form results and results for 

the radiated noise for a sample beam structure obtained using a commercial BEM 

software is compared with the acoustical results of the same beam with using the 

Biot damping model.  The extension of the Biot damping model is demonstrated to 

study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete 

system in order to introduce different types of viscoelastic damping materials. 

 

The mechanical properties of viscoelastic damping materials such as shear modulus 

and loss factor change with respect to different ambient temperatures and 

frequencies. The application of multiple-layer treatment increases the damping 

characteristic of the structure significantly and thus helps to attenuate the vibration 

and noise for a broad range of frequency and temperature. 
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The main contributions of this dissertation include the following three major tasks: 

1) Study of the viscoelastic damping mechanism and the dynamics equation of a 

multilayer damped system incorporating the Biot damping model. 

2) Building the Finite Element Method (FEM) model of the multiple-layer 

constrained viscoelastic damping beam and conducting the vibration analysis. 

3) Extending the vibration problem to the Boundary Element Method (BEM) based 

acoustical problem and comparing the results with commercial simulation software. 
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Nomenclature 

 

M = mass matrix 

Ke, Kv = elastic stiffness/viscous stiffness matrix 

D = damping matrix 

x = displacement vector 

f = force vector 

A, B = coefficient matrix of state equation 

z = dissipation coordinate vector 

m, n = number of mini-oscillators for 1
st
 /2

nd
 type of viscoelastic material 

s = Laplace variable 

t = time 

E = Young’s Modulus 

G = Shear Modulus 

Ne, Nf = FE Shape function of longitudinal/transverse deflection 

N = number of DOFs 

ρ = density of material 

h = thickness of layer 



Nomenclature 

xv 

 

l = length of beam 

Φ = eigenvector matrix 

λ = eigenvalue matrix 

∞G , {ak, bk} = Biot constants 

p = sound pressure 

v = velocity vector 

vn = nodal normal component of boundary velocity 
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1. Introduction 

 

Nowadays, addressing vibration and noise issues is essential to the improvement of 

performance and operational perception in advanced engineering structures and 

systems. Passive and active structural damping can attenuate a system’s vibration 

and noise through the proper use of materials that posses enhanced damping 

properties. 

 

In recent research, the most popular method to make this attenuation more 

predictable has been the use of material damping; this typically involves the 

application of high-damping materials like viscoelastic materials. For almost half of 

a century, researchers have conducted studies on topics including: analytical or 

numerical modeling techniques of different damping treatments; mathematical 

representations of damping properties; control strategies by the piezoelectric 

material and optimization or identification of the damping structure. Among the 

different viscoelastic damping treatments, constrained-layer damping structures are 

the most efficient approach when introducing damping to a system.  

 

Many studies focus on the constrained-layered viscoelastic structure. The majority 
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of these studies are based on the three-layer constrained sandwich beam due to its 

ability to include all of the factors that influence the system damping properties. It 

turns out that relatively few works have focused on the multiple-layer constrained 

sandwich beam and its ability to further reduce noise and vibration. Further, the 

acoustical performance of the damping structure is increasingly focused on the 

arbitrary type of excitation. Hence, it is of great importance to study the vibration 

and acoustical performance of the multiple-layer sandwich beam as it relates to the 

changes of influencing factors. The objective of my research is to propose a 

systematic vibro-acoustical design for the multiple-layer constrained damping beam 

and to establish a quantitative relationship between vibro-acoustical responses and 

external factors, including ambient temperature, frequency, combinations of 

different materials, excitation type, etc.  

 

This research began with an in depth investigation into the damping mechanism 

using the frequency-domain Biot model. In order to study the vibration 

characteristics of the damping system, using this Biot damping model, several 

numerical examples were studied including the lumped-mass system and the 

multiple-layer sandwich beam modeled by the Finite Element (FE) technique. The 

semi-coupled acoustical problem was solved by the Boundary Element (BE) 
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technique. These investigations and the resulting calculations are the major 

contributions of this research in damping. The background is the result of a detailed 

literature review and provides a concise introduction to recent damping mechanism 

theory.
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1.1 Motivation of Research 

 

In order to stay competitive in the contemporary marketplace, manufacturers of 

advanced engineering products need to place a strong emphasis on their consumers’ 

level of comfort when using their product. The presence of excessive noise can 

greatly reduce a consumer’s perception of comfort. Thus, there is an increasing 

demand for systematic research on the application of damping structures that can 

ensure a perception of comfort in the consumers. Any analysis of multiple-layer 

damping structures must take into consideration to both the vibration as well as the 

noise aspects of the problem.  

 

Because many of the contributions in vibro-acoustical research have been made in 

the area of the single-layer damping structure, it can be concluded that there is a gap 

in the literature surrounding the areas of: 

 

1. Numerical representation for a multiple-layer constrained damping beam using 

the Finite Element(FE) model, 

 



Chapter 1.1-Motivation of Research 

5 

 

2. Developing the dynamic equation with the Biot damping model for different 

viscoelastic materials, calculating the vibration response analysis in the time 

domain as well frequency domain, 

 

3. Finding a robust and efficient curve-fitting technique for the complex shear 

modulus at different ambient temperatures, 

 

4. Extending the vibration problem to a semi-coupled vibro-acoustical analysis 

using acoustical BE technique for the multiple-layer constrained damping beam, 

and  

 

5. Investigating the quantitative relationship between internal factors (such as 

vibro-acoustical responses and viscoelastic properties) and external factors. 
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1.2 Contribution of this Research 

The work presented in this dissertation is very useful in the design and analysis of  

viscoelastic damping structures. With the growing demand for vibration and 

acoustical attenuation techniques and tools, especially for structures incorporating 

different viscoelastic damping materials into the numerical geometry, the analyis 

technique presented in this dissertation is practical. Filling the research gap 

identified from literature review, this research contributes in the application of the 

Biot Dynamic Equation with different viscoelastic damping materials with the 

multiple-layered FE structure in addition to studies of the vibro-acoustical problem 

of the multiple-layered damping beam.   

 

It is anticipated that this research will support the design or research activities for 

NVH (Noise, Vibration and Harshness) engineers and scientists as well as the 

researchers in related fields.  In particular, the completion and results of this 

research can be considered as the starting point of an extensive study into the 

formulation of a more complicated damping structure associated with the 

vibro-acoustical analysis and the effect of many related factors, such as the ambient 

temperature, type of excitation, etc. 
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1.3 Dissertation Overview 

 

The following is a brief outline of the dissertation: 

 

In Chapter 1, the research introduction, objectives, motivations and outlines are 

discussed. Chapter 2 details the important concepts which form the basis for 

viscoelastic damping, the different types of damping treatments, and the theory of 

damping mechanism. Chapter 3 will provide an illustrative explanation of this 

research. 

 

Chapter 4 will present the vibration analysis of multiple-layer structure. It will also 

discuss the finite element model, the Biot damping dynamic model, the model-order 

reduction theory, the complex shear-modulus curve-fitting technique and decoupling 

transformation. 

 

Chapter 5 introduces the direct boundary element method (DBEM) theory and 

extends the vibration problem in Chapter 4 to an acoustical cavity problem 
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Chapter 6 will further illustrate the concepts through numerical examples. This 

chapter discusses the lumped mass model, and provides an example of the vibration 

of a three layer beam. It also discusses the vibro-acoustical responses of a seven 

layer beam to external factors such as ambient temperature, frequency, combination 

of different materials, etc.  

 

Finally, Chapter 7 presents a summary of the proposed research and its role in the 

broader context of vibro-acoustical design. It also mentions the opportunities for 

further research for other irregular shaped structures containing viscoelastic 

damping materials. 
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2. Background 

2.1 Early Research of Damping Treatments 

 

The early application of viscoelastic damping to facilitate the energy dissipation can 

be traced back to 1919 when Lord Corporation was looking for a rubber material 

bonded to metal sheet for noise and vibration reduction. The first publications are by 

Lienard [1] and Oberst [2] in early 1950s. In Lienard’s publication, the mathematical 

model of “loss mechanism” is not studied. The application of this damping 

mechanism is applied to the thin automobile panels for the noise emission reduction. 

Oberst dealt with the different configuration of experiment on the 

single-homogenous layers of damping materials in his follow-up publications[2-4]. 

 

In the same era, researchers have studied two types of viscoelastic damping 

treatments: free-layer treatment proposed by Plass (1957) [5] and the 

constrained-layer treatment proposed by Kerwin (1959) [6] .  

 

Free layer treatments (shown in Figure 2.1) studied by Plass [5] are widely used in 
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the automotive industry as additional layers on large sheet metal panels. The 

elongation between the supporting metallic and the viscoelastic due to the bending 

of supporting plates in the low frequency range is the mechanism introducing the 

material damping. The disadvantage of this structure is: when carrying a significant 

load, the viscoelastic must thus be quite stiff. However, the high damping material 

which is very energy-dissipative cannot be utilized in this case. 

 

Figure 2.1 Typical Free-Layer Damping Treatment 

 

Constrained layer treatments (shown in Figure 2.2) investigated by Kerwin [6] are 

an excellent option allowing high dissipative performance with soft viscoelastic 

materials. The mechanism that having a thin and soft viscoelastic layer transmitting 

shear loads between two stiff metal layers ensures the high dissipative performance 

of structure. Some follow-up publications [7, 8] by Kerwin et al. also made many 

efforts on different configurations of experiment comparing the free-layer and 
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constrained-layer damping treatments. They concluded that the constrained-layer 

treatment is more weight-efficient in different testing configurations. 

 

Figure 2.2 Typical Constrained-Layer Damping Treatment 

 

Comparing these two types, the mechanism of constrained damping ensures higher 

damping (usually measured by loss factor) because of the energy dissipated during 

the shear deformation of the viscoelastic material due to the mismatch of base and 

constrained layers.
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2.2   Literature Review 

 

Researches on the viscoelastic damping structure can be categorized on the basis of 

the following four mainstream topics: 

1. Damping treatment and its numerical implementation 

2. Damping model to represent the viscoelastic material’s behavior 

3. Control strategies 

4. Damping Identification/ Optimization on the number of layers, sizing, placement, 

etc. 

 

2.1.1 Analytical Modeling of Constrained-Layer Treatment 

 

To mathematically model the constrained-layer damping beam, DiTaranto (1965) [9] 

developed six-order partial differential equation (PDE)  in terms of axial 

displacements. In 1968, Mead and Markus [10] published the derivation of a 

six-order PDE for constrained-layer damping beam. Their derivation can be applied 

to mathematically express the transverse displacement for various boundary 

conditions. Although Kerwin published the initial assumption of modeling 
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constrained-layer structure, this paper is considered as the classical closed-form 

solution. A paper by Rao [11] presented the equations of motion and boundary 

conditions using the energy method. The equations were solved numerically and a 

practical design guideline was presented. Similar to Rao’s theory, Cottle [12] used 

Hamilton’s principle to derive equations of motion.   

 

There were hundreds of papers on the theory and application of constrained-layer 

damping treatment from 1950s to early 1980s, the era when numerical analysis 

(mostly Finite Element) are not economical comparing to the closed-form 

approximation. These publications are mostly utilizing Kerwin’s model to make 

minor changes on individual’s application, or making some changes to investigate 

Kerwin’s assumption. Torvik (1980) [13], Mead (1982) [14] and Nakra [15-17] 

published the excellent reviews on the development of constrained layer damping 

treatment in this era. Among these reviews, Mead [14] concluded the basic 

assumption made by most researchers and his Mead and Markus [10] model was 

termed by Douglas and Yang (1978) [18].  

 

In recent decades, researchers studied different methods to reduce the noise and 

vibration for the sandwich beam by increasing the number of layers. Ma [19] 
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proposed an analytical equation for transverse vibration using Hamilton's principle 

and calculated the loss factor and natural frequency for a five-layer 

simply-supported sandwich beam with the complex shear modulus. The comparison 

with the computational result of three-layer and four-layer sandwich beam from the 

former research by other researcher, both experimental and analytical, was presented 

by Ma 

 

Following with the Hamilton's principle, Hao and Rao [20] developed the 

closed-form solution for both symmetrical and asymmetrical simply-supported 

multiple layer sandwich beam, extending the number of layers from limited to 

unlimited. This paper also correlated the experimental results with the numerical 

example of a three-layer sandwich beam with two different viscoelastic layers 

adjacent to each other. 

 

Teng and Hu [21] proposed the alternative analytical method of building the 

constrained layer damping structure by employing the RKU (Ross-Kervin-Ungar) [8] 

model. The possible factors such as frequency, temperature, sizing of damped 

structure that might affect vibration and noise attenuating performance are also 

discussed in this paper. 
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The damping could also be increased by adding passive stand-off layer (PSOL) and 

slotted standoff layer (SSOL) to the layered systems. Falugi [22] and Parin [23] did 

theoretical and experimental work on a four-layered panel and a five-layered beam 

with PSOL treatment. Rogers and Parin [24], and Yellin, Shen and Reinhall [25] 

have performed experimental investigations and demonstrated that PSOL treatment 

increased the damping significantly in aeronautical structures and beams. Yellin and 

colleagues [26, 27] also developed normalized equations of motion for beam, fully 

treated with PSOL using non-ideal stand-off layer assumption. The equations were 

solved using the method of distributed transfer functions [28].  

 

2.1.2 Numerical Implementation of Constrained-Layer Treatment 

 

In 1980s, the concept of constrained-layer damping has wide applications in the 

following decades. Many applications can be found in the conference proceedings 

[29-33] sponsored by the Air Force Wright Aeronautical Laboratories between 

1980s and 1990s. The engineering models that applicable to industrial problems is 

quite emergent in this background. The first publication utilizing FE method is by 
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Johnson et al. [34] in 1981 on the basis of damping-energy relationship found by 

Ungar and Kerwin (1962) [35]. Johnson’s work rests on the modal strain energy 

(MSE) method. This method has the dominant position for industrial application 

especially aerospace by combining complex FE geometry and MSE method. 

 

In 1990s, many researchers turned research interest to the Finite Element Method 

(FEM) for building the numerical model of the constrained-layer system. 

 

Lee and Lesieutre (1996) [36] proposed the 3 nodes, 10 DOF FE model for the 

three-layer Active Constrained Layer (ACL) damping beam. This FE model is 

advantageous in active control application due to its features of non-shear locking 

and adaptability of segmented constraining layers. 

 

In 1999, Chen and Chan [37] studied four different types of integral FEM model 

with a viscoelastic core: 8 and 12 DOFs(Degrees of Freedom) of sandwich beam 

elements; 33 and 42 DOFs of sandwich plate/shell elements. The numerical stability, 

accuracy as well as convergence issue of these four different FEM models are 

demonstrated through the comparison between the numerical results and the results 

of the commercial software and the experiments. 
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Other than the Hamilton and FE numerical method in building the damping beam 

model, other researchers proposed many other modeling techniques for the 

numerical representation of continuous/discontinuous damping beam. Kung and 

Singn [38] calculated the natural frequencies and loss factor using the Rayleigh-Ritz 

energy method and modal-strain energy technique for 3-layer patch damping 

structure. These approximate modeling methods also extended to rectangular 

damping patch of plates and shells with a viscoelastic core. 

 

Zhang and Sainsbury (2000) [39] combined Gerlerkin orthogonal function with the 

traditional finite element method, and successfully applied it to the vibration 

analysis of the damped sandwich plates. The numerical simulation results were 

described as well as showing its accurate and efficient computational performance. 

 

The research of damped structure is also used in developing models for objects with 

irregular geometry such as cylinder[40], patch floor [41], etc. Hua et al. [40] 

proposed an energy-method based on the analytical method as well as on the regular 

FEM in modeling a fluid-filled cylindrical shell with a viscoelastic core. The 

confidence of its accuracy and reliability was gained from the comparison of the 
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numerical results with experiments. 

 

2.1.3 Modern Damping Models 

 

While the FEM takes the dominant position in the simulation area, many researchers 

looked for proper mathematical model to represent the damping behavior of 

viscoelastic material, as well as to make the damping model available in commercial 

FEM software packages [42]. Currently, the FEM commercial software incorporate 

the traditional damping models such as viscous/hysteretic damping [43], Rayleigh/ 

Proportional damping and the Prony Series [44], all of which incorporate damping 

energy dissipation in the time domain. However, none of these damping models are 

able to capture the damping behavior in the frequency domain, which is the most 

interesting issue in the research in vibro-acoustical area. The disadvantage of these 

damping models raised considerable interest among researchers and motivated them 

to develop a damping model for viscoelastic material with a frequency dependence 

that is compatible with the FEM technique. There are two categories of 

mathematical models, most popular in the research of viscoelastic damping: 

derivative type and integral type. 



Chapter 2.2-Literature Review 

 

19 

 

 

The "Fractional Derivative" is essentially the representative damping model in the 

derivative form. It is still active in the research of recent years. Bradley and Torvik 

[45] proposed the fractional derivative constitutive relationship of viscoelastic 

material in 1983. This damping model not only described the material properties of 

viscoelastic damping, but rather established the close-form equation compatible with 

the FEM technique. Compared with the other integral-form models, the fractional 

derivative is only able to capture the relatively weak frequency-dependent 

information; however, it was an important milestone in the area of damping 

research. 

 

In recent years, the research interests concentrated on developing the time-domain 

integral form and frequency-domain damping model derived from integral form that 

can be applied to current FE models. Being dissatisfied with the fractional derivative 

operators, the researchers developed the time-domain (ODE) Ordinary Differential 

Equation combined with the integral-form damping models that is more convenient 

to solve. Such kinds of proposed damping models are roughly classified into: ADF 

type (ATF [46] /ADF [47] model), mini-oscillator type (Biot [48], GHM [49, 50]) 

and the others (Yiu [51], Adhikari [52], etc) 
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Lesieutre and Bianchini [46] mathematically modeled the relaxation behavior of 

viscoelastic material in terms of Augmenting Thermodynamic Field (ATF) in 1989. 

Initially introducing the single augment field, this damping model provided the 

ability to represent the light-damping behavior with the application of a 1D 

viscoelastic structure. In the subsequent research, using a series of augment fields, 

the ATF model is able to model the damping material of higher loss factor with the 

weak frequency dependence. Remedying the limitation of 1D application, Lesieutre 

and Lee [47] proposed an Anelastic Displacement Field (ADF) technique in 1996 

and successfully extended its application from the 1D problem to the 3-layer 

sandwich beam and 3D problems. 

 

As far as the mini-oscillator damping models are concerned, the complex shear 

modulus (the function with respect to both frequency and temperature), can be 

expressed in mechanical terms as the series of mini-oscillation perturbators. In fact, 

both the "mini-oscillator" and ADF type models have the obvious similarities: they 

increase the number of DOF to gain the frequency independence; in other words, 

they use the additional dissipative coordinates to accurately model the relaxation 

function of viscoelastic damping material. The "mini-oscillator" damping models 
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such as Biot and GHM are based on the application of Laplace-Domain relaxation 

function and retransformation from the Laplace domain to the time-domain ODE 

associated with the conventional FEM. ADF type models, on the other hand, are not 

transformation based and they directly result in the formulation of time domain 

 

Biot (1955) [48] first proposed the 1st order relaxation function with the 

introduction of the "dissipative variables" into the dynamic ODE, from his theory of 

irreversible thermodynamics. In 2006, Zhang et al. [53] utilized the Biot model to 

describe the dynamic behavior of the viscoelastic structure. The dimension reduction 

technique and non-linear curve-fitting procedure are also discussed in Zhang’s 

publication. 

 

Golla, Huges and Mactivish [50] developed another mini-oscillator damping model 

called "GHM" by the usage of 2nd order relaxation function in 1985 and 1993. 

Compared with the Biot model, the GHM model has more complicated expression 

and also requires better performance of the computational tool due to the higher 

dimension of the mathematical equation in which the 2nd order relaxation function 

resulted. Unlike the Biot model, GHM model has the additional mass terms in the 

dissipative variables in the mechanical analogy.  
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The popularity of these integral-form damping models in recent years brought two 

research interests: non-linear curve fitting and dimension reduction. The advanced 

curve-fitting technique in the damping models guarantees the accuracy of the 

numerical representation of the actual shear modulus data from the experiment. The 

dimension reduction technique increases the computational efficiency due to the 

additional orders of equation used to gain the frequency independence of the 

frequency-form damping model. 

 

Zhang et al. [54] converted the nonlinear curve-fitting problem in frequency domain 

with respect to the GHM parameters, into the constrained nonlinear optimization 

problem. The efficiency and correctness can be seen from the comparison between 

the experimental complex shear modulus and the curve fitting result of ZN-1 

viscoelastic material. 

 

Park, Inman and Lam [55] examined the GHM damping model with the application 

to the FE method associated with the Guyan reduction technique. The numerical 

example in this research leads to a FE model applied to the GHM dynamic equation 

quantitatively without increasing the number of dimension. 
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2.1.4 Control Strategies 

 

The research activities for the control purpose were launched by Plump and Hubbard 

Jr. in 1986 [56]. Their work introduces the concept of ACL that could improve the 

performance of passive constrained-layer treatment. They tried to establish the 

proportional relationship between energy dissipation and vibration amplitude.  

 

The advantages of their work are: 

“(i) their capacity to increase actively the shear strains in the viscoelastic material, 

through the piezoelectric actuator, thus improving energy dissipation;  

(ii) Combination of the performances at higher frequencies of viscoelastic treatments 

and, at very low frequencies, of the active control through piezoelectric actuation;  

(iii) Increase in the robustness of active control, insofar as, in the event of operation 

fail, the system remains passively damped.” 

 

However, Lagnese (1984) [57] showed that the energy dissipation (measured by loss 

factor) do not decrease with strain amplitude. Later, Austin (1991) et al. [58] stated 

that the effectiveness of a constrained-layer didn’t decrease with vibration amplitude 
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using an example.  

 

The research of the Active Constrained Layer (ACL) damping, achieved by using 

the piezoelectric materials as the actuator, allows the active the control of the 

structural vibrations to increase shear in the VEM. As far as the constrained-layer 

damping mechanism is concerned, the localization of the dissipation on the edge of 

layers makes the optimization of constrained layer treatments more difficult since 

different boundary conditions and possible connections of the layers are of 

significance. 

 

From 1990s, many different configurations of ACL were proposed in the literature 

based on the relative position of viscoelastic and piezoelectric layer as well as the 

type/position of sensor and actuator.  

 

Using the ACL configuration proposed by Plump and Hubbard Jr. (1986) [56], Liao 

et al. (1997) [59] and Shen (1994; 1996)[60, 61] measure the tip deflection of beam 

using optical sensor, by adding more system damping through the feedback to 

piezoelectric actuator. Yet, Varadan et al. (1996) [62] bonded a piezoelectric sensor 

next to Liao and Shen’s hybrid treatment .  
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Lesieutre and Lee (1996) [36] tried to increase the system robustness by measuring 

the surface strain of the beam bottom. Unfortunately, the performance is not ideally 

in the higher frequency range.  

 

Baz (1997) [63]  and Trindade, Benjeddou, and Ohayon (2000) [64] utilized 

segmented ACL introducing the additional hybrid damping to the control system by 

bonding two symmetric treatments on the beam surfaces.  

 

Agnes and Napolitano (1993) [65], Yellin and Shen (1996) [66] and Huang et al. 

(1996)  [67] investigated the self-sensing actuators as an ACL to simultaneously 

actuate and sense the structural vibration. This configuration has many advantages 

leading to a collocated control system developed by Dosch, Inman, and Garcia 

(1992) [68] 

 

The following studies(Baz et al. (1993; 1995) [69, 70]  and Baz (1998) [71]) by 

sandwiching a piezoelectric sensor between the viscoelastic layer and structure.  

Without using the complicated self-sending actuator, this configuration leads to 

excellent co localization of both actuator and sensor. 
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A good literature review on ACL is summarized by Trindade and Benjuddou (2002) 

[72]. 

 

2.1.5 Damping Identification and Optimization 

 

A. Identification 

Many papers have been published in the identification of the damping properties for 

the laminated structure. In most research studies, the damping identification 

technique is considered as an optimization problem. Generally speaking, the 

optimization technique has shown good applicability for numerically identifying the 

material parameters for the damping structure.  

 

Kim and Lee [73] proposed a methodology for the damping identification procedure 

for a two-layer extensional damping beam and used experiments to verify numerical 

results. The Fractional Derivation damping model with the Arrhenius and WLF 

equation was used to decrease the number of unknowns during the identification 

(optimization) process, while temperature shifting factor was taken into 

consideration.  
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B. Optimization 

 

The objective of the optimization research on laminated damping structures is to 

maximize the loss factor, in order to minimize the peak value based on either 

vibration or acoustical analysis. This is done by determining the optimal parameters 

such as number of layers, sizing, placement, etc. 

 

Starting from Plunkett and Lee [74] on their theoretical optimal length investigation 

of surface damping treatments, modern researchers examined the optimal design for 

both constrained [75-80] and unconstrained [81, 82] layer damping treatments in 

order to maximize the loss factor and reduce the vibro-acoustical responses.  

 

Kruger and Mann [83] conducted experimental measurement in the noise control 

problem of a constrained-layer damping patches structure. They also investigated 

the optimal placement and simulation using boundary-element method.  

 

Many researchers, such as Azzouz and Ro [84], Gibbs and Cabell [85], Zheng and 

Cai [86] proposed the optimal design of the constrained-layer damping model. They 
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base their research on the assumed-modes method of analytical beam model in 

obtaining the frequency-domain response, and then solve the acoustical problem 

using Rayleigh's approach. They fail to consider the temperature effect on 

viscoelastic damping material, and the difficulties of arbitrary geometry or boundary 

condition. These need to be addressed in future research. 

 

Hao and Rao [87] carried out the optimum design of a three-layer sandwich beam 

for vibration analysis in 2005. In this research, the numerical model of the damping 

system is a comprehensive formulation for a three-layer asymmetrical sandwich 

beam with two different damping materials adjacent to each other. The criterion of 

the optimization is to minimize the mass of the structure while maximizing the 

system damping. 

 

In 2007, Lee [88] published the semi-coupled vibro-acoustical analysis and 

optimization of a simply-supported three-layer sandwich beam. The modal 

superposition method was utilized to investigate the vibration problem with the 

fractional derivative as the damping model. The interior acoustical problem was 

studied by BEM numerical technique. The optimization problem was established to 

figure out the appropriate sizing parameters of the sandwich beam needed for 
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attenuating the peak sound pressure on certain frequencies. The numerical result was 

provided to verify the effectiveness of this proposed research. 
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2.3 Concepts and Properties of Viscoelastic Material 

 

Because the complication of the physical structure leads to the non-linear material’s 

characteristics, it is difficult to establish an accurate mathematical representation of 

the mechanical performance of the viscoelastic damping materials. In general, the 

constitutive relationship between stress and strain for the damping material can be 

greatly affected by: time, temperature, frequency, type of deformation, etc. The 

recent application of the viscoelastic material in vibration and noise reduction task 

was discussed in Rao’s review [11].  

 

2.3.1 Temperature-Frequency Dependent Properties 

 

By increasing the temperature or decreasing the frequency, four regions can be 

observed consecutively for the viscoelastic damping material: Glassy, transition, 

rubbery and melt (flow) region as shown in Figure 2.4. 
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Figure 2.3 Variation of shear modulus of a viscoelastic material with varying 

temperature/frequency 

 

The viscoelastic material shows variations in the shear response in the experiment, 

typically conducted by applying a constant shear stress on the specimen and then 

measuring the shear strain as a function of time. In this static experiment, creeping 

and relaxation are two major phenomena, both of which are highly 

temperature/frequency dependent. The relaxation response is illustrated as follows, 

by plotting the shear strain as a function of time in different regimes. 
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Figure 2.4 Relaxation plot in different regions 

 

Regardless of the region in which the viscoelastic material is, an instantaneous strain 

always exists with a step change of the stress, and this strain response is almost 

independent of temperature/frequency. In the glassy region (as plotted by red curve), 

the viscoelastic material shows essentially the elastic property. In the rubbery region 

(blue curve), the material performs the relaxation phenomena- gradual change of the 

stress when the material is holding a constant strain. The strain shows an initial 

transient response, and then settles to a relatively constant value under the constant 

stress. The viscoelastic material responses change slowly in the transition region 

(green curve), compared with the situation in both rubbery and glassy regions. If the 

constant stress is removed, the strain will eventually return to the zero, although the 

material in the transition region takes the longest restoring time. 
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Figure 2.5 Creeping plot in different regions 

 

Similar with the relaxation plot, there is an instantaneous strain initially independent 

of temperature/frequency, and the material shows elasticity in the glassy region. In 

the rubbery region, the creeping phenomena is acting. Here, the change of strain is 

slow and progressive under the constant stress. As shown in Figure2.6, the strain 

starts from a short non-linear section, then follows the linear relationship with time 

and this rate of change is strongly temperature/frequency dependent. The 

deformation of the viscoelastic material is irreversible in the glassy region--i.e.; 

when the constant stress is removed, the strain will not return to zero in the 

experiment. 
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2.3.2 Damping Mechanism 

 

It is popular to use numerical approximations to describe the mechanical 

characteristic of viscoelastic damping materials. Due to active research in this field 

over the years, numerous mathematical models for the viscoelastic damping material 

have been successfully established. These damping models can be categorized as: 

the derivative type and the integral type; and both types can be expressed as 

time-domain or frequency-domain form. 

 

A. Derivative Type 

 

Maxwell and Kelvin damping models, -- the fundamental idealizations on which 

other damping models are based--, are composed of spring-dashpot systems in series 

and in parallel respectively. These two simplest time-domain damping models have 

a very obvious disadvantage: each model only explains either relaxation or creep 

phenomena. The following table (2.1) explains all aspects of these two damping 

models in detail: 
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 Table 2.1 Explanation of Maxwell and Kelvin damping model 

Model Type of link Explains Constitutive 

Relationship 

Plot 

Maxwell 

 

crosslink 

 

relaxation 

 dt

d
G

dt

d
G

ε
η

σ
ησ =+

 

 

Kelvin 

 

Uncross 

lined/in 

parallel 

 

steady-stat

e creep 

 

dt

d
G

ε
ηεσ +=

 

 

 

Unfortunately, Maxwell/Kelvin models do not contain enough information to give 

an accurate quantitative fit to any polymer over an extended period of time. 

However, the generalized standard model conquered this limitation and the 

expression is as follows: 
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∞

=

∞

=

+=+
11 n

n

n

n

n
n

n

n
dt

d
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d ε
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      (2.1)

 

where 

E = Young’s modulus 

án = stress dissipation coefficient 

ân = strain dissipation coefficient 

n = order of derivative 
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Obviously, this damping model provides enough coefficients to curve-fit the 

experimental data. However, due to its computational complication, very few recent 

papers have applied this damping model. In addition, the research in other types of 

derivative-form damping models such as fractional derivative is also very active; but 

these derivative-form models are often incompatible with conventional FEM 

techniques. In other words, these derivative-form damping models have not made 

any significant contributions that would be of use in industrial applications. 

 

B. Integral Type 

 

For practical purposes, the constitutive relationship of the viscoelastic materials is 

usually modeled as the integral form, instead of the derivative form. Based on the 

Boltzmann Superposition Principle [89], the integral expression of damping model 

is of the form: 
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in which 

J = creep compliance 

G = relaxation function 

Gr = relaxed shear modulus 

Gu = unrelaxed shear modulus 

 

The mathematical relationship between J and G in the Laplace domain is:  

2

1
)()(

s
sGsJ =•

        (2.3) 

Specifically, the ODE solution of the Maxwell damping model represents the 

relaxation response of a step increment in strain: 
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where t1 is the time constant and equal to G2/η 

 

The integration of this equation stands for summing up this relaxation response over 

a certain time period: 
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Unfortunately, this model still provides very few of the parameters that can give a 
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satisfactory curve-fit to the experiment. However, an improved model can be made 

by connecting numerous Maxwell elements in series, then adding a spring in parallel 

with the whole system as shown in the figure below.  

 

Figure 2.6 Mechanical analogue on series of Maxwell elements 

 

The constitutive representation of the step response for the increment in strain is as 

follows: 
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      (2.6) 

where ∞G  is the long-term (elastic) response, i.e.; the steady-state stiffness (the 

parallel spring); and Gi and ti when i=1…N stand for the stiffness of each Maxwell 

element and the time constant respectively.  
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By doing so, more complicated relaxation behavior can be explained by the 

following constitutive equation:  

∑
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∞ +=
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i

t
t

i
ieGGtG

1

)(

        (2.7) 

With the sum of exponentials known as "Prony series", the following relaxation 

modulus function can be computed through the stress response to an arbitrary strain 

history from the experiment. 

 

C. Dynamic Performance and frequency-domain damping models 

 

The coefficients in the time-domain damping models from previous chapters, both 

derivative and integral form, are determined by relaxation or creep static test. 

Generally speaking, the data provided by static test is reliable roughly from 10 sec 

up to 10 years. However, many engineering viscoelastic materials have very short 

response time under the external load. In this case, the dynamic mechanical 

performance between 0 and 10 sec is of vital importance for industrial usage. 

 

Additionally, the dynamic performance for the viscoelastic damping materials is 

greatly affected by many factors such as: temperature, frequency, excitation type, etc. 
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Therefore, an engineering method to accurately represent the shear modulus 

influenced by external factors is needed. 

 

The complex shear modulus is usually used to describe the phase difference of the 

stress-strain relationship due to the excitation with the following form: 

)1(')(''')( sjGjGGG ηωω +=+=
      (2.8) 

where η is the loss factor and physically stands for the energy dissipated per radian 

divided by the total energy. The value of complex shear modulus depends on the 

different exciting frequencies and ambient temperature. 

 

In the last section, the Prony series representing a series of Maxwell damping 

models connected in parallel is given. We can rewrite the expression using Biot 

parameters: 
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Taking the Laplace Transform and multiplying the Laplace variable "s" on both 

sides, the equation becomes:  
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The equation above is the expression of Biot damping model. With ωσ js += , 

considering the case when σ is equal to zero, the Equation 2.10 yields: 
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where N stands for number of series terms; 
∞G  is the long-term shear moduli, and 

ai,bi are the Biot constants. By determining the number of terms in Equation 

2.11, ∞G , ai and bi can be curve-fitted in the frequency domain from the 

experimental data or the data sheet provided by the manufacturer. 

 

Hence the Prony series can be converted to the form of complex shear modulus by 

means of the Laplace transformation, and Equation 2.11 is a function of the radiant 

frequency. The Biot shear modulus function essentially approximates the 

experimental data in the width of a frequency range; yet the complex shear modulus 

is the single data spot in a certain frequency. 

 

Besides the Biot damping model, many researchers have proposed several 

frequency-domain mathematical models to represent the frequency dependence of 

the viscoelastic material’s properties which are compatible with the modern 

numerical engineering techniques such as FEM. The following Table 2.2 lists the 
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various mathematical damping functions and the researchers in chronological order.. 

 

Table 2.2 Proposed frequency-domain damping models 

Damping Function in the Freq Domain Author, Year 
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In sum, the figure below shows the mathematical relationship of the relevant 

damping models in this research. The green color symbolizes the time-domain data, 

and blue color stands for the data in the frequency domain. 
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Figure 2.7 Relationships of different damping models 
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3. Research Overview 

The semi-coupled vibro-acoustical problem is proposed in this research. The 

technical term “semi-coupled” implies that the vibration produces the acoustical 

responses, yet the sound doesn’t induce the vibration of the structure. To be more 

detailed, the multiple-layer sandwich beam vibrates due to the external excitation on 

the structure, and the change of surface velocity due to the vibration produces the 

change of the acoustical waves scattered around subsequently. However, the sound 

pressure produced by the vibration cannot affect the vibration responses of the 

sandwich beam. The visualization of this relationship is plotted in the following 

figure. 

 

 

Figure 3.1 Schematic diagram of the semi-coupled problem 



Chapter 3-Research Overview 

 

45 

 

 

The flow chart below visualizes the key steps as well as the data flow that will be 

dealt with in this research. This research can be classified into two parts: vibration 

and acoustical analysis. In the vibration analysis, the multiple-layer sandwich beam 

is discretized by the FE modeling technique and analyzed by the dynamic equation 

using the Biot damping model. The curve-fitting technique is needed to convert the 

experimental data into Biot constants that can be plugged into the dynamic equation. 

The dimension reduction technique removes zero items in the eigenvalue problem 

when the dynamic equation is established, and increases the computational 

efficiency at the same time. Eventually, the Frequency Response Function (FRF) in 

the frequency domain is the output of the vibration analysis. The node velocities of 

the FE numerical model can be determined through the FRF with the arbitrary 

excitation. With respect to the acoustical analysis, the BE-based 2D interior problem 

is studied in this research. The distribution of sound pressure can be computed 

through the result of node velocity obtained from the vibration analysis. The detail 

of the acoustical analysis will be discussed in this research.  
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Figure 3.2 Flow chart of the key steps in this research
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4. Vibration Analysis 

4.1 FE Modeling of the Multiple-Layer Beam 

 

The modeling of the multiple-layer sandwich beam will be discussed in this section. 

The elastic beam and the constrained damping layer are two fundamental 

components in this modeling task. The concept of transfer matrix is used to convert 

the local coordinates to the global coordinates. The two components are then 

assembled and used to construct the complete model of the structure with arbitrary 

number of layers. The approach is demonstrated for modeling beam structures. The 

technique can be applied to structures with multiple-layered plate or shells in the 

same manner as long as the system mass and stiffness matrices are made available. 

The following demonstrates the details for modeling the beam system. 

4.1.1 Two Fundamental Components in a Multiple-Layer Beam 

 

A. Modeling of the Elastic Layer 

 

Figure 4.1 Configuration of the elastic layer showing the DOF 
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The FE model shown in Figure 4.1 contains 2 nodes, 6 DOF. The displacements of 

each node can be expressed as:  
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Therefore, the displacement of any point inside the element would be: 
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where the shape functions are as follows: 
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 , and ξ stands for the local coordinate; letter l is the length of 

beam along x as the horizontal axis. 

Next, the stiffness matrix can be derived based on the energy method:  

[ ] ∫ +=
l

e

elastice dxEIEAK ][ 22

θεε

      (4.4) 

where the first and second term in the integration are the extensional strain energy 

and the bending strain energy of the elastic layer respectively. 
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Applying the shape function (Equation 4.3) yields the element stiffness matrix in the 

local coordinate form:  
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where, 

A: Cross-sectional area of the elastic layer, 

E: Young’s Modulus of the elastic layer, 

l: Longitudinal length of elastic layer, and 

I: Moment of Inertia of elastic layer.  

Similarly, the element mass matrix can be expressed as: 

[ ]
{{

[ ] [ ]
1

0

6 1 1 66 6

Te T

f f e eelastic
M ml N N N N dξ

× ××

 
    = +    
 

∫14243
    (4.6) 

where m is the mass of the unit length in this elastic layer.  

 

B. Modeling of the Constrained damping layer 

 

Figure 4.2 Configuration of the constrained damping layer showing the DOF 
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The construction of the FE model of the constrained damping beam consisting of a 

damping layer sandwiched between two outer layers is shown in Figure 4.2 The 

major assumption of this three-layer structure is that these three layers share the 

identical transverse and rotational displacement; however, all three layers have 

different axial displacement allowing the shear deformation of the constrained 

damping layer. Figure 4.2 illustrates an FE model consisting of 2 nodes, and 8 DOF 

in each element. The nodal displacement vector is: 

{ } ( )
4444444 34444444 21

18

3131

×

=
T

jjjjiiii

e

cons uuwuuw θθδ

    (4.7) 

In Figure 4.2, the top and bottom layers can be treated as the elastic layers, as 

discussed earlier in this section. Due to the subordinate relationship of the nodal 

displacement between the three-layered 8 DOF sandwich element and the elastic 

layer element with 6 DOF, the element stiffness and mass matrix can be derived 

through a transportation matrix. 

By comparing the nodal displacements of the elastic layer (Equation (4.1)) and 

constrained layer system (Equation (4.7)), the mathematical relationship between the 

two vectors can be established as: 
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{ } [ ]
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321321
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1
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=
e
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e

elastic T δδ

       (4.8) 

in which the transfer matrix can be written as: [ ] [ ]TeeeeeeT 7653211 = and 

each ei means the following vector: 

T

placei

i

th

e )0......1......00(
321

=

     (4.9) 

The dimension of the transfer matrix is purely determined by the DOF of the source 

as well as the target nodal vector. Therefore, the element stiffness and mass matrices 

of the top layer can be calculated by: 
[ ] [ ] [ ]11 TKT

e

elastice

T

 and [ ] [ ] [ ]11 TMT
e

elastic

T

 

The same procedure can be applied to the bottom layer by means of the transfer 

matrix as: 

[ ] ( ) T

placei

i

T

th

eeeeeeeT )0......1......00(;8654213

321
==

 (4.10) 

Neglecting the axial and bending strain energy of the viscoelastic damping layer in 

this three-layer structure, only the shear strain energy is taken into consideration 

when the element stiffness matrix of the damping layer is derived. Figure 4.3 

visualizes the displacement relationship in this three-layer structure.  
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Figure 4.3 Deformation relationship of the viscoelastic core 

 

Here uA and uB symbolize the horizontal displacement for the corner point of both 

elastic layers adjacent to the damping layer. In this 3-layer element, u1,u2 and u3 

stand for the horizontal displacement for the base layer, damping layer and the 

constrained layer, h1,h2 and h3 are the thickness of the three different layers 

respectively.  

2
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1
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w
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∂

∂
+=

∂

∂
+=

      (4.11) 

The rotational angle along the y axis for the damping layer due to the axial 

mismatch of the two elastic layers is: 

2h

uu AB −
=ϕ

        (4.12) 

Therefore, the total shear strain would be the accumulation of the φ and the angle 

which the consistent rotational angle contributes to the damping layer. Thus shear 

strain of the damping layer can be expressed as: 
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By applying Equation (4.11-13), Equation (4.13) yields the shape function: 
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[ ] [ ][ ]33 TNN ee =

; 
[ ] [ ][ ]11 TNN ff =
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   (4.14) 

Accordingly, based on the energy method, the element viscoelastic stiffness matrix 

can be derived as: 

[ ] ∫=
l

e

consv dxGA
k

K 21
γ

      (4.15) 

Where 

A2: Cross-sectional area of the damping layer 

G2: Long term shear modulus of the damping layer 

k: Correction factor of the shear strain energy, for the rectangular cross section, 

k=1.2 

Commonly, only the longitudinal kinetic energy needs to be considered; and the 

element mass matrix in this layer is:  

[ ] [ ] [ ] ξdNNlmM f

T

f

e

cons 11

1

0
22, ∫=

      (4.16) 

In sum, the element elastic stiffness, the element viscoelastic stiffness and the 

element mass matrix for this 3-layer component respectively are: 
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(4.17) 

 

4.1.2 FE Modeling of a Seven-Layer Constrained Damping Beam 

 

Any damping structure with an arbitrary number of layers can be constructed by the 

combination of the two fundamental components described above. In terms of 

mathematical transformation through the transfer matrix, the stiffness and mass 

matrices of the multiple layers damping beam can be calculated by the element 

stiffness and mass matrix of the elastic layer as well as the constrained damping 

layers as discussed in the previous section. This section demonstrates the procedure 

for building a seven-layer sandwich beam. 
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Figure 4.4 Configuration of a seven-layer damping structure showing the DOF 

 

The seven-layer sandwich beam is composed of seven alternating layers, including 

four elastic layers and three damping layers. The Figure 4.4 above shows the 

construction of the FE model of a seven-layer sandwich beam, consistent with the 

assumption in the previous derivation. This FE model contains 2 nodes, 10 DOF, 

and the node displacement vector is: 
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444444444444 3444444444444 21
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e

layer uuuuwuuuuw θθδ

 (4.18) 

According to the previous discussion of Equation (4.8), the transfer matrix is as 

follows to obtain the element stiffness and the mass matrix when the 1st, 3rd, 5th 

and 7th layers are elastic layers 
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Similarly, the element stiffness and the mass matrix for the 2nd, 4th and 6th layers as 

the constrained damping layers can be derived through the transfer matrix as 

follows: 
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where the notation ei means 
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In sum, based on the former equations, and with the parameters of each layer, the 

element mass/stiffness/damping matrix of the seven-layer sandwich damping beam 

can be expressed as: 
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Assembling the element matrices and applying the boundary condition by the 

conventional FE technique [90], the global mass/ stiffness/ damping matrix can be 

obtained. The viscoelastic damping properties need to be taken into consideration 

when constructing the global matrices. The dynamic equation and its solution will be 

discussed in the next section. 
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4.2 Derivation of the Biot Dynamic Equation 

 

The purpose of this section is to incorporate the damping properties into the 

discretized system using the FE technique discussed in Chapter 4.1. Unlike the 

frequency-domain damping model in previous research, this section demonstrates 

the time-domain Biot damping model with its ability to employ different viscoelastic 

materials in a damping structure.  

 

The dynamic equation discretized by a numerical implementation such as FEM can 

be expressed in the following 2
nd
 order ODE form with M, C and K representing the 

global mass, damping and stiffness matrices respectively:  

)f(tKxxCxM =++ &&&        (4.23) 

By applying the constitutive relationship for two different damping materials with 

the hereditary integral form to the equation above, the discretized dynamic equation 

becomes: 
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(4.24) 
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In other words, this dynamic system contains two types of viscoelastic damping 

material, where Ke stands for the elastic stiffness matrix due to the axial and bending 

strain energy, and Kv1 and Kv2 symbolize the damping matrix of two different types 

of damping material.  

 

Then the dynamic equation will take the following form by using the Laplace 

Transform: 

( ) )()()(
~

)(
~

21

2 sssGssGss FXKKKM v2v1e =+++
   (4.25) 

Where s stands for the Laplace variable ( ωσ js += ), and the sGi(s) is the core 

function of the complex shear modulus for the ith type of viscoelastic material. In 

this paper, the Biot viscoelastic damping model will be used, and its complex shear 

modulus with the series of mini-oscillator perturbing term [7] can be expressed as: 

∑
=

∞

+
+=

m

k k

k
bs

s
aGsGs

1

]1[)(
~

      (4.26) 

in which 
∞G is the long-term shear moduli; ak and bk are the Biot constants. These 

parameters are positive and can be determined by the non-linear curve fitting from 

experimental data. For the purpose of simplification,, the number of perturbing 

terms is assumed to be one, and the complex modulus functions of two different 

viscoelastic materials are: 
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Applying Equation 4.25 to Equation 4.27 and rearranging the terms yields: 
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(4.28) 

 

The following procedure will introduce the dissipation coordinates into the dynamic 

equation in order to eliminate the Laplace variable “s” in the equation above. This is 

done to gain the frequency independence by increasing the number of unknowns in 

the dynamic equation. In this case, the number of dissipation coordinates needs to be 

equal to one because the number of perturbing terms is assumed to be one. Therefore, 

the dissipation coordinates for two types of damping material are:   
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     (4.29) 

Combine Equation (4.28) and (4.29) to form a simultaneous equation system and 

take the Inverse Laplace Transform: 
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Rewrite the equation system as the matrix form: 
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(4.31) 

The stiffness matrix in the Equation (4.31) needs to be symmetric for further 

analysis according to the Maxwell Principle. Mathematical manipulation will be 

performed to obtain the equivalent symmetric matrix. The nomenclature applied to 

two different damping materials respectively is defined as: 

T
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    (4.32) 

where Λvi and Rvi are the diagonal eigenvalue and the eigenvector matrix of the 

damping stiffness matrix as Kvi.  

 

The auxiliary equation obtained from the introduction of the dissipation coordinate 

will be transformed to form the symmetric stiffness matrix of Equation (4.31): 
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Now, with the Equation (4.33), the simultaneous equation system can be rewritten 

with the symmetric stiffness matrix as: 
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The following additional nomenclature needs to be used in order to simplify the 

Equation 4.34.  

1v1 ΛΛ =∞
1G ; 2v2 ΛΛ =∞

2G  

T

v1

T

v111v1v1 RΛRRΛR
∞∞ =⇒= 11 GG T

 

  
T

v2

T

v2

T

22v2v2 RΛRRΛR
∞∞ =⇒= 22 GG

     (4.35) 

Thus, the dynamic equation applying Biot damping model (assuming one perturbing 

term) with two different damping materials can be manipulated as the symmetric 

form: 
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If the number of perturbing terms is extended from one to infinite, defining: 

a11…a1m , b11…b1m and z11…z1m as m terms of Biot parameters and the dissipative 

coordinates respectively for the 1
st
 viscoelastic material;  

 

Similarly, a21…a2n, b21…b2n and z21…z2n as n terms of Biot parameters and the 

dissipation coordinates respectively for 2
nd
 viscoelastic material; 

 

Therefore, the dynamic equation with m terms of Biot parameters for 1
st
 viscoelastic 

material and n terms of 2nd will become as follows: 
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 (4.37) 

Supposing N is the number of DOF for the mass, stiffness and damping matrix, the 

dimension of each square matrix in the equation above is (m+n+1)N, and the q 

vector stands for the unknowns, especially the x vector as the system displacement 

response.  

 

In sum, by introducing the Biot damping model to apply the viscoelastic properties 

of a descritized system, a non-linear ODE (Equation (4.24)) is transformed to a 

linear 2nd order ODE (Equation37). Solving the eigenvalue problem based on 

Equation (4.37) determines the vibration characteristics of the system such as: 

natural frequency, loss factor and complex mode shape. 

Additionally, Equation (4.37) may easily be extended from 2 types of viscoelastic 
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material to infinite types in the same manner using Equation (4.24) through 

Equation (4.37). Thus, the dimensions of the square matrix in the Biot dynamic 

equation with infinite types of viscoelastic material is: (1+Σ number of Biot terms 

for all the materials) N.
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4.3 Decoupling Transformation and Dynamic Solution 

 

The procedure of finding the complex eigenvalue and time-domain transient response 

will be established with respect to the vibration problem for a multiple-layer 

viscoelastic damping structure in this section. In general, if the damping matrix C has 

the following proportional relationship with mass matrix M and stiffness matrix K, 

KMC βα +=        (4.38) 

the modal damping matrix will be diagonal, in which α  and β  are the 

proportional damping constants. Obviously, the damping matrix D  in Equation 

(4.37) does not have the proportional relationship with the mass and stiffness matrix. 

Therefore, the decoupling transformation is needed for Equation (4.37) to construct 

a first-order state equation by introducing the auxiliary equation 0qMqM =− &&  as: 

fByyA
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& =+        (4.39) 
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If N is the number of DOF in theM ,DandKmatrices, the DOF of A and B matrix 

will be 2N. 

 

Firstly, the free vibration of Equation (4.39) will be considered. Assuming f̂ =0, the 

following form of solution yields: 

0ΦByAλ =+ )(        (4.41a) 

or 

0
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      (4.41b) 

Where λ  matrix stands for 2N complex conjugate eigenvalues including the 

natural frequencies and loss factors information: 
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It must be noted that zero items will appear in the eigenvalue matrix if the damping 

matrix D  is not fully ranked. The mode shape vector Ψ for the vector q can be 

extracted from the eigenvector matrixΦwith respect to the vector y: 
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In addition, the Equation (4.43) can be numerically solved by { } [ ] [ ]{ }Ψ−=Ψ
−

BA
1λ  

using mathematical software package such as MATLAB or Mathematica. 

 

Secondly, the forced vibration solution of Equation (4.39) in the time domain will be 

discussed. Supposing








=
0

F
f̂ , the variable substitution can be made by 

assuming: Φpy = , converting the state-space equation from the time space to modal 

space. The Equation (4.39) yields by left-multiplying of
TΦ with the substitution of 

y: 

fΦpBΦΦpAΦΦ
TTT
)

& =+      (4.44) 

The diagonal modal mass and stiffness matrices are: 
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Then rewrite the Equation (4.46) with the diagonal mass and stiffness matrices: 
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Due to the relationship: i

i

i
λ−=

p

p

Μ

Κ
, the above equation can be converted to 2N 

numbers of 1
st
 order linear ODE:  
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The steady-state solution of the above equation when the system is at rest can be 

expressed as an integral equation, and is also equivalent to the convolution in the 

time domain between the arbitrary force term )(
1

tf
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Compared with the conventional integral method, it is easier to find the engineering 

value using this convolution method.  The conventional method requires the exact 

mathematical expression of this force in the time domain. The convolution method, 

on the other hand, only requires the arbitrary force plot in the time domain.. Thus the 

modal superposition method can be established by: 
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Considering the issue of curve-fitting range, it is necessary to sum up the modes 

only in the selected range, which has fewer than 2N modes. In summary, the 
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complex mode shape vector Ψ and complex eigenvalue λ in each mode are key 

factors in determining the time-domain response for a viscoelastic damping 

structure.   

 

Thirdly, the FRF in the frequency domain can be easily determined through the 

complex conjugate eigenvalue matrix λ , eigenvector matrixΦ  and the modal mass 

matrix Mp from Equation (4.47). The modal scaling factor matrix can be calculated 

through: 
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Thus the FRF can be established through the modal parameters. The FRF can be also 

expressed in partial fraction form in terms of the residue vector and system poles as 

follows: 
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Meanwhile, the system velocity can be figured out from the above equation by simple 

Fourier Transformation. By doing so, the vibration problem can be extended to an 

FRF-based acoustical problem and the conjunction of these two analyses is the 
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particle velocities information calculated by following equation: 
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4.4 Dimension Reduction Technique 

 

The accomplishment of dimension reduction technique [55, 91, 92] is advantageous 

for increasing the computational efficiency especially for the numerical analysis of 

the Biot damping model. In equation (4.42), two different viscoelastic materials are 

referred with perturbing terms of m and n respectively. It is found that by applying 

the Biot damping model to these materials, the original mass, damping and stiffness 

matrix with N DOF now sharply increases to (m+n+1)N DOF.  However, a large 

number of zero items are found in the equivalent mass matrixM  due to the 

introduction of the dissipative coordinates of the Biot damping model. Thus, these 

zero items can be the major source of this reduction task.  

 

With the equivalent mass, damping and stiffness matrix (M ,D andK ), the Equation 

4.42 can be expanded as the matrix form: 
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{ }T000000000ff LLLL=ˆ   (4.55) 
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}|{ xqy &=              (4.56) 

 

As shown in Equation (4.53-4.54), the dotted lines separate the zero subsets from 

original matrix forms. By this dimension reduction technique, all the zero elements 

can be easily removed without any hampering of the dynamic behaviors and the 

dimension of each matrix is considerably reduced from 2N(1+m+n) to N(2+m+n) by 

removing these zero subsets. This method can be named as “zero-Subset” reduction 

technique. 

 

Another source of dimension reduction is from the original damping matrix C. 

Because of different numerical modeling techniques, sometimes the damping matrix 

C cannot be fully ranked, thus the eigenvalue of this matrix λ includes several zero 

items with empty columns in the corresponding eigenvector matrix R. Two damping 

matrices of identical rank are considered, with the number of eigenvalues 

represented by d. When the rank of the damping matrix is subtracted from N (DOF 

of the damping matrix), the resulting dimension of the equivalent mass, damping 

and stiffness matrix M ,D ,K  is (N-d)(m+n)+N. “zero-Eigenvalue” can be the 

name of this technique.  
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By applying the decoupling transformation (discussed in Chapter 4.3), the 

dimension of the system state-equation increased from (N-d)(m+n)+N to  

(N-d)(m+n)+2N by combining the zero-subset reduction technique. Therefore, the 

total dimension reduction is (m+n)(N+d) DOFs compared between the dimension 

without using any reduction technique and the dimension using zero-Subset and 

zero-Eigenvalue methods together. The following flow-chart visualizes the 

dimension difference with and without the dimension reduction technique. 

 

M

M

 

Figure 4.5 Comparison of the matrix dimension with/without the dimension reduction 
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4.5 Parametric Determination of the Biot Damping Model 

 

The background of damping mechanism is discussed in Chapter 2.2.2. The proper 

use of curve-fitting technique to provide the accurate Biot constants to the Biot 

dynamic equation is important. Generally speaking, the dynamic characteristics of 

the viscoelastic materials can be obtained from an experimental method. It is known 

that curve-fitting technique is normally employed to establish the connection 

between the experiment and the mathematical damping models. In this section, the 

non-linear curve-fitting procedure of the complex shear modulus in the frequency 

domain is converted into a non-linear constrained optimization problem. 

 

Recalling the Equation (2.11) from Chapter 2.2.2, the complex shear modulus with 

the Biot form in the frequency domain is: 
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   (4.57) 

The Biot parameters including ∞G , ai and bi are estimated from experimental data 

with the specific fit range of the frequency on both the real part and the imaginary 

part. The number of Biot perturbing items is given by N, an integral constant, 
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defining the capability of this numerical approximation. In general, variations in the 

temperature cause the changes in the Biot parameters in the equation above and one 

set of Biot parameters needs to be determined in each ambient temperature point 

independently.  

 

Assuming: 
L;;;;; 252413121 bxaxbxaxGx ===== ∞

 

with the constraint condition: numkxk ,2,1;0 L=≥ , the objective equation of this 

optimization problem can be expressed:  
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      (4.58) 

in the above objective equation, G0j stands for the complex shear modulus from the 

experimental data with P interested points, and the value of P needs to be bigger than 

the number of unknowns in this optimization problem. 

 

In this research, the 3M ISD110 and 112 viscoelastic damping polymers are selected. 

Both materials have been proven to reduce vibration and acoustical responses in 

automobiles, disk drives and aircraft industries. The 3M ISD 110 has excellent 

damping performance at higher temperature from 40-105°C while the 3M ISD112 

works ideally from 0-65°C. The selection of temperature range in this research is 
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40-60°C to guarantee the good attenuation performance. The detailed specifications 

and experimental resulst can be referred to ref [93]. The Arrhenius equation from 

[94] provides the experimental data as well as damping properties such as the shear 

modulus and the loss factor for the 3M ISD 110 and 112 viscoelastic polymers.  

The sensitivity of the complex shear modulus for these viscoelastic materials varies 

with changes in the temperature and frequency.  The universal form of empirical 

equation is listed as follows and the complex shear modulus is calculated through: 

)1()( ηω jGG c +=∗

       (4.59)
 

In the above equation, the real part of shear modulus-Gc is given by: 

N
c

ML

FROM
ML

MROM

MLG

)(1

)log(2

)log()log(

+

×
+=      (4.60) 

the equation of the loss factor-η  is:  
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where A is: 
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The reduced frequency caused by Arrhenius temperature shifting factor is:  
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In above equations: 
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fr reduced frequency shifted by temperature effect (Hz) 

f considered frequency (Hz) 

T temperature (Centigrade degree) 

and FROM, MROM, N, ML, ETAFROL, SL , SH , FROL, C, and T0 are the 

coefficients obtained from the following datasheet for the different types of 

viscoelastic materials. 

 

Table 4.1 Arrhenius coefficients from ref [94] 

Damping 

Material 

Density 

 

kg/m3 

T0 

 

C 

Modulus Parameters Loss Factor Parameters 

FROM MROM N ML ETAFR SL SH FROL C 

 N/m2  N/m2      

3M 

ISD-110 

970 70 5e3 2e6 0.35 5.5e4 1.3 0.35 -0.4 2e3 2 

3M 

ISD-112 

970 55 4e5 1.61e7 0.27

6 

1.72e

5 

1.25 0.27 -0.35 1.5e5 1.3 

 

The following demonstrates the actual curve-fitting procedure. The 3M ISD-110/112 

viscoelastic polymers are selected to verify the effectiveness of this procedure. The 

experimental data is given in the form of Arrhenius empirical equation. Assuming T 

is equal to 45°C, and fit range is 500Hz, the complex shear modulus can be 

synthesized from the set of Arrhenius coefficients from the Table 4.1 and can then be 

calculated through Equation (4.60-4.63). Once the experimental data are given, the 
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number of terms in Equation (4.57) needs to be determined to ensure the precision 

of this approximation. The commercial software package Auto2fit is used in this 

example because it is capable of curve-fitting the experimental data on both real and 

imaginary parts simultaneously. As the number of Biot terms (N) is increased, the 

relative error between Arrhenius and curve-fitting result reduces; but, the amount of 

computational effort needed increases.. With the compromised number of Biot terms 

equal to six (ISD110) and four (ISD112), the result eventually lists in the Table 4.2 

below. The curve-fitting data of ISD110/112 with different ambient temperatures is 

attached in the Appendix. 

 

Table 4.2 Biot constants of 3M ISD-110/112 45°C 

 3M-ISD110 3M-ISD112  3M-ISD110 3M-ISD112 

∞G  55000(Pa) 

 

172000(Pa)   

 

a1 1.809517 5.699386303 b1 5.410993 4268.18097 

a2 14.53095 0.596843249 b2 1093.778 70.26089968 

a3 3.221535 1.000560485 b3 60.36544 501.5607814 

a4 52.01026 0.577694736 b4 4319.613 1.969150769 

a5 19768.22  b5 2840958  

a6 6.561162  b6 298.0672  

The figure 4.6 and 4.7 below shows the real part and imaginary part of 3M-ISD 110 

45°C compared between the Arrhenius data and Curve-fitting data in this case: 
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Figure 4.6 Real part comparison of ISD-110 45°C 

 

Figure 4.7 Imaginary part comparison of ISD-110 45°C 



Chapter 4.5-Parametric Determination of the Biot Damping Model 

 

82 

 

 

Figure 4.8 Relative error percentage comparison of ISD-110 45°C 

As shown in the plots above, the dynamic properties of 3M ISD-110 at 45°C can be 

represented using the Biot parametric determination technique discussed in this 

section. The relative error between the two sets of data is low; and the 

higher-frequency region contains almost zero error.
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5. Acoustical BEM Analysis 

5.1 Introduction of Acoustical BEM Theory 

 

In the previous section, the vibration problem of the multiple-layer sandwich beam 

is solved through the time-domain dynamic ordinary differential equation (ODE) of 

the Biot damping model with the numerical modeling by FE technique. The 

vibration problem can be extended to an acoustical problem by the semi-coupled 

method: the vibration will induce a change in sound pressure, but the sound pressure 

will not create the vibration.  

 

The boundary element method (BEM) is the most commonly used method in 

acoustical analysis. The early application of BEM is by Schweikert and Chen [95] in 

predicting the sound radiation from arbitrary structure. Between 1960s and 1980s, 

many researchers [96-101] made tremendous contributions to the development of 

acoustical BEM analysis.  

 

Nowadays, the direct and indirect boundary element methods are available for 
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acoustical analysis. The traditional direct method solves sound pressure as primary 

variable in either a bounded interior domain or an unbounded exterior domain at a 

time. The flexibility of element type features the direct BEM such as continuous 

isoperimetric and quadratic elements.  

 

The indirect BEM proposed by Hamdi and other researchers [102-104] solves the 

Helmholtz equation in both interior and exterior domain simultaneously by 

calculating the jump of sound pressure or particle velocity across the boundary as 

variables. The indirect method requires more computational resources as well as 

certain element types, mostly continuous elements.  

 

In this section, the acoustical interior problem will be numerically solved by the 2D 

direct BEM technique [45,46] in a bounded fluid domain V as shown in Figure 5.1. 

 

Figure 5.1 Notations of 2D BEM interior problem in fluid domain V 
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The sound pressure distribution (p) of the time-harmonic wave in the domain V 

satisfies the governing differential equation, well-known as the Helmholtz Equation, 

associated with the boundary conditions on boundary )( Zvp n
Γ∪Γ∪Γ=Γ as 

follows: 

 

0)()( 22 =+∇ xkx pp , when      (5.1) 

0)( px =p , px Γ∈  

0

0

1
)( n

njw
x v

p
vn =

∂

∂
−≡

ρ
, 

nv
x Γ∈  

0)( zx =≡
nv

p
z , Zx Γ∈ . 

where k is equal to ω/c, meaning the wave number is equal to the radiant frequency 

over the velocity of sound; vn, 0ρ , z stand for the normal velocity, density of the 

fluid V(normally the air), and acoustical impedance of the fluid V respectively.  

 

In this research, the intersection between the vibration and the acoustics problem is 

the normal velocity on the acoustical boundary. Recalling the dynamic solution of 

the decoupling transformation, the particle velocity in the time domain of each node 

can be calculated through Equation (4.54) if the multiple-layer sandwich beam is 
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discretized by the FEM; and alternatively the FRF (the complex ratio between the 

output and input response in the frequency domain) can be determined through the 

Equation (4.53). Once the input signal is given, the particle velocity or the system 

displacement versus frequency relationship can be obtained through the FRF.  

 

To solve the governing differential equation (Equation (5.1)) in the bounded fluid 

domain V, the Helmholtz Equation can be transformed to the integral equation, 

converting the 2D area integration to the 1D curve integration around the area: 

,

  (5.2) 

in which: 

)(ξc  = geometry-dependent coefficient, normally )(ξc =0 when ξ  is in the 

domain V, )(ξc =0.5 when ξ  is on the smooth boundary Γ  

)(ξp  = sound pressure at source point 
ξ  

),( xξΨ  x is the field point and )(
4

)2(

0 kr
i
HΨ −=  for the 2D BEM problem; r 

stands for the Euclidian distance between x and ξ ; k is equal to ω (radiant 

frequency) divided by c(sound velocity); )2(

0H  is the Hankel function of 2
nd
 kind 

(see Appendix for details) 

n = normal vector pointing away to the fluid domain V 
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By discretizing the boundary into a series of curvilinear elements through the 

introduction of the shape functions [46], the integral equation can be calculated 

numerically by solving the following linear matrix: 

NGVHP =
        (5.3) 

where H comes from the terms of )(ξc and ∫
Γ

Γ
∂

Ψ∂
d

n

x
p

),(
)(

ξ
ξ , G is derived 

from ∫
Γ

ΓΨ− dxxvi n ),()(0 ξωρ  in Equation (5.2) , the vector P and VN includes sound 

pressure and particle velocity values, both unknowns and known from the boundary 

condition.  

 

Thus, each set of node velocity due to the force input results in one set of solution on 

the sound pressure by BEM discussed in this section. In summary, through the 

proposed acoustical BEM, it is possible to figure out the time-harmonic sound 

pressure distribution corresponding to each single frequency point in the frequency 

spectrum. 
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5.2 Calculation Details of 2D BEM Analysis 

 

For this particular acoustical BEM interior problem, the boundary of acoustical 

cavity is discretisized as 18 quadratic equally-spaced boundary elements. The 

quadratic curvilinear element has three nodes, and the interpolation between each 

node represents the geometry of each element. The shape functions [46] are:  

)1(
2

1
);1)(1();1(

2

1
321 +=−+=−= ξξξξξξ NNN  ;   (5.4) 

with respect to the element coordinates: 

∑∑
==

==
3

1

3

1

)(;)(
i

ii

i

ii NyyNxx ξξ .      (5.5) 

where xi and yi are the coordinates at each nodal point, and ξ stands for the local 

coordinate between -1 and 1 on a master element.  

 

The boundary variables p and vn are also discritezed by quadratic element with the 

same shape functions representing the geometry: 

∑
=

=
3

1

)(
i

iiNpp ξ ; ∑
=

=
3

1

)(
i

inin Nvv ξ      (5.6) 
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When the seven-layered sandwich beam (L=1m) is simply-supported on the bottom 

of the acoustical cavity, the sound pressure level of the field point(x=0.5m, y=0.4m) 

is calculated through this proposed method, and the calculation results will be 

presented in the next section. The following Figure 5.2 demonstrates the detailed 

layout of this 2D acoustical cavity problem. The anechoic boundary condition is 

applied on the inside of the acoustical cavity and the thickness of the 

multiple-layered beam is neglected for the purpose of approximation. 

 

Figure 5.2 Layout of BEM acoustical cavity problem 
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6. Numerical Examples 

6.1 Example of a 2 DOF Lumped-Mass Model 

 

A. Case1 

 

Figure 6.1 Schematic diagram of a lumped mass system- case1 

 

Consider a system with two dampers on both ends as shown above with the 

relaxation function:  

 

tt. eetG 4.14831461685 2.11968.490.4)( −− ++=

     (6.1)

 

Converting to the Biot damping model form: 










+
+

+
+×=

4.148314

05.299

6.1685

45.12
10.4)(
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s

s

s
ssG

    (6.2)
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Mass, Elastic stiffness and viscoelastic Stiffness Matrix: 







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

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−
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

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
=

3

3

55

55

100

010
;

1010

1010
,

10

05
ve KKM

    (6.3)

 

Apply the Biot damping model and obtain the complex eigenvalues: 

ë1= -6.1989 +35.9488i →5.8059Hz/0.3554 (loss factor) 

ë2=-16.1428 +353.5234i →56.324Hz /0.0915 (loss factor) 

 

The time-domain responses for mass#1 and #2 are obtained through the decoupling 

transformation and convolution method discussed in the previous chapter. In this 

example, the system displacements of the two, mass#1 and #2 die out due to the 

damping with the unit step excitation applied on mass#1.  

 

Figure 6.2 System displacements under the unit step excitation on mass#1 
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Case2:  

Another damper between #1 and #2 mass is added with another viscoelastic material 

as shown in Figure 6.3 below 

 

Figure 6.3 Schematic diagram of a lumped-mass system- case 2 

 

The Biot complex shear modulus for the dampers on both ends: 


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+
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+×=
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s
ssG

    

(6.4) 

The Biot complex shear modulus for the damper in the middle:  
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Mass, elastic stiffness and viscoelastic stiffness matrix: 
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 (6.6) 

 

Apply the Biot damping model and figure out the complex eigenvalue problem, the 

following results can be obtained: 
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ë1=-6.2052 +35.9527i →   5.8067Hz  /0.3558 (loss factor) 

ë2=-33.3094 +369.4069i →  59.0315Hz /0.1818 (loss factor) 

Similarly, the system displacements of two mass#1 and #2 dissipate out due to the 

damping with the unit step excitation applied on mass#1.  

 

Figure 6.4 System displacements on the unit step excitation on mass#1 

 

The table below compares computational results from the two scenarios. From the 

highlighted loss factors, we see that the loss factor almost doubled compared 

between the lumped-mass systems with and without the damper in the middle, while 

the frequency of the 2
nd
 mode was slightly changed. Thus the computation result 

validates the need for this design, which simply involves adding another damper to 

increase to the system loss factor. 
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Table 6.1 Parameters comparison of lumped-mass cases 

# of 

Mode 

 2DOF 

Ref [53] 

2DOF 

2VEMs 

 1st VEM 2 terms Biot 2 terms Biot 

2
nd
 VEM ----- 3 terms Biot 

1
st
 

 

Frequency 5.8059Hz 5.8067Hz 

Loss factor 0.3554 0.3558 

2
nd
 Frequency 56.3235Hz 59.0313Hz 

Loss factor 0.0915 0.1818 
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6.2 Example of a Three-Layer Sandwich Beam 

 

A. Damping Material Properties For The Viscoelastic Core 

 

In this numerical example, the Biot damping parameters for 3M ISD-110(45°C) and 

ZN1 polymer [53, 54] will be used in the simulation. The datasheet below shows the 

Biot constants curve-fitted from Arrhenius Alpha damping model by Auto2fit, and 

converted to 6 terms of the Biot Damping parameters:  

 

Table 6.2 Biot parameters of 3M ISD-110 45°C 

∞G  55000(Pa)   

a1 1.809517 b1 5.410993 

a2 14.53095 b2 1093.778 

a3 3.221535 b3 60.36544 

a4 52.01026 b4 4319.613 

a5 19768.22 b5 2840958 

a6 6.561162 b6 298.0672 

 

The fractional derivative damping model of ZN1 damping material in the frequency 

domain is the raw data for this curve-fitting task: 

( )6752.05 2091.06275.310)( ssG +×=       (6.7) 

Curve-fitting from fractional derivative damping model using Auto2fit, the 4-term 
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Biot damping parameters are listed in the datasheet below 

 

Table 6.3 Biot parameters of ZN1 polymer 

∞G  362750(Pa)   

a1 0.762063 b1 53.72964 

a2 1.814626 b2 504.5871 

a3 84.93828 b3 29695.64 

a4 4.869723 b4 2478.43 

 

B. Three-Layer damping structure 

 

 

Figure 6.5 Schematic diagram of 3-layer damping structure 

 

A three-layer sandwich beam with viscoelastic cores is shown in Figure 6.5, with the 

design parameters listed in Table 6.4: 

 

Table 6.4 Design parameters of three-layer structure 

L=1m t=0.1m # of element:12 # of nodes:13 

 height of layer elastic/shear 

properties 

material 

density 

1
st
 layer h1=1mm; E1=210GPa ρ1=7800 kg/m

3
 

2
nd
 layer h2=0.8mm; G2: Biot ρ2=970 kg/m

3
 

3
rd
 layer h3=1mm; E3=210GPa ρ3=7800 kg/m

3
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The above data are used to predict the vibration performance of the system using the 

numerical simulation method presented in this dissertation with the previous 

publication results [53, 94], as well as simulation results from a commercial 

software-ANSYS. The different boundary conditions including simply-supported 

and clamp-free were investigated separately. As far as the curve-fitting result is 

concerned, 3M ISD-110 at 45°C is selected for the shear modulus of the viscoelastic 

layers for the pin-pin boundary condition and ZN1 for cantilever boundary condition. 

The results are shown in Table 6.5 and 6.6 respectively and the simulation presented 

in this research shows very good agreement with both previous reference result and 

numerical result from ANSYS. 

 

Table 6.5 Comparison between the results from simulation and references (pin-pin BC) 

# of 

Mode 

Pin-pin BC ANSYS Min Hao’s 

thesis [94] 

8DOF 3-layer 

[53]  

FE model of 

 this research 

Damping 

Model 

No damping ISD110-45C 

Arrhenius 

ISD110-45C 

6terms Biot 

ISD110-45C 

6terms Biot 

1
st
 

 

Frequency 3.8498Hz 3.9454Hz 3.838Hz 3.838Hz 

Loss factor - 0.4209 0.499 0.4992 

2
nd
 

 

Frequency 12.501Hz 12.4761Hz 12.269Hz 12.269Hz 

Loss factor - 0.4232 0.4461 0.4465 

3rd Frequency 26.542Hz 25.6080Hz 25.302Hz 25.298Hz 

Loss factor - 0.3746 0.3784 0.379 

4
th
 Frequency 46.114Hz 43.3855Hz 42.98104Hz 42.955Hz 

Loss factor - 0.3305 0.321 0.3218 

5
th
 Frequency 71.23Hz 65.94Hz 65.41Hz 65.31Hz 

Loss factor - 0.2946 0.28 0.2811 
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Table 6.6 Comparison between the results from simulation and references (fixed-free BC) 

# of 

Mode 

Fixed-free 

BC 

ANSYS 8DOF 3-layer 

[53] 

FE model of 

this research 

Damping 

Model 

No damping ZN1 4terms 

Biot 

ZN1 4terms 

Biot 

1
st
 

 

Frequency 2.1292Hz 1.99723Hz 1.99744Hz 

Loss factor - 0.0973 0.0974 

2
nd
 Frequency 9.0768Hz 8.83547Hz 8.83691Hz 

Loss factor - 0.2655 0.2658 

3
rd
 Frequency 21.3345Hz 20.9222Hz 20.9258Hz 

Loss factor - 0.3231 0.3236 

4th Frequency 38.317Hz 36.5548Hz 36.559Hz 

Loss factor - 0.3423 0.343 

5
th
 Frequency 60.817Hz 57.1488Hz 57.1521Hz 

Loss factor - 0.3346 0.3355 



Chapter 6.3-Vibro-Acoustic Response Example of a Seven-Layer Beam 

 

99 

 

6.3 Vibro-Acoustic Response Example of a Seven-Layer Beam 

A. Comparison with published data 

 

 

Figure 6.6 Seven-layer sandwich structure with viscoelastic cores 

 

In Figure 6.6, a seven-layer sandwich beam with viscoelastic cores is shown with 

the following design parameters listed in Table 6.7: 

 

Table 6.7 Design parameters of seven-layer structure 

Length: 1m Thickness: 

0.1m 

# of element:12 # of nodes:13 

# of layer height of layer elastic/viscoelastic 

properties 

material 

density 

1
st
 h1=1mm; E1=210GPa ρ1=7800 kg/m

3
 

2
nd
 h2=0.8mm; G2: Biot ρ2=970 kg/m

3
 

3
rd
 h3=1mm; E3=210GPa ρ3=7800 kg/m

3
 

4th h4=0.8mm; G4: Biot ρ4=970kg/m
3 

5
th
 h5=1mm; E5=210GPa ρ5=7800kg/m

3
 

6
th
 h6=0.8mm; G6: Biot ρ6=970kg/m

3
 

7th h7=1mm; E7=210GPa ρ7=7800kg/m
3 

 

The above data are used to predict the vibration performance of the system using the 

numerical simulation method presented in this paper with the closed-form solution 

of Hao and Rao [20, 94] as well as simulation results from a commercial 
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software-ANSYS. In the ANSYS simulation, the 2D element of Plane 182 (4 Node) 

is selected and the material damping effect is neglected. Thus, it can be expected 

that the natural frequency of each mode from ANSYS results will be consistently 

higher than the result considering the damping effect. As far as the curve-fitting 

result is concerned, 3M ISD-110 at 45°C in section IV is selected for the shear 

modulus of the viscoelastic layers in this numerical example. The different boundary 

conditions including simply-supported and clamp-free were investigated separately. 

The results are shown in Table 3a and 3b respectively. It is seen that the agreement 

between the simulation presented in this paper, the closed-form solution and 

numerical result from ANSYS is very good for the simply-supported case. When the 

fixed-free boundary condition is applied, the simulation result presented in this 

paper follows a trend identical to the ANSYS simulation result. This validates the 

analysis methodology proposed in the paper. 
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Table 6.8 Comparison of results for simply supported boundary condition 

 ANSYS Hao [94] FE model of 

this research 

#of  

Mode 

 

Damping 

Model 

No damping ISD110-45°C 

Arrhenius 

ISD110-45°C  

6 terms Biot 

1
st
 

 

Frequency 6.037Hz 4.7443Hz 4.5834 Hz 

Loss factor  0.6248 0.7916 

2
nd
 

 

Frequency 15.764Hz 13.902Hz 13.9489 Hz 

Loss factor  0.6008 0.6824 

3
rd
 Frequency 30.103Hz 27.661Hz 27.7721 Hz 

Loss factor  0.5317 0.5632 

4th Frequency 49.611Hz 46.1548Hz 47.1053 Hz 

Loss factor  0.4715 0.4681 

5
th
 Frequency 74.434Hz 69.3118Hz 68.82259Hz 

Loss factor  0.421 0.4226 

 

Table 6.9 Comparison of results for fixed-free boundary condition 

 ANSYS FE model of 

 this research 

#of 

Mode 

Damping 

Model 

No damping ZN1 4 terms 

Biot [53] 

1st 

 

Frequency 3.5343Hz 2.8453Hz 

Loss factor  0.2351 

2
nd
 Frequency 11.885Hz 11.35425Hz 

Loss factor  0.4011 

3
rd
 Frequency 25.604Hz 24.2774Hz 

Loss factor  0.4969 

4
th
 Frequency 44.635Hz 40.756Hz 

Loss factor  0.5268 

5th Frequency 68.813Hz 62.4374Hz 

Loss factor  0.5172 
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B. Vibration performance of a combination of several viscoelastic materials at 

different temperatures 

 

An important factor affecting the dynamic properties of a system with viscoelastic 

damping is the temperature. With an increase in temperature, the loss factor 

approaches its best performance towards the transition region and then decreases 

afterwards.  In this example, the 3M-ISD110 has better damping performance than 

ISD112 over the chosen temperature between 40 and 60 degree Celsius. It is of 

interest to study the effect of the combination of these two viscoelastic materials on 

the damping of the structure. 

 

To introduce the different viscoelastic materials, a seven-layer sandwich beam with 

the same parameters as in the previous example, incorporating two damping 

materials (3M ISD110 and ISD112), is designed. This system is compared to the 

same structure with only one damping material (either 3M ISD110 or ISD112). In 

the system including two viscoelastic materials, the outer damping layers (2
nd
 and 6

th
) 

are 3M ISD112 and the inner damping layer(5
th
) is the 3M ISD110. Two different 

scenarios of boundary conditions are examined in this numerical example and the 

temperature range is from 40 to 60 Degree Celsius.  The Figure 6.7a and 6.7b show 
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the 1st order natural frequency and the system loss factor over the temperature range 

with the simply-supported boundary condition applied to the FE model.  

 

 

 Figure 6.7a-b 1st order system damped frequency/loss factor 

(simply-supported B.C.) 
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On the other hand, the Figure 6.8a and 6.8b show the 1
st
 order vibration performance 

including natural frequency and loss factor for the fixed-free boundary condition 

applied on this seven-layer structure. Considering the loss factor of the first flexible 

mode of the simply-supported system, the same structure with fixed-free boundary 

condition has less system damping at the corresponding temperature. It can be 

explained that the simply-supported boundary condition definitely has the advantage 

when it comes to maximum usage of the shear strain energy in the viscoelastic 

damping layer.  
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C. Time-domain response under the arbitrary input 

The following plot shows the transverse displacement of two nodes(#2 and #7 node) 

with a unit input in time domain vertically applied on the middle (#7 node) of the 

simply-supported seven-layer sandwich beam with the same design parameters as 

the previous example. The curve-fitting result of 3M ISD110 at the ambient 

temperature of 45° Celsius is used in this example. This explains the energy 

dissipation phenomena in the time domain when an arbitrary force is applied on the 

structure.  

Figure 6.8a-b First damped frequency and loss factor 

(Fixed-Free B.C.) 
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Figure 6.9 System displacements under the unit step excitation 
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D. Frequency-spectrum analysis under the arbitrary input 

 

The Figure 6.10 shows the transverse velocity of the middle node (#7) with a 10N 

step input (frequency domain) vertically applied on the middle (#7) of the 

simply-supported seven-layer sandwich beam with the same design parameters as 

the previous example. The curve-fitting result of 3M ISD110 at the ambient 

temperature of 45°C is used in this example. This pivotal result is the key to 

extending the vibration problem to an acoustical problem in the frequency domain 

when an arbitrary force is applied on the structure.  
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Figure 6.10 Transverse velocity under the impulse excitation (at middle node #7) 
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E. 2D Acoustical BEM results 

 

The Figure 6.11 illustrates the contour plot (f=10Hz) of sound pressure level (SPL) 

when the seven-layer sandwich beam (using 3M ISD-110 at 45°C; same design 

parameters as previous vibration analysis) is subjected to a 10N force step input 

(frequency domain) at the middle node. 

 

 

 Figure 6.11 Contour plot of SPL when the impulse force applied 

(10Hz) 
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Figure 6.12a shows the continuous sound pressure distribution in the acoustical 

cavity with the anechoic boundary condition. Figure 6.12b extracts the frequency 

spectrum of Sound Pressure Level (SPL) on the field point (0.5, 0.4m) indicated by 

a dot in Figure 6.12. From the result of Figure 6.13, it can be found that the 

dominant contribution is due to the peak value of the first flexible vibration mode, 

which agrees with the frequency-spectrum analysis of the vibration problem.  

 

 

Figure 6.12 Element result of sound pressure level (10Hz) 
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F. Comparison with vibro-acoustical software results: 

 

In this section, the hybrid FE-BE model of sandwich damping beam without the 

viscoelastic damping properties is being developed in commercial software 

package-ANSYS.ADPL and LMS Virtual. Lab- Acoustics. The harmonic vibration 

analysis is conducted in ANSYS.APDL module and the frequency-spectrum of field 

point SPL is calculated in Virtual.lab Acoustics module for the comparison with the 

SPL frequency spectrum of the viscoelastic damping beam in last section. The 

Figure 6.13 Nodal frequency spectrum on (0.5,0.4m) 
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complete analysis sequence consists of the following steps: 

 

1. Building the FE model and applying the boundary conditions in ANSYS 

ADPL. The 8-node element SOLID45 (element size=10mm for each layer) is 

used to build the 3D seven-layer model. The design parameters are identical 

with the parameters in Table 6.7 for the comparison and the geometry 

boundary condition is simply-supported. A 10N force on each frequency 

point is applied at the middle nodes. The FE model of 3D sandwich beam is 

shown in Figure 6.14. 

 

 

2. Conducting the harmonic vibration analysis in ANSYS ADPL. The harmonic 

Figure 6.14 Element layout of 3D seven-layer damping beam 
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analysis is used to calculate the nodal displacements for a forced vibration 

problem in the frequency domain. The frequency range is 0-200Hz as 2Hz 

for each step. The full method is being utilized in this analysis and the 

difference of full-method versus modal-superposition method can be referred 

to [105]. The comparison of system frequencies between ANSYS modal 

results and calculation result by Biot dynamic equation is shown in Table 

6.10. It implies that the 3D model built in ANSYS.APDL has good 

correlation with the FE model with the viscoelastic material properties.  

 

Table 6.10 Comparison of modal results with ANSYS simulations 

 ANSYS 2D ANSYS 3D FE model of 

this research 

#of  

Mode 

 

Damping 

Model 

No damping No damping ISD110-45°C  

6 terms Biot 

1
st
 

 

Frequency 6.037Hz 6.4803Hz 4.5834 Hz 

Loss factor   0.7916 

2
nd
 

 

Frequency 15.764Hz 14.338Hz 13.9489 Hz 

Loss factor   0.6824 

3rd Frequency 30.103Hz 27.989Hz 27.7721 Hz 

Loss factor   0.5632 

 

 

3. The BEM mesh is prepared in LMS Virtual. Lab Pre-Acoustics Module. It 

converts from a solid FE model to a skin mesh that BEM analysis requires. 
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The BEM mesh can be seen as a wrap around the structural mesh and usually 

the BEM mesh is coarser. 

 

4. Calculating the sound pressure in LMS Virtual.lab Acoustics module. Both 

acoustical and structural meshes are imported to VL.Acoustics. The nodal 

displacement on each vibration mode calculated in ANSYS.APDL is also 

imported and mesh-mapped to the acoustical skin mesh as the vibration 

boundary condition. The location of field plane and field point is consistent 

with the 2D BEM analysis in this research and the field plane and BEM 

meshes are shown in Figure 6.15. The acoustical pressure is solved over the 

frequency range from 2 to 200Hz. The detail procedure of the analysis 

sequence can be referred to the training material [106].  



Chapter 6.3-Vibro-Acoustic Response Example of a Seven-Layer Beam 

 

114 

 

 

 

 

As shown in Figure 6.16, 2D BEM calculation has good agreement with the first 

dominant SPL peak with VL.Acoustic result without considering the damping. 

Comparing to the structure without damping, the introduction of viscoelastic 

damping material not only causes almost 20dB reduction on the first peak SPL, but 

also attenuates the other peak values. It proves that using the viscoelastic damping 

material will greatly attenuate the vibro-acoustical responses comparing to the 

identical structure without damping.  

Figure 6.15 Acoustical BEM analysis in LMS Virtual.Lab 
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Figure 6.16 SPL comparision between VL and 2D BEM calculation 

at field point (0.5, 0.4) 
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G. Acoustical performance with a combination of several viscoelastic materials at 

different temperatures 

 

With the different combination of viscoelastic materials by changing the ambient 

temperature, the acoustical response is also calculated with the unit-input in the 

frequency domain (equivalent to Dirac input [107] in the time domain) applying at 

the middle node. The damping structure is with the same design parameters as 

previous vibration analysis (using 3M ISD-110 at 45°C). The Table 6.11 shows the 

1st order natural frequency, the system loss factor, and the corresponding peak value 

(dB) of the sound pressure level over the temperature range with the same structure 

in previous vibration analysis. 
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 Table 6.11 1st system damped frequency/loss factor/SPL (simply-supported B.C.) Type Temp-°C Freq-rad/s Loss-factor SPL-dB ISD-110 40 33.17 1.0850 50.35  45 28.82 0.7899 51.91  50 26.25 0.5847 54.15  55 24.38 0.4640 56.24  60 23.50 0.3870 57.45  Temp-°C Freq-rad/s Loss-factor SPL-dB ISD-112 40 32.65 0.1946 59.54  45 31.62 0.1652 61.25  50 30.80 0.1413 62.30  55 30.15 0.1218 62.90  60 29.61 0.1057 63.21  Temp-°C Freq-rad/s Loss-factor SPL-dB ISD-112&112 40 32.88 0.4427 54.31  45 30.76 0.3506 56.45  50 29.30 0.2776 57.68  55 28.22 0.2252 58.05  60 27.54 0.1850 59.67 
 

The relationship between the loss factor and the peak value of SPL can be 

investigated through the trends found in Table 6.11. 

For the same damping material, as the ambient temperature is increased, the peak 

value of SPL increases while the loss factor decreases.  

For the different damping materials with the same temperature, the peak value of 

SPL is higher with the lower loss factor. 
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7. Conclusions and Recommendations 

7.1 Conclusions 

 

A framework of FE-based vibro-acoustical analysis for a multiple-layer beam 

structure is presented by introducing different types of viscoelastic materials. 

Several conclusions for each step can be drawn in this research: 

 

1. The FE model of a multiple-layered damping beam is established by proper 

coordinate transformation of two fundamental elements: elastic layer and 

constrained damping layer. This methodology can be extended from the 

sandwich beam to more complicated damping structures without much effort. 

 

2. The non-linear curve-fitting technique accurately models the Biot constants for 

further vibration analysis. Results from the vibration analysis procedure 

discussed in this research are comparible with the closed form solution from 

previous work and simulations from ANSYS result. The Biot damping model is 

also capable of improving the structure’s damping performance by adding new 

features such as: different viscoelastic materials, the variation of ambient 
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temperature, etc.  

 

3. Decoupling transformation not only solves the eigenvalue-based vibration 

problem to explain the time-domain response of energy dissipation, but also 

successfully establishes the FRF-based frequency-spectrum analysis. The first 

peak from the frequency-spectrum is the dominant cause of the vibration issue in 

this damping structure.  

 

4. The Direct Boundary Element Method (DBEM) analysis for acoustical cavity 

with anechoic boundaries is used to solve the acoustical problem by using the 

particle velocity result from frequency-spectrum analysis. The acoustical result 

matches the frequency-spectrum result from vibration analysis as well as 

simulation results. It also shows the relationship between loss factor and sound 

pressure level (SPL) of the first dominant peak.  
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7.2 Recommendation for Future Research 

 

1. Curve fitting 

Build more advanced Biot curve-fitting techniques of complex shear modulus 

with more robustness and efficiency in order to apply to a wider temperature 

range.  

 

2. Higher order damping model 

As discussed in the damping mechanism section, Biot can be seen as the 

first-order of GHM damping model. The Biot damping model has less accuracy 

with the same order of damping constants in the curve-fitting process compared 

to a second-order mini-oscillator damping model. Thus the second-order 

mini-oscillator model can be used for a wider temperature range. It would be 

interesting to investigate and develop the other dynamic equations with GHM or 

similar damping models [108].  

 

3. Optimization 
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Determine an optimization algorithm on the basis of vibro-acoustical responses; 

particularly maximize the loss while trying to minimize the peak value of sound 

pressure by determining the optimal parameters such as number of layers, sizing, 

placement, etc. 

 

4. Application to Complicated/3D structures 

Extend the FE model from a simple beam structure to an irregular shape 

structure [38, 109, 110] for the industrial usage. For a 3D geometry, the Biot 

damping model requires further manipulation to incorporate a more complicated 

form of Biot constants. This is because viscoelastic material behaves in a non 

linear manner in 3D situations, and the complex shear modulus needs to be 

considered as having multi-directional parameters. 

 

5. Testing 

Fabricate multiple-layer sandwich damping beams with different damping 

materials and design the vibro-acoustical experimentation to validate the 

simulation results. From the 2D BEM result, the most challenging task is the 

measurement of low-frequency sound signal. It is also needed to lower the 



Chapter 7.2-Reommendations for Futhre Research 

 

122 

 

background noise due to the exceptional acoustical-attenuation performance of 

high-damping structures.  

 

6. Control 

ACL (Active Control Layer) treatment [64, 111-113] is still an active research in 

recent years. It is necessary to develop the control strategy for a multiple-layer 

damping structure and investigate the relationship between control parameters 

and damping factors as well as vibro-acoustical responses.
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Appendix A-Note of Matlab Code 

(The code can be acquired from author per request) 

 

Filename Explanation 

Mainentry_1type.m Main program, calculating loss/freq for 1vem 

Mainentry_2type.m Main program, calculating loss/freq for 2vems 

Mainentry_comparefreq.m  Main program, plotting loss/freq versus temp 

Mainentry_2type_acoust.m Main program, plotting SPL versus temp 

FE_7layer.m Subroutine, FE mode-seven layers beam 

FE_7layer_2type.m Subroutine, FE mode-seven layers beam with 2 VEMs 

Combodel.m Function of FE_7layer;helping apply the BC 

Delrowcol.m Function of FE_7layer 

 Biotpara.m Subroutine, Provide Biot parameters 

Biotmodel1_zeroeig_cal.m Subroutine, construct the Biot dynamic equation for 1vem 

Biotmodel2_zeroeig_cal.m Subroutine, construct the Biot dynamic equation for 2vems 

Decoupling.m 

Noise.m 

Writetxt.m 

Readtxt.m 

ISD3M.m 

Finallumda.m 

Subroutine, implement decoupling transformation 

Subroutine, interface with Fortran Program-DBEM2D.exe 

Function of noise.m, reading txt to workspace 

Function of noise.m, reading workspace to txt 

Original complex shear modulus based on Arrhenius Equation 

Function, calculating loss factor 
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Appendix B-Curve fitting Datasheet for 3M-ISD110/112 

 

Temp:40°C 3M-ISD110 3M-ISD112  3M-ISD110 3M-ISD112 

Fit Range 500Hz 300Hz    

∞G  55000(Pa) 

 

172000(Pa)   

 

a1 20.17658715 1.259301205 b1 975.8591087 500.6124651 

a2 2.362766682 7.821608313 b2 5.801598066 4372.613375 

a3 4.216510317 0.729629269 b3 57.82678723 69.46486545 

a4 163541962.9 0.690449516 b4 17998352283 1.735341915 

a5 67.80781332  b5 3818.523262  

a6 8.910521898  b6 270.5581629  

 

Temp:45°C 3M-ISD110 3M-ISD112  3M-ISD110 3M-ISD112 

Fit Range 500Hz 300Hz    

∞G  55000(Pa) 

 

172000(Pa)   

 

a1 1.809517 5.699386303 b1 5.410993 4268.18097 

a2 14.53095 0.596843249 b2 1093.778 70.26089968 

a3 3.221535 1.000560485 b3 60.36544 501.5607814 

a4 52.01026 0.577694736 b4 4319.613 1.969150769 

a5 19768.22  b5 2840958  

a6 6.561162  b6 298.0672  

 

Temp:50°C 3M-ISD110 3M-ISD112  3M-ISD110 3M-ISD112 

Fit Range 500Hz 300Hz    

∞G  55000(Pa) 

 

172000(Pa)   

 

a1 2.459672 0.81104778 b1 67.19654 505.7506084 

a2 1.48005 0.489213723 b2 6.517372 2.157408752 

a3 4.771804 0.496278326 b3 324.4704 71.29256759 

a4 10.20069 4.275986654 b4 1179.266 4207.895255 

a5 594.7972  b5 103972.9  

a6 35.81343  b6 4548.763  
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Temp:55°C 3M-ISD110 3M-ISD112  3M-ISD110 3M-ISD112 

Fit Range 500Hz 300Hz    

∞G  55000(Pa) 

 

172000(Pa)   

 

a1 3.203097 3.27685 b1 295.7498 4145.999 

a2 1.094532 0.417092 b2 6.762073 71.94685 

a3 1.749103 0.666388 b3 62.76513 508.1619 

a4 19.38233 0.417575 b4 3832.522 2.300749 

a5 6.424706  b5 1063.333  

a6 198.4586  b6 37067.49  

 

Temp:60°C 3M-ISD110 3M-ISD112  3M-ISD110 3M-ISD112 

Fit Range 500Hz 300Hz    

∞G  55000(Pa) 

 

172000(Pa)   

 

a1 2.065660292 0.359338 b1 134.3730844 2.416798 

a2 0.631635735 0.554823 b2 12.83006167 510.4503 

a3 0.58497938 0.354244 b3 12.83006167 72.49185 

a4 120.160647 2.564683 b4 25301.30551 4095.909 

a5 10.79428667  b5 2759.995777  

a6 4.01863356  b6 671.1136253  
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Appendix C- Hankel Function 

Recalling 
)(

4

)2(

0 kr
i
HΨ −=

 as the general solution of Helmholtz equation (5.1), 

Henkel function (2
nd
 kind) are defined as: 

)()()()2( xiYxJx ααα −=H

 

Where Jα(x) is the Bessel function of first kind and Yα(x) is the Bessel function of 

second kind. Practically, the Hankel function of second kind can be implemented as: 
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Due to α is equal to zero in above equation causing the denominator equal to zero, 

the limit value is necessary to be calculated for equation on RHS.  

 

)(xJα -Bessel function of first kind- can be represented with an integral form when 

alpha is the integral number: 
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