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In the thread https://www.diyaudio.com/community/threads/any-idea-to-improve-this-electronic-
filter.395321/ Elvee looks for ways to filter a -5 kV, low current supply without needing very large 
series resistors or very large high-voltage capacitors. His filter configuration is shown in Figure 1.

Figure 1: Elvee's single-op-amp filter configuration. In the original, Zx is a 22 MΩ resistor, R1 = 1 
MΩ, C1 = C2 = 1.5 nF.

A problem with the circuit is its ringing when the feedback resistance is much greater than R1.

Later in the thread, he explains that the circuit should ideally mimic a first-order low-pass filter with
a capacitance of about 300 nF, which is 200 times as large as each of the two filter capacitors. 
However, to get exactly that behaviour (exact when all components including the op-amp behave 
ideally), Zx should be a capacitor of 1.5 nF/198 = 7.57575757... pF. The voltage variations across C2

are then 199 times as large as those across C1, so the total capacitance is amplified by 199 + 1 = 
200. This leads to the impractical circuit of Figure 2; impractical, because it won't bias properly.



Figure 2: Impractical version that would behave as a first-order low-pass with increased 
capacitance, if it were biased correctly.

As a first attempt at a solution to the biasing issue, one could connect a resistor in parallel with the 
feedback capacitor. However, the feedback capacitor is 7.5757575757... pF and the time constant of
the intended 300 nF capacitance with the 1 MΩ filter resistor is 300 ms. If the circuit is to behave 
like 300 nF over a time scale of the order of 300 ms, the parallel resistor has to be so large that its 
time constant with 7.5757575757... pF is well above 300 ms, corresponding to a resistance greater 
than 39.6 GΩ. Instead of using a resistor of that value, one could also use a T-network having the 
same voltage-to-current transfer; for example, a voltage divider that attenuates more than 1800 
times followed by a 22 MΩ resistor. Needless to say, offset voltages will then be amplified more 
than 1800 times and a few hundreds of picoamperes of bias current will clip the op-amp output.

To solve this, one could connect some circuit that behaves inductively across the capacitor - not 
necessarily a real inductor (which would need to have an impractically large inductance), but 
something that has a relatively large voltage-to-current transfer at low frequencies that drops with a 
first-order slope at higher frequencies. For example, an RCR T-network. However, something 
inductive in parallel with something capacitive can lead to ringing/peaking again. In fact, when you 
look at the voltage-to-current transfer of the feedback path via C2, R1 and C1, it initially increases 
with the square of the frequency. It therefore has FDNR-like behaviour, which further aggravates 
ringing and oscillation issues.

I think you can solve this by combining an FDNR-like, a capacitive, a resistive and an inductive 
voltage to current transfer in the feedback, see Figure 3. I've called the proportionality constant of 
the admittance of the FDNR D, I haven't a clue what it is usually called.



 
Figure 3: Op-amp with FDNR, capacitive, resistive and 
inductive feedback

When the op-amp is ideal, the current-to-voltage transfer of the whole circuit is the reciprocal of the
voltage-to-current transfer of its feedback network. The zeros of the voltage-to-current transfer of 
the feedback network are then the poles of the whole circuit.

The  voltage-to-current transfer of the feedback network is simply the sum of the admittances of the
four branches:

Y=
1
sL

+
1
R

+sC+s2 D=
1
sL

(1+s
L
R

+s2 LC +s3 LD)

The term between parenthesis is the characteristic polynomial of the whole circuit. To get 
Butterworth pole positions,
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D is known, as D=C2 R1 C1 , and C is the desired feedback capacitance (7.575757... pF). For 

Butterworth pole positions, one can now derive that
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The resistive and inductive terms could be realized with a common T-network, as shown in Figure 
4.

Figure 4: Practical implementation of the resistive and 
inductive branches. As mentioned in the text, the FNDR models
C2, R1 and C1, see Figure 5.

The whole filter then looks as shown in Figure 5.



Figure 5: Filter circuit corresponding to the simplified model of Figure 4.

At the frequencies where the DC biasing stuff kicks in, the network consisting of C2, R1 and C1 has 
a gain that is almost proportional to frequency squared. The fact that it is not an exact 
proportionality will therefore be neglected for the DC biasing stuff calculations, that is, we assume 
that modelling C2, R1 and C1 with an ideal NFDR is accurate enough. Capacitor C and the op-amp 
will also be assumed to be ideal.

With these simplifications, we only need to approximate L and R with the network RB, CL, RA. This 
network is depicted in Figure 6.



Figure 6: Subcircuit that realizes the resistive and inductive feedback

The transfer from voltage to current is
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where the approximation holds when RC << RA // RB and the frequency is much greater than the 
corner frequency defined by the three resistors and CL. 

The first term on the right is the desired resistive term, the second the inductive term. That is,
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That is, the design procedure is:

Choose R1, C1, C2 and C.

Calculate D = R1 C1 C2

Calculate L and R

Choose RA and RB

Calculate CL and RC.



Example:

R1 = 1 MΩ

C1 = C2 = 1.5 nF

C = 7.57575757... pF to get a total capacitance of 300 nF

D = 2.25 · 10-12 ΩF2 

L ≈ 93.14870403 GH (gigahenry, so indeed too large for a physical inductor)

R = 78.408 GΩ

Using RA = 22 MΩ and RB = 1 MΩ:

RC ≈ 280.5836139 Ω

CL ≈ 4234.032 μF

Using RA = 22 MΩ and RB = 10 MΩ to reduce the large capacitance:

RC ≈ 2805.836139 Ω

CL ≈ 423.4032 μF

Rounded to the nearest standard values:

R1 = 1 MΩ

C1 = C2 = 1.5 nF

C = 6.8 pF

RA = 22 MΩ

RB = 10 MΩ

RC = 2700 Ω

CL = 470 μF

This circuit may be somewhat impractical for a single-supply implementation, with the positive op-
amp input biased at half the supply voltage and with CL connected with its negative terminal to 
ground. Even with a leakage-free CL, such a circuit would need about an hour (10 MΩ times 470 μF
times ln(2)) to settle after power on. Leakage would aggravate this further.

It should be much less of an issue for an implementation with a symmetrical supply, because the 
initial and final voltages across CL are much closer. If a single supply would be required, it may be a
good idea to split CL into two 220 μF capacitors, one to ground and one to the supply.

Running the circuit through the LINDA pole-zero extraction program results in these poles and 
zeros:

No component value rounding:

poles: -1.675 rad/s and (-0.837543 ± 1.455 j) rad/s

zeros: (-0.841579 ± 0.841579 j) rad/s



The poles are quite close to third-order Butterworth locations. The asymptotic roll-off is only first 
order due to the two zeros. This was to be expected, because at high frequencies (if you can call 
frequencies above 0.3 Hz high), only C1, C2 and C play a role, so the circuit becomes equivalent to 
the first-order filter of Figure 2.

With component values rounded to standard values:

poles: -1.34 rad/s and (-0.835688 ± 1.574 j) rad/s

zeros: (-0.902207 ± 0.779549 j) rad/s
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