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Summary

A method for simulating an expanding duct, like a horn, by mode matching techniques is described. For a horn
in an infinite baffle, the modal radiation impedance and radiated pressure can be found from known relations. For
a horn equipped with a small baffle or flange, however, diffraction from the edges has to be taken into account.

This paper investigates how an edge diffraction term can be included, and its effect on the throat and radiation

impedances and radiated pressure. Measurement results are presented, and are shown to be in good agreement

with the simulations, both for a horn in a large baffle, and for a horn with a small flange.

PACS no. 42.20.Mv, 43.38.]a, 42.20.Ks

1. Introduction

When Webster published his famous paper on horns in
1919 [1], he was mainly concerned with the throat impe-
dance, or loading properties, of the horn. The horn equa-
tion he presented, which is commonly known as Webster’s
equation’, is one-dimensional, and can only predict pres-
sure and velocity averaged over the assumed wave front
surfaces in the horn.

For wind instruments, where radiation directivity is of
minor importance, there has been much research into one-
dimensional models for predicting their resonance fre-
quencies [3, 4, 5]. The use of spherical, or even oblate elip-
soidal, wavefronts have been used, together with a proper
choice of radiation impedance model, to improve accuracy
[6, 7, 8]. A similar approach has also been used to model
horn loudspeakers [9].

But as has been pointed out by several authors [10, 11],
one-dimensional horn theory is not able to predict the
sound field radiated by a general horn, as the velocity dis-
tribution at the horn mouth is unknown. Consequently, the
design of horn loudspeakers have to a large extent been
based on experience, geometrical approaches [12], or Fi-
nite or Boundary Element Analysis [13, 14, 15].

By instead setting up the three-dimensional wave equa-
tion in a coordinate system where the wave equation is
separable, and letting the horn walls follow the coordi-
nate surfaces, it is for certain cases possible to find ana-
Iytical solutions. These solutions will include higher order
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! Although the equation in question was derived and discussed by
Bernoulli, Lagrange and Euler [2].
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modes of propagation, and one is therefore able to pre-
dict the sound field inside the horn. There are, however,
only eleven coordinate systems where the wave equation
is separable, and very few of them have surfaces that give
useful horn contours [10]. Furthermore, if analytical solu-
tions are to be found for radiation from finite horns, one
is restricted to enclosures that also follow the coordinate
surfaces. For instance, it would be possible to find an an-
alytical solution for a conical horn mounted in a sphere,
but not for the same horn mounted in a rectangular box.
Analysis of arbitrary geometries is therefore not possible.

A solution to this problem is to divide the horn into
small, straight sections that each have analytical solutions,
and then to match the sound fields at the interfaces, or
discontinuities, between the sections. The cross sectional
shape is still restricted, but now the axial shape of the horn
can be arbitrary. This mode-matching approach was prob-
ably first implemented by Alfredson [16], who used an it-
erative technique. Alfredson used the method to compute
the sound field radiated from an axisymmetric exponential
horn.

Shindo et al. [17] and Schuhmacher and Rasmussen
[18] simulated rectangular horns by a multimodal method,
in which the amplitudes of the propagating and reflected
waves in each section were found by solving a linear sys-
tem of equations. This method has numerical challenges
when dealing with evanescent waves, leading Shindo ez al.
to use the Boundary Element Method in the narrow parts
of the horn.

Pagneux et al. [19] describe both a discrete model, a ver-
sion of the discrete model carried to the limit of infinites-
imal segment length, and a purely continuous model. The
discrete model is also used by Kemp [20], and will be de-
scribed in detail in the next section. Amir et al. [21] have
verified experimentally and numerically that the discrete
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model carried to the limit is able to predict both the sound
field inside the horn, and the input impedance of the horn.
Kemp has also demonstrated that the discrete model is able
to predict the input impedance of wind instruments with
good accuracy. In both these studies, the horn was assumed
mounted in an infinite baffle.

Similar to the one-dimensional horn models, the mode-
matching models also require a good model for the radia-
tion impedance. Fortunately, the dependence of the radia-
tion impedance on the shape of the horn, as discussed in
[7], is now expressed by coupling between pressure and
velocity modes. Now the radiation impedance model can
be selected based only on the cross-sectional shape of the
horn mouth, and possibly other external influences, like
diffraction and reflections.

In this paper, the discrete mode-matching method de-
scribed by Pagneux and Kemp will be applied to the sim-
ulation of rectangular loudspeaker horns. For horn loud-
speakers, accurate prediction of the radiated sound field is
at least as important as the throat impedance, and it will be
demonstrated that the method is able to predict the sound
field outside the horn as well. By including edge diffrac-
tion, a significant improvement in the predicted results, for
both throat impedance and radiated pressure, can be found
for horns mounted in finite baffles.

2. Theory

The Mode Matching Method (MMM) is based on describ-
ing the sound field in connected duct sections of different
cross sections by a weighted sum of eigenfunctions ap-
propriate for the coordinate system used [20, 22, 23]. In
a rectangular duct, modes are denoted (ny, ny), and there
will be n, by n, nodal lines; (n,, n,) = (0, 0) representing
the plane wave mode.

A time harmonic factor of e’ is implicitly assumed
throughout the paper.

Along the duct, assuming propagation in the z direction,
the pressure can be expressed as a sum of all the modes,

p(x.3.2) = ) Pa(Dwin(x, ), 1

n=0

where P, is the pressure profile along the tube, and vy, is
the pressure profile in the (x, y) plane. Here n is used as
a short hand index for n,, n,, and the modes are sorted in
increasing order, see Table I.

It is advantageous to separate v, into two parts, one de-
pendent on x, and the other on y,

Yy = ¢nxf7n,.- (2)

In a quarter symmetric ducts having hard wall boundary
conditions, width 2a and height 25, the mode functions in
Equation (2), are [23]

b, = 1: ny=20 3)
o \Qcos(nxﬂx/a): ne >0
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Table I. Mode pairs sorted in increasing order.

n (ny, ny) n (ny, ny)
1 (0,0) 9 (2,2)
2 0,1) 10 0,3)
3 (1,0) 11 3,0)
4 (1,1) 12 (1,3)
5 0,2) 13 3,1
6 (2,0) 14 (2,3)
7 (1,2) 15 (3,2)
8 2,1) 16 3,3)

0 12

o Sis o

Duct 1 i i Duct 2

d

Figure 1. Two ducts joined by a discontinuity.

1: ny, =0
on = {\/icos (nymy/b) : nz > 0. @
In the z-direction, the pressure can be expressed as
Py(2) = Ae % + Byelt, )
where
kn_{—\/k2—a,2,: k* < a? ©)
m : k? > a?

is the axial wavenumber of the nth mode pair, and & is the
free space wavenumber. The eigenvalues a,, are

= () + (22)) (7)
a b

We can see that the axial wavenumber, k,,, will for certain
values of a? be imaginary, and the propagation in the z
direction will be evanescent (exponentially damped). The
sign of the root is chosen to make the exponent in Equation
(6), real and negative when k, for k? < a? is inserted into
Equation (5). The wavenumber where k, becomes real is
called the cut-off (or sometimes cut-on) wavenumber of
the corresponding mode.

When the wave propagates across a discontinuity (see
Figure 1), there must be continuity of pressure and veloc-
ity right before (at position 1) and right after the disconti-
nuity (at position 2). But the nth mode in duct 1 will not
match the nth mode in duct 2, so the pressure field in duct
2 must be made up of a new sum of modes. Every mode
in duct 1 excites a series of modes in duct 2, and this is
known as modal coupling or mode conversion.
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If PO is the vector of modal pressure amplitudes at po-
sition 1, and P® is the vector of modal pressure ampli-
tudes at position 2, the vectors are related by a matrix F
so that

P = FP?®, ®)

where the matrix elements are computed by integrating
over the area .S of duct 1,

1
Fum = — me D ds. ©9)
S
S

y/,(,l) gives the mode shapes in duct 1, and w,ﬁf) gives the
mode shapes in duct 2. This relation holds if a; < ay,
where a; and a, are the half-widths of the two ducts (and
correspondingly for the half-heights b;and b,).

A corresponding relation exists for the volume veloc-

ity?:

U@ =FrgWm, (10)
If a; > a,, and by > by, the relations are

P® = ypW, (11)

ov =v'g®@, (12)

where the matrix elements are computed by integrating
over the area .S, of duct 2,

1
Vim = [w”) v dsS. (13)
52
S5

For a rectangular duct, it is most convenient to express
Equation (9) as an element-wise multiplication of two
terms,

1 H @
an(ﬂx:ﬂy) = E J II/r(l )II/r(n)dS
1
S
1 T
1,2 1 @
= 7 ne Pm dx— n, Om d
2a1J' i xxzle‘cyayy
—da —bl
= anmenymyy (14)

where f, = a;/a; and f, = b, /b,, and

1: ny =mye =0,
Xpom, = V2sinc (myzfy) :  nxy =0, my >0, (15)
2sinc (A) m”;;ﬂ;m C e >0
where
A= ”(mxﬂx - nx) (16)

2 Strictly speaking, only the first (plane wave) term in U can rightly be
called the volume velocity. However, since the U vector can be expressed
as S, where # is a vector of particle velocity mode amplitudes, we will
refer to the entire U vector as the volume velocity.
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and
1: n,=m, =0,
Yom, = 3 V2sinc (myzp,): n,=0,m,>0, (17
: myBy
2sinc (B) i - > 0
where
B = n(m,p, —ny). (18)
The V' matrix then becomes
Vim = Fam(1/ By, 1/By). (19)

If the duct expands in one direction, and contracts in the
other, the coupling matrix is split into two matrices that are
subsequently multiplied, corresponding to two discontinu-
ities directly following each other without any distance be-
tween them [24]. As an example, the first discontinuity ex-
pands in the x-direction and is constant in the y-direction,
while the second discontinuity contracts in the y-direction
and is constant in the x-direction. The first coupling ma-
trix will be of the F-type, while the second will be of the
V -type.

Pressure and volume velocity are related through the
modal impedances, which can be expressed as

This relation can be used to express how the modal impe-
dances are coupled across the discontinuities,

zW = FZOFT, 5, <8, 1)
ZW =y lzOwhH 1 8§ > 8. (22)
For propagation along a uniform duct, terminated by an

impedance Z", the input impedance Z© can be found
from the relation [20, corrected version] 3:

79 = (D)™ z. - D;' Z.
-1

. -1 _
(29 + (ips)” z.)” D;'Z.. (23)
The extra matrices are defined as
k,d =
Dy, m) = jsin(k,d): n=m 24)
0: n#m
tan(k,d) : =
Dy my = 4 k) m=m (25)
0: n#m
kpe/k,sS : =
Zunm) = { re/ n=m (26)
0: n#m

3 The corrected version of the thesis can be downloaded from http://
www.kempacoustics.com/thesis/index.html
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where d is the length of the duct as in Figure 1, and S is
the cross-sectional area.

By using these relations, the impedance at the throat of
the horn, the so-called throat impedance Z;;, can be found,
given an impedance at the mouth of the horn.

Volume velocity is propagated along the duct as

gw = (—DZZC_l (Z(O) _ Zc) +E) oo, 27

where the extra matrix is

—jknd .
E(n.m) = {8 o

Together with (10), (27) can be used to calculate the vol-
ume velocity mode amplitudes at the mouth of the horn,
given the volume velocity amplitudes at the throat.

The traditional method to do this is outlined in [20], and
is summarized as follows:

1. Calculate the impedance matrices at all points in the
horn, starting from the mouth, using equations (21) or
(22), and (23).

2. Excite the throat end with a given vector of volume ve-
locity amplitudes, and propagate it to the mouth using
equations (27), and (10) or (12).

This procedure requires storage of a large number of im-

pedance matrices per frequency, one for each end of each

duct element, which can be prohibitive if many modes and
many duct elements are used. In addition, step 2 above
must be repeated for each new throat velocity distribution.

However, inspection of Equations (27) and (10) shows

that both are matrix-vector multiplications. Therefore, a

single matrix for the entire horn, relating mouth volume

velocity to throat volume velocity, can be found by mul-
tiplying together the matrices from these equations. What
is more, this matrix can be built up from either end of the
horn. The result is that the volume velocity transfer matrix
can be built up simultaneously with the impedance matrix,
from the mouth through to the throat, without storing the

impedance values through the horn. This will result in a

significant saving of computer memory. The fact that the

diagonal matrices D, and Z, only have to be calculated
once per frequency and position will also reduce the com-
putation time slightly. The revised procedure will then be:

1. Start with mouth impedance ZN) = Z,,; (the radi-
ation impedance) and volume velocity transfer matrix
UNNM =,

2. For a straight duct element between positions n — 1 and
n, calculate Z""~V from Equation (23) and Z®.

3. Calculate

n=m

n#m’

(28)

M(n—l,n) — (_DZZC_I (Z(n—l) _ Zc) +E)
and
PO-1N) — N o pgln-ln)

4. For a discontinuity between positions m — 1 and m, cal-
culate Z™~Y from Equation (21) and Z.,
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5. Calculate

U(m—l,N) — U(m,N) x FT(m—l,m)

from Equation (10) and Z™,
More detailed derivations and information on how to im-
plement the method in practice, can be found in [19, 20,
24].

2.1. Radiated Pressure

From a throat volume velocity vector UV and the volume
velocity transfer matrix UMM the mouth volume veloc-
ity mode amplitude vector U™ can be found as U™ =
UEMTD, From this, the radiated pressure, p;g.can be
calculated using a multimodal variant of the Rayleigh in-
tegral over the mouth area .S,

jop [~ e
= — m(x0, yo)Upn, ~—— dSo, 29
pre(x) 27rSJ' zoll/ (x0, y0) p 0 (29)
Kk

where x = (x, y, z) and

r=\/(x—xO)2+(y—yo)2+z2.

This expression is valid for the case of an infinite baffle, as
indicated by the subscript I B for p.

2.2. Radiation impedance

The radiation impedance at the mouth end of the horn
needs to be known in order to specify the boundary con-
ditions at this end of the horn [19]. In general, the me-
chanical radiation impedance is defined as the area integral
of the specific radiation impecance p/v,, where v, is the
normal surface velocity.[23]. The acoustic radiation impe-
dance, Z,,4, for a surface S in an infinite baffle, is thus
defined as

jwp ik

Zrud = dSydsS, 30

e J[ ; 0 (30)
Ss

where h = \/(x —x0)* + (y — )%

In the multimodal case, the radiation impedance for a
given velocity distribution is more complicated. Now, the
radiation impedance must be expressed as [25]

w
Zood = —————— 31
ad SZ<|vn|2> ( )

where <|vn|2> = % IS vnvidS is the mean square normal
velocity, and W = Is pvadS is the radiated power. How-
ever, this is not a formulation that can be used directly with
the MMM. What we need is a relation between each pres-
sure mode and each velocity mode, so that the radiation
impedance can be described as a matrix in the form of
Equation (20). By combining Equation (1) with the or-
thogonality relation [20]

JWmWn dS = Som,
S
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we can find the amplitude of the nth pressure mode as

1

b= Jp(x, ¥, Owi(x, y)dsS. (32)

S

By substituting Equation (29) into Equation (32), we can
find the amplitude of the nth pressure mode due to all ve-
locity modes as

ja)p e e ikh
P, = U,
2752 Z JJ h
m=0§3

“Wm (X0, Y0) Wu (x, ¥) dSp dS. (33)

The factor 2e %" /i in Equation (33) is the infinite-baffle
Green’s function, but other Green’s functions can be in-
serted instead, if the surroundings are not represented by
an infinite baffle. So, for the general case,

_jop -
P=s2 Um”G<x|xO)
m=0 53

“ W (X0, Y0) Wa (x, ¥) dSp dS, (34)

where x¢ = (x9, yo)-
Comparing Equation (20) to Equation (34), we see that
we can express the elements of the Z,,4 as

jop

Zon = G(x|x

4”S2H (xIx0)
SS

“ W (X0, Y0) Wa (x, y) dSp dS. (35

In the case of an infinite baffle, the originally quadruple in-
tegral of Equation (35) can be simplified in various ways,
depending on the mode functions and the coordinate sys-
tem used. For details, see Zorumski [26] for a circular duct,
and Kemp for rectangular ducts with symmetric [20] and
asymmetric [27] modes. The symmetric mode case has
been used in the calculations in this paper.

For rectangular ducts, Equation (35) reduces to a double
integral, but the computational load is still large, especially
if many modes are required. 16 modes in each direction
result in a 256 x 256 matrix per frequency, and even though
the matrix is symmetric, this still requires a large number
of function evaluations.

2.3. Edge Diffraction

In order to simulate horns with small baffies or flanges, the
influence of the pressure diffracted from the edges on the
radiation impedance and radiated pressure, must be taken
into account. This can be done via the decomposition into
three terms of the sound pressure radiated by a monopole,
Do, in a position X, on a baffle [28] in z = 0,

Ppo(X) = prg + Par + Phod (36)
= Q[G(X|X0) + Gu1 (X|X0) + Gpoa(X|X0)].

where

—jkr
e
Gig=2
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is the infinite-baffle Green’s function, for a monopole
source signal Q = jopU /4r, U is the volume velocity and
r is the same as in Equation (29). Gy is the correspond-
ing Green’s function for the first-order diffraction waves
off the edges of the finite baffle, and G}, represents the
second and all higher orders of diffraction. For a velocity
distribution on a baffle, specified by the volume velocity
distribution, U (x¢, yo), the radiated sound pressure is then
given by a surface integration over this velocity distribu-
tion,
_ Jjwp U
ptotal(x) = 47[_5 JS (X(), yO)

- [GrB(XIX0) + Ga1 (XIX0) + Ghoa(X|X0)] dSp.
The G;p-term yields the Rayleigh integral in Equation

(29), so the sound pressure for the finite-baffle case is

4z S
- [Ga1 (XI%0) + Groa (X[X0)] dSo.

pro(X) = pra(x) + J“’—”J U(xo, y0) (37)
S

A frequency-domain formulation for the first-order dif-
fraction term, G, was presented by Svensson et al. [29]
in the form of a line integral along the edges of a scattering
object. An efficient method for computing the resulting in-
tegrals was later presented by Asheim and Svensson [30].
The higher-order diffraction term, Gy,,4, can be computed
for convex, rigid scattering objects via an integral equa-
tion, as shown in [28]. The methods described in these
papers are, or will be, implemented in a freely available
Matlab toolbox [31].

A modified beta version of this toolbox was used for the
computation of edge diffraction effects for the special case
of a thin baffle.

3. Computations

The horn used as an example in the computations had the
same size and shape as the horn used in the measure-
ments in Section 4. The cross-sectional area follows the
hyperbolic-exponential horn profile of Salmon-type horns
[32]. The area expansion is given by

S(z) = Sy (cosh kez + T sinh k.z)*, (38)

where k. is the cutoff wavenumber, .Sy, is the throat area,
and T is a parameter determining the shape of the horn.
The horn used in the calculations had S,, = 42.25cm?,
S, = 1188.80cm?, T = 0.7 and a cutoff frequency
of 200 Hz. The length of the horn was 0.5m. When
not placed in a large baffle, the horn was fitted with a
0.5 x 0.5 m flange.

3.1. Radiation Impedance

Radiation impedance for the infinite baffle case was com-
puted from the equations given by Kemp [20] for the sym-
metric case, since the horn in question is quarter symmet-
ric.
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From the relations in Equations (38) and (35), we see
that we can then find the total radiation impedance as

Zyadior = L1+ Zag1 + Zpea. (39)

where Z, and Zj,, are impedances due to the diffracted
pressure.

To compute Z,;; and Z,y, we must perform the dou-
ble surface integral of Equation (35) over the horn mouth
surface, using the edge diffraction Green’s functions Gy
and G, respectively, from Equation (36). A simplified
geometry has been used, where the exterior of the horn is
represented only by an infinitely thin plate corresponding
to the flange. This simplified geometry reduces both the
number of edges that have to be discretized, and the num-
ber of paths for higher order diffraction, hence reducing
computation time. A grid of 24 by 24 points distributed ac-
cording to the Gauss-Legendre quadrature rule was placed
over the area of the horn mouth on one side of the plate,
see Figure 2. Each point was used both as source and as
receiver. Since the direct sound is computed separately, no
singularity occurs when x = Xg.

The method to compute Gy, encounters singularities
when a receiver point, X, in free space is co-planar with
the edges. However, for the impedance computation all
receiver points are on the baffle, and no such singularity
problems occur. A final singularity occurs when x is very
close to an edge, but for the horns studied here, a part of
the flange always extends beyond x and x¢ when calculat-
ing the radiation impedance.

The transfer functions between all combinations of
sources and receivers were calculated separately. First or-
der and higher order diffraction terms were also kept sep-
arate in the calculations, to investigate their effects sepa-
rately.

When all transfer functions had been computed, the in-
tegral of Equation (35) was performed for each combina-
tion modes, using the Gauss-Legendre rule. This produced
an impedance matrix giving the contribution of the edge
diffraction, which was then added to the radiation impe-
dance for a duct in an infinite baffle to produce the total
radiation impedance.

3.2. Radiated Pressure

In addition to the surface points, a set of receiver points in
front of the horn was also included. The pressures at these
points were calculated from (38). The velocity distribution
at the mouth was computed with the total radiation impe-
dance taken into account.

For receiver points close to an edge, or near the plane of
the flange, the singularities mentioned in Section 3.1 lead
to a need for finer discretization. In this study, care has
been taken to not place x too close to any edge, thereby
avoiding any extra discretization and increase in computa-
tion time.
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15 order diffraction

Higher order diffraction

Figure 2. Geometry of horn flange, with the placement of source
and receiver points for edge diffraction calculation. Example
paths for first order and higher order diffraction are indicated.

3.3. Dependence on Number of Modes in Horn

To evaluate the required number of modes for a given ac-
curacy, calculations for the infinite baffle case with 1, 4,
16, 64 and 256 modes have been performed. To reduce the
time required for subsequent computations, the radiation
impedance for a fairly large ka range was precomputed,
and scaling and interpolation used thereafter.

Results were computed at 200 logarithmically spaced
frequencies from 40-6000Hz. 100 duct elements were
used in the MMM simulation of the horn. Accuracy de-
pends on the number of elements, but this is not studied in
this paper. The dependence has been studied in [24].

The relative error in throat impedance is calculated as

(40)

where Z is the throat impedance for N modes, and Z»s¢

is the throat impedance from the reference simulation us-

ing 256 modes.
Plots of the magnitude of the throat impedance, with 1,

4 and 256 modes, are shown in Figure 3. The curves for

16 and 64 modes are not shown, since they would overlap

too much with the curve for 256 modes to be visible. The

relative error is plotted in Figure 4. A few observations can
be made:

e The error is greatest around the first resonance peak. In-
spection of Figure 3 shows that this is to a large degree
caused by a shift of the resonance frequency, although
for the plane wave simulation (Neq.s = 1), there is
also a quite large deviation in amplitude.

e The main contribution of the higher order modes on the
throat impedance is to move the resonance peaks to the
correct frequencies. This is to a large degree achieved
by using just two modes in each direction, with ad-
ditional modes mainly correcting the amplitude of the
peaks.

The mean and maximum errors are given in Table II.

For radiated pressure, the pressure was calculated along
two arcs centered at the horn mouth center. The arcs had
radii of 0.5 and 3.0 m, respectively. This was to check if
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102 103
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Figure 3. Magnitude of Z;, (normalized) for different number of
modes.

: ””” Noodes =1
0l === Nuodes =
107¢ — Noodes =16
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N T
10! N

lez] [-]
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-

3 I
10 10? 103

Frequency [Hz]

Figure 4. Relative error for Z,, for different number of modes.

there was any difference in error between near field and

far field calculations. The results are summarized in Tables

Table III and Table IV. Here the maximum and mean de-

viations AL, = L,5s5¢ — L,y from the reference case are

given, in addition to the frequency where the maximum
deviation for any field point exceeds 1 dB. Other ways of

presenting the differences are given in [24].

One can make the following observations:

e The maximum error can be very large when few modes
are used. This is to a large degree due to nulls or near-
nulls in the off-axis response for these cases. The er-
rors in the on-axis response are considerably smaller,
but still relatively large.

e As more modes are added, the error stays below 1dB
up to higher frequencies.

Judging from the above results, 64 modes would be

enough to perform a simulation of this horn to within 1 dB

up to around 4600 Hz.

3.4. Dependence on Number of Modes in Diffraction
Calculations

The pressure diffracted from the flange edges back into the
horn mouth, or into the far field, can also be described by
modes. Each mouth velocity mode will produce a different
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Table II. Mean and maximum error for Z;;,.

Nmodes Max|5z| E
1 0.389 0.090

4 0.135 0.031
16 0.055 0.012
64 0.020 0.004

Table III. Error in near field pressure. The number in parenthesis

applies to the on-axis pressure.

Nouodes  Max|AL,|[dB]  |AL,| [dB]  far,<ias [Hz]
1 17.0 (9.1) 1.40 (2.20) 195
4 145 (3.4) 0.94 (0.65) 1324
16 13.5(1.9) 0.46 (0.28) 2459
64 1.74 (0.7) 0.10 (0.10) 4664

Table IV. Error in far field pressure. The number in parenthesis

applies to the on-axis pressure.

Noodes ~ Max|AL,| [dB]  |AL,| [dB]  far,<ias [Hz]
1 20.0 (9.20) 1.80 (1.68) 0195
4 22.5(5.26) 1.10 (0.71) 1358
16 24.0 (2.30) 0.52 (0.29) 2486
64 1.55 (0.88) 0.11 (0.10) 5290

excitation of the edges, and the resulting diffracted pres-
sure will modify both the radiation impedance seen by the
horn, and the field point pressure. However, higher order
velocity modes usually have both lower amplitude than the
plane wave mode, and directivity patterns that might re-
duce their contribution to the edge terms. Since computing
the contribution of the diffracted pressure to the radiation
impedance involves the quadruple integral of Figure 35
for each mode, it would be advantageous if the number of
modes could be reduced. It is the purpose of this section
to investigate the resulting error if only a small number of
modes is used to describe the contribution of the diffracted
pressure.

In the following, the simulations were performed with
144 modes. A frequency range of 100 Hz to 2kHz was
used for this study. The diffraction contribution to the radi-
ation impedance was decomposed into a number of modes
and added to the modal radiation impedance for an open-
ing in an infinite baffle. For the reference simulation, all
144 modes were used. For other simulations, 144 modes
were still used in total, the diffraction contribution is only
added up to mode N, 4irr. Le. in the 144 x 144 impe-
dance matrix, entries (1,1) to (Ny,gis 7. Nmairs) contained
Zig + Zg1 + Zp.q, while the other entries only contained
Zp. A test was also done using only the diffraction impe-
dance terms along the diagonal of the impedance matrix,
i.e. where a velocity mode couples to a pressure mode of
the same shape.

Figure 5 shows the relative error in throat impedance as
function of the number of modes included in the diffrac-
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Figure 5. Relative error in Z;, as function of number of modes
used in the diffraction impedance for the small-flange example.
Mean and maximum values have been computed over the 100 Hz
to 2kHz range.

tion contribution. Please note that the values are plotted in
terms of 4/ Ny, 4is s to improve readability.

Generally, the error decreases monotonically when
more modes are included in the diffraction computation,
as expected. A maximum error of 1073 is reached for
Ny aifs = 16. This could suggest that including only 16 of
the 144 modes would give quite an adequate accuracy for
many purposes, in the frequency range evaluated here, up
to 2kHz. Modal coupling is clearly important, as adding
only the diagonal terms does not reduce the error beyond
the first mode.

To see the reason for the modal coupling through
diffraction, we may inspect the pressure distribution in
front of the horn, for three cases: infinite baffle, the
diffracted pressure only, and the sum of the two, which
corresponds to a horn with a small flange. In the exam-
ple, the mouth of the horn was given a velocity distribu-
tion corresponding to symmetric mode (1,0), which has
two minima across the horn mouth in the x-direction. The
three cases are plotted in Figure 6, where the pressures
along a line across the center of the horn mouth and 1 mm
in front of it, are plotted. The horn mouth itself extends
from -0.174 m to 0.174 m on the x-axis, indicated by the
dash-dotted vertical lines in the figures. In Figures 6a and
6b, it can be seen that the infinite baffle pressure follows
the shape of the velocity distribution closely, with minima
that move only slowly with frequency. The number of min-
ima inside the horn mouth is the same as for the excitation.
This means that the dominant pressure mode is the same
as the velocity mode, and the radiation impedance matrix
will be diagonally dominant.

The matter is quite different for the diffracted pressure,
Figure 6¢. Here the number of minima varies strongly with
frequency. The radiation impedance matrix due to diffrac-
tion will therefore not be diagonally dominant in general.

By comparing the plots in Figure 6, one notices that
the magnitude of the diffracted pressure is well below the
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magnitude of the infinite baffle pressure. At low frequen-
cies, the contribution to the total pressure is negligible,
which can be seen by comparing the infinite baffle pressure
with the total pressure in Figure 6a. One does, however,
notice that the dips at 500 Hz are shallower with diffrac-
tion included. One may ask why the contribution of the
diffracted pressure seems to be so small, when we know
that the effect of diffraction is greatest at low frequen-
cies. A look at the radiation impedance with and without
diffraction, Figure 7, may clarify the matter. Although this
figure shows the radiation impedance of a piston, the trend
is similar for other modes. At low frequencies, the diffrac-
tion has very little influence on the reactance, but quite a
large influence on the radiation resistance. Since the reac-
tive part of the pressure dominates the near field at these
frequencies, and since only the magnitude of the pressure
is plotted in Figure 6, the influence of the diffraction seems
small.

At middle frequencies, we can see from both Figure 6b
and Figure 7 that the contribution of diffraction to the to-
tal pressure is greater (600 Hz to 1kHz curves), until the
effect is again negligible at 2 kHz. The larger contribution
from diffraction in the 500 Hz to 1kHz range can also be
seen from Figure 6c.

In Figure 6c, for positions close to the baffle edge
(x ~ £0.25 m), numerical challenges, as described in Sec-
tion 3.1, lead to reduced accuracy. Therefore, the apparent
dip near those baffle edges might be a numerical artifact.

3.5. First Order and Higher Order Diffraction

Usually the most dominant part of the diffracted field
comes from the first order diffraction term, as long as
the diffracting edge is visible from both the source and
the receiver positions. Since computing the higher order
diffraction term is time consuming, it is interesting to see
how large a contribution this term makes to radiation im-
pedance and radiated pressure. Several simulations were
run, where the number of first order diffraction impe-
dance modes (D1ZM), Np,, was varied from O to 64, and
the number of higher order diffraction impedance modes
(HDZM) was varied from O to Np,. The case of zero
diffraction impedance modes corresponds to the infinite
baffle case. Otherwise the test was identical to the test in
the previous section, including the stepping of Np, and
Nyop.

The results for relative impedance error and relative
pressure error are presented in Figures 8 and 9, respec-
tively. Again, the values are plotted against v/ N gop to im-
prove readability when Ngop is low, due to the many data
points in this region. The trends are similar for both impe-
dance and pressure. It is clear that including only the part
of the diffraction pressure that corresponds to a plane pis-
ton source, gives a significant reduction in error: the error
in impedance is halved if a single D1ZM is included. How-
ever, unless higher order diffraction is included, adding
more D1ZM has little effect. A further significant reduc-
tion of error results by including one or more HDZM. The
large reduction in error from no HDZM to a single HDZM
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Figure 7. Contribution of higher order diffraction to the funda-
mental mode radiation impedance.
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Figure 6. Pressure across horn mouth for velocity mode (1,0).
The horn mouth extends between the dash-dotted lines. Please
note the different vertical scales. (a) Infinite baffle and total pres-
sure, low frequencies, (b) Infinite baffle and total pressure, mid-
dle to high frequencies, (c¢) Diffraction contribution to pressure.

shows that higher order diffraction is important in estab-
lishing the correct zeroth order mode radiation impedance.
The influence on the radiation impedance can be seen in
Figure 7. The influence is clearly largest for the radiation
resistance, the reactance being substantially the same in all
three cases.

A reduction of the mean relative error to 0.1% can be
achieved with three D1ZM and two HDZM. About 25 to
36 D1ZM and 9 to 16 HDZM are required to reduce the
maximum error to the same level.

This distinction between first order and higher order
diffraction is largely of academic interest, though, as in
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Figure 8. Error in throat impedance as function of number of
modes in diffracted pressure. The number of modes in first order
diffraction impedance are indicated by the markings on the lines.
Solid lines indicate mean error, dashed lines indicate maximum
erTor.

practice the D1ZM and HDZM would not be calculated
separately. One would rather calculate the modal diffrac-
tion impedances from the total diffracted pressure.

3.6. A Word About Efficiency

The efficiency of the MMM compared to other methods
has not been studied in this work, but some comparisons
have been made in [24]. It is clear that computational
speed depends quite strongly on the number of modes
used, and the number of elements in the horn. The number
of modes and elements needed depends on the frequency.
A larger number of modes is required for good accuracy at
higher frequencies, and since many modes will be evanes-
cent in part of the horn, shorter elements are needed to
avoid numerical difficulties.

An advantage of the MMM is that the method is scal-
able; a low number of modes can be used for initial in-
vestigations, and more modes added as needed. Another
advantage is that no mesh generation is needed, although
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Figure 9. Error in radiated far-field pressure as function of num-
ber of modes in diffracted pressure. Legend as in Figure 8.

this is partially offset by the fact that the allowable geome-
tries are restricted to the ones that can be described as a
series of rectangular (or circular) ducts.

For the comparisons in Section 5, reference results
have been computed using the Boundary Element Method
(BEM) and Boundary Element Rayleigh Integral Method
(BERIM). The computer codes for these methods are de-
veloped in FORTRAN by Stephen Kirkup [33, 15], but
for the current application, the BEM code has been im-
plemented in C++ with OpenMP parallelization. The run
time for a mesh of 858 elements was about 20 minutes,
compared to 10 minutes for the Matlab implementation
of MMM (for 256 modes and 100 duct elements). This
does not include the computation of the radiation impe-
dance, which is done in C++/OpenMP and takes another
10 minutes. However, the radiation impedance has to be
computed only once for each aspect ratio and tabulated.

The efficiency of the edge diffraction computation is
very low in this case, due to the lack of parallelization of
the code, and extensive use of nested for-loops, which is
detrimental to speed in Matlab. The toolbox, as currently
implemented, does not handle a large number of sources
efficiently. Run time for the current problem was several
hours. Significantly more efficient implementations are an-
ticipated for compiled implementations tailored to the thin
baffle case.

In summary, a fair comparison of the efficiency of the
various methods would require that the same amount of
care and optimization had been applied to all of them, so
that each method performed at its best.

Efficiency was however not the main interest in this
investigation, but rather to investigate the contribution
of diffraction separately from the direct sound. This can
hardly be done using conventional element-based methods
like BEM.

4. Measurements

A horn of the size and shape described in Section (3) was
manufactured using bent MDF sheets with an inner skin

Figure 10. Measurement setup.

Table V. The mounting arrangements for the two horns. Offset is
the position of the center of the horn mouth relative to the center
of the baffle/flange.

Mounting type Size [mm] Offset [mm]
Large baffle 1255 x 1361 (107.5, 81.5)
small flange 500 x 500 0,0)

of 1 mm aluminium. Total wall thickness was 14 mm, and
stiffening ribs were glued to the outside. The horn was fit-
ted with a 0.5 by 0.5 m flange that fitted into a large baffle.
Measurements were made of both throat impedance and
frequency response at various points in front of the horn,
and the radiated pressure was computed in the same posi-
tions.

4.1. Setup

The setup is shown in Figure 10. The loudspeaker unit, a
SEAS 11F-GX 4” midrange unit, was mounted in a small
closed cabinet (grey) filled with acoustic foam. This com-
bination was connected to the horn through a 100 mm
long impedance tube (black) in which two Briiel & Kjer
4149 microphones, M1 and M2, were mounted. The loud-
speaker was driven by a signal from the WinMLS mea-
surement system through a Lynx sound card and a Quad
50E power amplifier.

The radiated pressure was measured with a Briiel &
Kjer 4190 microphone.

Two mountings were used, as indicated in Figure 10,
and described in Table V.

All measurements were done in an anechoic chamber.

4.2. Throat Impedance

The throat impedance was measured using the conven-
tional two-microphone method, which is the standard
method of measuring the acoustical impedance of absorb-
ing material, mufflers and horns. The method, including
the calibration, is described in detail in ISO 10534-2 [34].

769



ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 101 (2015)

It is known that the measurement results become un-
reliable above the first mode cutoff frequency, and at fre-
quencies where the microphone spacing Ax = ni/2, n =
1,2, .... The first mode cuts in at about 2.6 kHz, and the
microphones are one-half wavelength apart at 5.0 kHz.

It should be noted that the impedance tube is much
shorter than the length recommended in the standard,
and the distance between the microphone is also small
(33.7mm), considering the low frequencies measured. It
has been found, however, that it is still possible to achieve
good signal-to-noise ratios down to fairly low frequencies
using short impedance tubes [35].

4.3. Frequency Response

The frequency response was measured at several points in
front of the horn, both on- and off-axis, with the impedance
tube in place. Measurements were done relatively close to
the horn, compared to typical directivity measurements.
The purpose of the measurements was, however, the com-
parison with simulations, and the simulations should be
valid for all distances.

5. Comparisons

In this section, comparisons of measured and simulated
values will be given. The measurements were compared to
both the MMM, MMM with Edge Diffraction (MMM +
ED), and two Boundary Element Methods (BEM). For the
flanged horn, ordinary BEM was used [33], with a simple
pyramid-shaped enclosure around the horn, see Figure 11.
A simplified geometry was used to avoid discretizing the
thin flange and the many small details on the outside of the
actual horn. Discretizing these thin objects would result in
many small surface elements and extended computation
time, without giving any clear benefit.

For the baffled horn, the Boundary Element Rayleigh
Integral Method (BERIM) [15] was used. BERIM com-
bines the Boundary Element Method for the interior of
the horn with a Rayleigh integral formulation for the exte-
rior. This method is ideal for simulating horns mounted in
large/infinite baffles. An infinite baffle was also assumed
in MMM simulation of the baffled horn, i.e. the large but
finite baffle was treated as an infinite baffle in the simula-
tions.

The influence of edge diffraction was calculated for the
frequency range 100 Hz-2 kHz. Extrapolation of the data
was used below this range, but above 2 kHz the diffraction
contribution was ignored.

5.1. Throat Impedance

The throat impedance for the test horn mounted in a large
baffle is shown in Figure 12. Measurements (solid lines)
are compared to MMM (dashed) and BERIM (dotted)*.

#In the BERIM and BEM simulations, the magnitude of the impedance
does not completely reach the asymptotic pc impedance value unless the
mesh is very fine. This may be related to the collocation used in the
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Figure 11. BEM geometry for the horn with flange.
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Figure 12. Throat impedance for the test horn in a large/infinite
baffle. (a) Magnitude (normalized), (b) Phase.

The introduction of the first mode in the measurement
setup at approx. 2.6kHz can be seen, and one notices
the increased deviation from the simulated values above
this frequency. The measurements break down completely
above approximately 4.2 kHz, as opposed to the theoreti-
cal 5kHz. This is, however, most likely due to the finite
dimensions of the 0.5 microphones, since the 33.7 mm
distance is the center-center spacing.

256 modes were used in this simulation, and the horn
consisted of 100 duct sections. For the BERIM simula-
tion, a mesh bandwidth® of 3 kHz has been used, and the
symmetry of the geometry was exploited.

method, or to numerical dispersion as discussed by Bingtson et al. [36].
It has been found necessary to increase the impedance by an empirical
factor of 4.2% to compensate for this.

5 The mesh bandwidth is understood as the frequency where the largest
element of the mesh is not larger than 1/sth of a wavelength.
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Figure 13. Throat impedance for the test horn with a small flange.
(a) Magnitude (normalized), (b) Phase.
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Figure 14. MMM simulations compared to measured throat im-
pedance for the test horn with a small flange, with and without
edge diffraction. (a) Magnitude, (b) Relative difference.

The throat impedance for the test horn with the small
flange, is shown in Figure 13. Again, increased devia-
tion above 2.6kHz can be seen. 196 modes have been
used for the simulation, as the modal decomposition of

(0.0,0.0,0.0)

o L L]
Ref) * 0.0,0.0,0.05) (0.0,0.0,0.5)

M

(-0.6,0.0,0.1)

Figure 15. Placement of field points. Units in meters.

the diffraction-related radiation impedance with the given
number of integration points did not allow for modes of
higher order to be reliably resolved. As in the large/infinite
baffle case, the horn consisted of 100 duct elements. For
the BEM simulation, a mesh bandwidth of 2 kHz was used,
and the symmetry of the geometry was exploited. The ge-

ometry used is illustrated in Figure 11.

As expected, the impedance ripple is higher for the horn
with a flange than for the horn in the large baffle. This is
mainly due to the reduced value of the radiation impedance
at low frequencies for the flanged case, see Figure 7. The
MMM+ED overestimates the first impedance peaks some-
what. The most likely reason for this is that the geometry
of the horn is approximated by a single thin plate repre-
senting the flange, and the rear side of the horn is ignored.

In Figure 14a the measured throat impedance for the
flanged horn is compared to simulations using MMM and
MMM+ED. In Figure 14b the relative error is shown for
the two cases, in addition to the BEM simulation. For this
figure, the simulated impedance values have been interpo-
lated to the frequency values in the measurements, before
computing the error.

The following observations can be made:

o If the baffie is “large enough”, it behaves like an infinite
baffle.

e The effects of a small flange or baffle, cannot be ig-
nored. Simulating the horn as if it was mounted in an
infinite baffle gives large errors at low to medium fre-
quencies.

e Part of this error comes from a frequency shift of the
resonance peaks, but also from predicting the wrong
amplitude of those peaks.

e The error using MMM with edge diffraction reduces the
error to below 5% for most of the frequency range. This
is actually better than BEM over much of this range,
although this could probably be improved by using a
finer mesh.

5.2. Radiated Pressure

To make comparisons between simulations and measure-
ments that are relatively independent of the behavior of the

77



ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 101 (2015)

Kolbrek, Svensson: Horn Loudspeaker Simulation

41 MMM
—— BERIM
—— Measured

Lpre [dB]

2 3
(a) 10 Frequency [Hz] 10
0 -
MMM
—— BERIM
5 -| —— Measured
)
=,
T 10
x
~
15
I I
102 3
(b) Frequency [Hz]

)
=
~
MMM
—— BERIM
30 { —— Measured
T TTTT T I
102 103
(c) 0 Frequency [Hz] 0

4 {--- MMM
MMM+ED
5| |—BEM
;E —— Measured
<
| |

2 3
(a) 10 Frequency [Hz] 10
O —
--- MMM A
MMM+ED
5 -{——BEM
m —— Measured N
=
T 10)
5
15 E===mrm====="" 2
I | I
2 3
(b) 10 Frequency [Hz] 10
10 -
h
15| i
____________ 1
— T 1T 7 ! “\
Pé \
= 20
2 -—- MMM
=25
MMM+ED
— BEM
30 [-| —— Measured :
T T T 11T T I 1
2 3
(©) 10 Frequency [Hz] 10

Figure 16. Radiated pressure for the test horn in a large baffle.
(a) p(0.0,0.0,0.05)/p(0.0,0.0,0.0),

(b) p(0.0,0.0,0.5)/p(0.0,0.0,0.0),

(c) p(0.0,0.0,0.1)/p(0.0,0.0,0.0).

loudspeaker driver used, a point at the center of the horn
mouth has been used as reference. This point has been des-
ignated as the origin, and the pressures at all other points
are compared to the pressure here. See Figure 15.

Figure 16 shows the relative responses at three different
points in front of the baffled horn: one very close, one at
a distance on the principal axis, and one that is out to the
side and fairly close to the plane of the baffle. It can be
seen that the MMM and BERIM simulations follow each
other well, and both capture the principal features of the
measurements. The deviation at low frequencies is most
likely due to the influence of the finite baffle used in the
measurements. This is also most likely the cause of the
deviation at 1kHz in Figure 16c, since this point is quite
close to the baffle edge.

Figure 17 shows the response at the same points in front
of the horn with a small flange. Again, both MMM+ED
and BEM capture the principal features of the measure-
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Figure 17. Radiated pressure for the test horn with a small flange.
(a) p(0.0,0.0,0.05)/p(0.0,0.0,0.0),

(b) p(0.0,0.0,0.5)/p(0.0,0.0,0.0),

(¢) p(0.0,0.0,0.1)/p(0.0,0.0,0.0).

ments. Above 2kHz the BEM simulation experiences
problems with eigenfrequencies, so results for frequen-
cies above 2kHz are not shown. Since the edge diffraction
terms are only calculated in the range 100Hz to 2kHz, only
this range is shown for MMM+ED. The deviation of the
MMM+ED results in the 200-600Hz range in Figure 17¢
could be due to the approximate geometry used in the edge
diffraction simulation, since at this point the rear of the
horn is visible from the receiver position.

Figure 18 summarizes the responses computed with
MMM, MMM+ED and BEM, relative to the measure-
ments for the horn with a small flange. Also here, the sim-
ulated values have been interpolated to match the frequen-
cies in the measurements.

It is clear from these comparisons that
o Close to the horn mouth (Figures 17a and 18a) the con-

tribution from edge diffraction is small, even at low fre-

quencies, since the direct sound is strong there. Still,
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Figure 18. Relative error in radiated pressure for the test horn
with a small flange. Please note the different vertical scales.

(a) p(0.0,0.0,0.05)/p(0.0,0.0,0.0),

(b) p(0.0,0.0,0.5)/p(0.0,0.0,0.0),

(c) p(0.0,0.0,0.1)/p(0.0,0.0,0.0).

the methods that take the finite size of the baffle into
account (MMM+ED, BEM) are more accurate.

e On-axis, but further from the horn mouth (Figures 17b
and 18b), edge diffraction contributes significantly be-
low 1kHz, but above this frequency the difference be-
tween a finite and infinite baffle is small. The reason for
this is most likely the directivity of the horn.

e Off-axis (Figures 17c and 18c), the edge diffraction al-
ters the directivity pattern significantly over a large fre-
quency range, causing large errors at all frequencies
for the MMM without ED. The difference between the
MMM+ED and BEM results are probably due to the
different geometries for the two methods.

6. Conclusions

By expressing the sound field in a horn as a sum of eigen-
modes, the throat impedance and radiated pressure from
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a loudspeaker horn can be computed with good accu-
racy. This paper has demonstrated that the method captures
the principal features of the radiated pressure when com-
pared to measurements. The method also compares well
with other numerical methods, such as the Boundary Ele-
ment Method and the Boundary Element Rayleigh Integral
method. Throat impedance is also computed with good ac-
curacy, enabling accurate computation of radiated power.

The addition of edge diffraction calculations has en-
abled the method to be used also for horns with small
baffles or flanges, and the results compare well with the
measurements.

It has been demonstrated that inclusion of the edge
diffraction for both computation of the throat impedance
and the radiated pressure is required for good accuracy.
There will be large errors, especially at low frequencies
and large off-axis angles, if the finite baffle size is not taken
into account.

Acknowledgment

The authors wish to acknowledge Tore Landsem and Tore
Berg at the workshop at IET, NTNU, for building the horn
used in the experiments. The horn held the specified di-
mensions with a tolerance better than 1%.

References

[1] A. G. Webster: Acoustical Impedance and the Theory of
Horns and of the Phonograph. Proc. Nat. Ac. Sci. 5 (Jul
1919) 275-282.

[2] E. Eisner: Complete Solutions of the Webster Horn Equa-
tion. J. Acoust. Soc. Am. 41 (1966) 1126-1146.

[3] D.P. Berners, J. O. Smith III: Super-Spherical Wave Sim-
ulation in Flaring Horns. Proceedings of the International
Computer Music Conference (1995).

[4] D.P.Berners: Acoustics and Signal Processing Techniques
for Physical Modeling of Brass Instruments. Dissertation.
Stanford University, 1999.

[5] T.Hélie: Unidimensional models of acoustic propagation in
axisymmetric waveguides. J. Acoust. Soc. Am. 114 (Nov
2003) 2633-2647.

[6] J. Agullo, A. Barjau, D. H. Keefe: Acoustic Propagation in
Flaring, Axisymmetric Horns: I. A New Family of Unidi-
mensional Solutions. Acta Acustica united with Acustica
85 (1999) 278-284.

[7]1 P.Eveno, J.-P. Dalmont, R. Caussé, J. Gilbert: Wave propa-
gation and radiation in a horn: Comparisons between mod-
els and measurements. Acta Acustica united with Acustica
98 (2012) 158-165.

[8] T. Hélie, T. Hézard, R. Mignot, D. Matignon: One-dimen-
sional acoustic models of horns and comparison with mea-
surements. Acta Acustica united with Acustica 99 (2013)
960-974.

[9] K. R. Holland, F. J. Fahy, C. L. Morfey: Prediction and
Measurement of the One-Parameter Behavior of Horns. J.
Audio Eng. Soc. 37 (May 1991) 315-337.

[10] E.R. Geddes: Acoustic Waveguide Theory. J. Audio Eng.
Soc. 37 (Jul/Aug 1989) 554-5609.

[11] G.R. Putland: Every One-Parameter Acoustic Field Obeys
Webster’s Horn Equation. J. Audio Eng. Soc. 41 (Jun 1993)
435-451.

773


http://www.ingentaconnect.com/content/external-references?article=1610-1928(2013)99L.960[aid=10603189]
http://www.ingentaconnect.com/content/external-references?article=1610-1928(2013)99L.960[aid=10603189]
http://www.ingentaconnect.com/content/external-references?article=1610-1928(2012)98L.158[aid=10246966]
http://www.ingentaconnect.com/content/external-references?article=1610-1928(2012)98L.158[aid=10246966]
http://www.ingentaconnect.com/content/external-references?article=1610-1928(1999)85L.278[aid=10603190]
http://www.ingentaconnect.com/content/external-references?article=1610-1928(1999)85L.278[aid=10603190]

ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 101 (2015)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

774

C. A. Henricksen, M. S. Ureda: The Manta-Ray Horns. J.
Audio Eng. Soc. 26 (Sep 1978) 629-634.

S. Morita, N. Kyono, S. Sakai, T. Yamabuchi, Y. Kagawa:
Acoustic Radiation of a Horn Loudspeaker by the Finite
Element Method — A Consideration of the Acoustic Char-
acteristic of Horns. J. Audio Eng. Soc. 28 (Jul/Aug 1980)
482-489.

N. Kyouno, S. Sakai, S. Morita, T. Yamabuchi, Y. Kagawa:
Acoustic Radiation of a Horn Loudspeaker by the Finite El-
ement Method — Acoustic Characteristics of a Horn Loud-
speaker with an Elastic Diaphragm. 69th Convention of the
Audio Engineering Society (May 1981). Preprint no. 1756.

S. M. Kirkup, A. Thompson, B. Kolbrek, J. Yazdani: Simu-
lation of the Acoustic Field of a Horn Loudspeaker By the
Boundary Element-Rayleigh Integral Method. Journal of
Computational Acoustics 21 (2013).

R. J. Alfredson: The Propagation of Sound in a Circular
Duct of Continuously Varying Cross-Sectional Area. J.
Sound Vibr. 23 (1972) 433-442.

T. Shindo, T. Yoshioka, K. Fukuyama: Calculation of
Sound Radiation from an Unbaffled, Rectangular-Cross-
Section Horn Loudspeaker Using Combined Analytical and
Boundary-Element Methods. J. Audio Eng. Soc. 38 (May
1990) 340-349.

A. Schuhmacher, K. B. Rasmussen: Modelling of horn-
type loudspeakers for outdoor sound reinforcement sys-
tems. Applied Acoustics 56 (1999) 25-37.

V. Pagneux, N. Amir, J. Kergomard: A study of wave prop-
agation in varying cross-section waveguides by modal de-
composition. Part I. Theory and validation. J. Acoust. Soc.
Am. 100 (Oct 1996) 2034-20438.

J. A. Kemp: Theoretical and experimental study of wave
propagation in brass musical instruments. Dissertation.
University of Edinburgh, 2002.

N. Amir, V. Pagneux, J. Kergomard: A study of wave prop-
agation in varying cross-section waveguides by modal de-
composition. Part II. Resuit. J. Acoust. Soc. Am. 101 (May
1997) 2504-2517.

P. M. Morse, U. Ingard: Theoretical Acoustics. McGraw-
Hill, 1986.

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]
(32]

(33]

(34]

(35]

[36]

Kolbrek, Svensson: Horn Loudspeaker Simulation

A. D. Pierce: Acoustics. Acoustical Society of America,
1994.

B. Kolbrek: Modal sound propagation in curved horns of
rectangular cross-section. Diploma Thesis. Norges teknisk-
naturvitenskapelige universitet, Institutt for elektronikk og
telekommunikasjon, Trondheim, Norway, 2013.

J. Jurkiewicz, A. Snakowska, D. Smolik: Acoustic impe-
dance of outlet of a hard-walled unbaffled cylindrical duct
for multimode incident wave. Acta Physica Polonica A 119
(2011) 1061-1067.

W. E. Zorumski: Generalized radiation impedances and re-
flection coefficients of circular and annular ducts. J. Acoust.
Soc. Am. 54 (1973) 1667-1673.

J. A. Kemp: Multimodal radiation impedance of a rectan-
gular duct terminated in an infinite baffle. Acta Acustica
united with Acustica 87 (Jan/Feb 2001) 11-15.

A. Asheim, U. P. Svensson: An integral equation formula-
tion for the diffraction from convex plates and polyhedra.
J. Acoust. Soc. Am. 133 (Jun 2013) 3681-3691.

U. P. Svensson, P. Calamia, S. Nakanishi: Frequency-
domain edge diffraction for finite and infinite edges. Acta
Acustica united with Acustica 95 (2009) 568-572.

A. Asheim, U. P. Svensson: Efficient evaluation of edge
diffraction integrals using the numerical method of steepest
descent. J. Acoust. Soc. Am. 128 (Oct 2010) 1590-1597.

U. P. Svensson: Edge diffraction toolbox for matlab. 2013.

V. Salmon: A New Family of Horns. J. Acoust. Soc. Am.
17 (Jan 1946) 212-218.

S. Kirkup: The boundary element method in acoustics. 2nd
ed. ed. Integrated Sound Software, 2007.

1SO-10534-2:1998(e): Acoustics — Determination of sound
absorption coefficient and impedance in impedance tubes —
Part 2: Transfer-function method. 11 1998.

J. T. Post, E. T. Hixon: A Modeling and Measurement
Study of Acoustic Horns. Dissertation. University of Texas,
May 1994.

E. Béngtson, D. Noreland, M. Berggren: Shape optimiza-
tion of an acoustic horn. Computer Methods in Applied
Mechanics and Engineering 192 (2003) 1533 = I571.



http://www.ingentaconnect.com/content/external-references?article=0045-7825(2003)192L.1533[aid=10603192]
http://www.ingentaconnect.com/content/external-references?article=0045-7825(2003)192L.1533[aid=10603192]
http://www.ingentaconnect.com/content/external-references?article=1610-1928(2009)95L.568[aid=9505316]
http://www.ingentaconnect.com/content/external-references?article=1610-1928(2009)95L.568[aid=9505316]
http://www.ingentaconnect.com/content/external-references?article=0003-682x(1999)56L.25[aid=10603194]

