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Analysis of “Transitional Miller Compensation“ (TMC)

Principle
Manson's rule [1, chapter 2] states the following equivalence rule for linear control systems.

Lurie names this rule in [1] as evident, and in fact it appears to be obvious. For instance, it does not 
matter whether the output signal of the block with gain G5 first goes to the input of the whole chain, 
or whether this signal is transformed according to G1 and added at the input of the second block in 
the forward path. The system is linear.
In order to apply this result to TMC, we need to develop a model that follows the required structure. 
One possibilty is as follows.

The transfer functions G1(s)=a(s)/b(s) and G2(s)=a(s)/d(s) are calculated below. As the system is 
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linear, we have a(s)=G1(s)b(s)+G2(s)d(s). If we include the global feedback network into G2(s), we 
get the following structure of the complete amplifier.

According to Manson's rule and as can be seen directly, the total amount of feedback around the 
output stage is G1(s)+G2(s). It seems to be clear that this feedback is exactly the loop gain measured 
e.g. by a probe at point P between (1) amplifier output and (2) connection of TMC resistor and 
global feedback network. The numerical example below will confirm that.

Transfer function G1(s)
The input signal d(s) is zero, thus no current flows via C1, and y(s)=x(s).
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Transfer function G2(s)
The input signal b(s) is zero.

i1 s  = gm2 d s
i2 s =−gm1 y s 
x s  = Ri s = Rgm2d  s−gm1 y  s

y s = x s 
gm2
sC 1

d s

x s  = Rgm2 d s −Rgm1  x s 
gm2
sC 1

d s

x s 1Rgm1 = Rgm21−
gm1
sC 1

d  s

x s  = gm2
s−gm1/C1

s 1 /Rgm1
d  s

a s = x s  1
sC 2

i2 s = x s −
gm1
sC 2

y  s

= x  s−
gm1
sC 2

 x  s
gm2
sC 1

d  s = x s 1−
gm1
sC 2

−
gm1 gm2
s2C1C2

d s

= ... = gm2
s2C1C2−sgm1C1C 2−gm1/R

s2C1C2 1 /Rgm1
d s

G2 s =
a  s
d  s

= gm2
s2C1C2−sgm1C1C2−gm1/R

s2C1C 21/Rgm1

1
R

C
1

C
2

y(s)
g
m1
y(s)

g
m2
d(s)

x(s)

a(s)

d(s)

i(s)
i
1
(s) i

2
(s)



Numerical example
Ltspice allows to plot transfer functions G(s)=G(jω), since the built-in variables w and i stand for ω 
and j, respectivelly. As example, we use a TMC amplifier similar to that in Bob's book, page 182.

First, the loop gain in the TMC loop. It equals G1(s) and is of first order. For plotting, the calculated 
transfer function is multiplied by (1.1+0.002j), so that it is slightly shifted in picture.



Second, the gain of the global feedback loop, the TMC loop being closed. The closed-loop gain of 
the TMC loop amounts to 1/(1-G1(s)), so the considered transfer function is G2/(1-G1(s)). For the 
chosen values, it resembles somewhat a first-order function. With an additional pole in the output 
stage, the similarity probably will become greater.
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Again, the calculated function is shifted by the factor (1.1+0.002j).



Finally, the total NFB G1(s)+G2(s) around the output stage, which is clearly of second order. In the 
example, the ULGF is about the sum of the values in inner and outer loop.
Again, the calculated gain has been shifted in the plot.
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