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The problem of the rigid-piston radiator mounted in an infinite baffle has been studied widely for
tutorial as well as for practical reasons. The resulting theory is commonly applied to model a
loudspeaker in the audio-frequency range. A special function, the Struve fulkt{{ah, occurs in

the expressions for the rigid-piston radiator. This Struve function is not readily available in programs
such as Matlab or Mathcad, nor in computer languages suebraRAN and C. Therefore a simple

and effective approximation dfi,(z) which is valid for allz is developed. Some examples of the
application of the Struve function in acoustics are presented.20@3 Acoustical Society of
America. [DOI: 10.1121/1.156401]9

PACS numbers: 43.38.Ar, 43.20.Bi, 43.40/&JZ]

I. INTRODUCTION order Bessel function of the first kindhbramowitz and Ste-

. . . . un, 1972, 89.1.21 andH,(z) is the Struve function of the
Struve functions occur in many places in physics anoﬁrst kind (Abramowitz and Stegun, 1972, 812.1.6ee Fig.

applied math_emancs, e.g., in optics as the _normahze_d Ilne1 for a plot ofR, (ka) andX,(ka).
spread function(de Boeret al, 1994, in fluid dynamics o . . .
. : . " : The Struve function is not readily available in programs
(Newman, 1984 and quite prominently in acoustics for im- .
§uch as Matlab or Mathcad, nor in computer languages such

pedance calculations as is outlined below. The problem o ! : .
N . ) FORTRAN and C. High- r Xpansions an roxi-
the rigid-piston radiator mounted in an infinite baffle hasas © and C. High-accuracy expansions and appro

. . : . mations of Struve functions are available in the literature, see
been studied widely for tutorial as well as for practical réa-r instance Newmari1984 and the references therein, but
sons(see, e.g., Greenspan, 1979; Pierce, 1989; Kirtlat, '

) ) these are somewhat cumbersome to use since they require
1982; Beranek, 1954; Morse and Ingard, 1p6he result- separate consideration of small and lamgélso, the accu-

ing theory is commonly applied to model a loudspeaker in . o : .
the audio-frequency range. For a baffled piston the ratio O¥acy provided by these approximations is far beyond whatis

. . . ctually needed in most acoustical applications. Therefore, in
the force amplitude to the normal velocity amplitude, terme . . . L
. . L S the following an effective and simple approximation of
the piston mechanical radiation impedance, is given by

H1(z) which is valid for allz is developed.
—iwp —1,kR
Zn= o= R™e""dx,dysdx dy. (1)

two surface points on the pistoxg,ys) and(x, y), respec- H.(2)
tively; w is the frequency ang is the density of air. The
integration limits are such thak{,ys) and(x, y) are within
the area of the piston. The fourfold integral in Eg), known 2z (1
P g o) Hl(z)=?f J1—t?sinztdt
0

The Struve functiorH,(z) is defined as

as the Helmholtz integral, was performed by Rayldity896, ®)

8302 and further elaborated in Pier¢€989, with the result
There is the power series expansi@bramowitz and Ste-

Zn=pcma R, (2ka)—iX,(2ka)], 2 gun, 1972, §12.1)5

where ol 22 /4 /6
23,(2ka Hi(2)= —| 5253~ 72322 T 7232225 """ (6)
R1(2k3)=1—%a) ) w193 1935 13457
For the purpose of numerical computation this series is only

and useful for small values of, ka respectively. Equation&})

ol 2H,(2ka) . and (6) yield for small values oka

(2ka)=—513 @ 8ka

. . o Xi(ka)~ 35 (7)
are the real and imaginary part of the radiation impedance, T
respectively. In Eqs(2)—(4), a is the piston radiuskis the  \hich is in agreement with the sméif approximation as
wave numberw/c, c is the speed of sound, is the first- 41 he found in the references given earie also Fig. 1L

Furthermore, there is the asymptotic reg@dlbramowitz and
3E|ectronic mail: ronald.m.aarts@philips.com Stegun, 1972, §12.1.31, §9.2.2 witl+ 1)
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110 Hy(2)= 2— +2f1\/1_t tdt (12
: 1(2)—77 o(2) B 1thcosz )

. . /] . . L
., 10 > - The functiony/(1—t)/(1+t) in the remaining integral on the
5 = i right-hand side of Eq(12) can be approximated quite well
;: 1102k by a linear function ot. Accordingly, there holds
L]
a0

o 1-t .
1x107 —1+t~c+ dt, (13

whereé andd are such that
1-t
m— (c+dt)
FIG. 1. Real parR, (dashed lingand imaginary parK; (solid line) of the
normalized radiation impedance of a rigid disk with a radius an infinite

baffle. (On a log log scale. is minimal forc=¢, d=d. Theseg, d are readily obtained

by requiring thaty(1—t)/(1+t)— (¢+dt) is orthogonal to
the functions 1f on [0, 1], and this yields

1x10™

/ ;
1x107 1x10™ 1x10° 1x10*

ka fl
0

2
dt (14

2 [2
Hl(z)=;— Ecos{z— 7l4)+0(1/z), z—x, (8) e=7m/2—10, d=18— 6, (15)
but this is only useful for large values af Equation(4) and  with minimum squared error in Eq(14) equal to 3.4
the first term of Eq(8) yield for large values oka X104,
5 There results the approximation
Xq(ka)= —Ka’ ) 2 16 sinz
Hy(2)~ ==Jo(2)+| ==5|——
and this is in agreement with the larga approximation as 77 77 z
can be found in the earlier given references as well. 36\ 1—cosz
Below an approximation for all values & is devel- +| 12— ?)T’ (16)

oped in which only a limited number of elementary functions
is involved. Integrating by parts, the integral in H§) be-  with squared approximation error d, «) equal to 2.2

comes X 10~ 4 by Parseval's formula.
) It is observed that the right-hand side of Efj6) equals
Hy(2)= E 1— tCOStht _ (10) 0= Hl(O) for z= 0._ The absolute _approximation error ir_1 Eq.
™ 0y1-t° (16) is plotted in Fig. 2 as a function af For the calculation

of H4(2) the computer program Mathematica has been used.
Using MathematicaV.4.0.2.0 with standard precision re-
sults into an anomaly in the region afbetween 26 and 30;

1 coszt 1 [1—t this anomaly disappears when the standard precision is re-
o\/1—Tt2dt_ fo \ 75 cosztdt (1) placed by a higher one as is done for Fig. 2.

As one sees, the approximation error is small and de-
Using the integral representation &f(z) (Abramowitz and cently spread-out over the whoferange, it vanishes foz
Stegun, 1972, §9.1.20 with=0) there results the exact rep- =0, and its maximum value is about 0.005. Repladihgz)
resentation in Fig. 1 by the approximation in E¢16) would result in no
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The integral on the right-hand side of EG0) can be written
as
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visible change at all. The maximum relative error appears teq. (16) of H,(z) is used in Vanderkooy and Bo&i2002) to
be less than 1%, equals 0.1%zat0, and decays to zero for calculateZ;, and 7(ka).
zZ— 00,

It was found that inclusion of a quadratic and a cubic|y. CONCLUSIONS
term in the approximation in Eq13) resulted in a decrease
of the mean squared error, see Ety), by only a factor of
1.5 and 6, respectively. The resulting approximation o
H4(z) then becomes rather awkward, both in form and nu
merically, while its accuracy is only marginally improved.
Hence the approximation in E¢L6) seems the best compro-
mise between accuracy and simplicity.

A simple and effective approximation of the Struve
ffunction H,(z) for all values ofz has been developed using
only a limited number of elementary functions. The obtained
approximation is in agreement with the small as well as large
ka approximations known from the literature, but does not
require patchwork formulas, since it is accurate for the whole
ka range. The approximation can be used in various fields,
1. EXAMPLE with its most prominent engineering application in electro-

_ o acoustics.
A prime example of the use of the radiation impedance

is the calculation of the radiated acoustic power of a circulainckK NOWLEDGMENTS
piston in an infinite baffle. This is an accurate mo¢@é-
ranek, 1954 for a loudspeaker with radiua mounted in a
large cabinet. The radiated acoustic power is equal to
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_ 2
Pa— 0-3V| %{Zm}, (17) Abramowitz, M., and Stegun, [1972. Handbook of Mathematical Func-

whereV is the velocity of the loudspeaker’s cone, agid  ons (Dover, New York.

. eranek, L.(1954. Acoustics(McGraw—Hill, New York (reprinted by
denotes real part of. An example of the use of the obtalneg ASA, 1986.

approximation ofH; is to calculate a loudspeaker electrical de Boer, G., Braat, J., and Janssen(¥294. “Scan density and resolution
|nput |mpedancgm, Wh|Ch |S among other parameters a in a laser beam pattern generator,” Pure Appl Cyt623—-641.

. ) Greenspan, M(1979. “Piston radiator: Some extensions of the theory,” J.
function of Z,, (see Beranek, 1954; Vanderkooy and Boers, Acoust. Soc. Amb5, 608—621.

2002. Using Z;,, the time-averaged electrical power deliv- kinsler, L., Frey, A., Coppens, A., and Sanders(1882. Fundamentals of

ered to the loudspeaker is calculated as Acoustics(Wiley, New York).
5 Morse, P., and Ingard, K1968. Theoretical AcousticeMcGraw-Hill, New
P.=0.51|“R{Z;.}, (19 York).

. . . Newman, J(1984). “Approximations for the Bessel and Struve functions,”
wherel is the current fed into the loudspeaker. Finally, the wath. comput43, 551-556.

efficiency of a loudspeaker, defined as Pierce, A.(1989. Acoustics, An Introduction to Its Physical Principles and
Applications(ASA, New York).
n(ka)=P,/Pg, (19 Rayleigh, J(1896. The Theory of Sound/ol. 2 (Dover, New York, 1945

. . . . . . . Vanderkooy, J., and Boers, 2002. “High-efficiency direct-radiator loud-
which is an mportant engineering parameter in th.e f'e_ld O.f speaker systems,” convention paper 5651 presented at the 113th AES Con-
electro-acoustics, can be calculated. The approximation invention, 5-8 October 2002, Los Angeles, CA, Audio Eng. Soc.
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