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Sound Radiation from Circular Stretched Membranes
in Free Space*

J. H. STRENG

Philips Research Laboratories, 5600 JA Eindhoven. The Netherlands

Some radiation characteristics of circular stretched vibrating membranes are calculated.
The calculations include the fluid loading effects of air, which are of essential influence
on the membrane's vibrational behavior in the frequency range around ka = 1. Results
are presented to show that the sound radiation of the most prominent representative of
stretched-membrane loudspeakers, namely, the electrostatic push-pull loudspeaker,
may be predicted very accurately. The full numerical procedure is supplied in the

Appendix.
LIST OF SYMBOLS

a * = membrane radius

co = sound velocity in air

Ca = compliance

i dy = membrane-electrode distance in
electrostatic loudspeaker
--D(8) = directivity function

DI = directivity index

f = frequency

F(r) = axial driving force per unit area

k = wave number in air; = 2nwf/cg

p(r, z) = sound pressure in point (r, z)

p+(r), p-(r) = surface sound pressure at z | 0,
z10

s = segment of circle; 0 < s < a

T = membrane tension

v(r, z) = particle velocity at (r, z)

Zay 2 = specific acoustic impedance

o = normalized wave number in
stretched membrane

B = normalized wave number in air;

_ = ka

Y = fluid loading parameter

n(r) = membrane deflection

] = off-axis angle

A = wavelength in air

Po = density of air

Pm = membrane surface density

Th = series expansion coefficient

8] = circular frequency

* Presented at the 84th Convention of the Audio Engineering
Society, Paris, France, 1988 March 1-4.
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0 INTRODUCTION

Stretched-membrane loudspeakers are known for their
superior quality in sound reproduction systems. The
electrostatic push—pull loudspeaker in particular, which
is basically a stretched-membrane doublet radiator,
ranks among the best transducers in the audio field.
Because of this superiority, it is of interest to have a
fundamental analysis of the sound radiation from
stretched membranes, and especially of the unbaffied
(doublet) version. (For reasons of geometric simplicity
we only consider a circular shape and axisymmetric
variations.) As a first approach one might consider the
vibrating membrane as a circular disk, vibrating in free
air. The fundamental analysis of such a transducer was
given some 46 years ago by Bouwkamp [1], and his
analysis was used by several authors (see, for example,
[2]-14]) to study or file the sound radiation properties
of a circular vibrating disk. Although this approach
may give some qualitative insight (see, for example,
the analysis by Walker [5]), we will see in this paper
that the rigid-piston model, when applied to the
stretched-membrane problem, is basically incorrect
(quite apart from the difficulty of calculating the radiated
sound field from an unbaffied piston). As was pointed
out in a recent paper [6], this discrepancy is mostly
due to the following differences between piston and
membrane. Tl

1) Unlike the piston, the stretched membrane has no
bending stiffness. This implies that the membrane’s
reaction to the air load has an essentially local character.
In contrast, the piston will show a global reaction to
the (integrated) surface sound pressure. We will see
that these differences are most pronounced in the low-
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and midfrequency range, where the vibrational behavior
of the stretched membrane is strongly influenced by
the surface sound pressure.

2) Another important difference results from the edge
behavior of the transducer. Bouwkamp [ 1] showed that
the radial velocity of the air particles on the piston
surface will decome singular at the piston edge. This
effect will cause air turbusence and
earities, which < intuitive
it was shown in "6 :fat the wretched cdao-samaed
membrane produces zero purticie veloeny atthe odze.
Roughly speaking. the viirating pistonis fixe!y to nro-
duce a “hissing” sound at the edge. whereas the stretehed
membrane produces “only silence™ at the edge.

Due to these differences it will be clear that the anal-
ysis of the vibrational behavior of the stretched mem-
brane calls for a nonpistonlike approach. Even more.
due to the strong interaction of membrane and air it is
necessary to solve the complete coupled svstem of
membrane vibrations. air load. and sound propagation
all at once. Although this problem has received attention
in the literature (see, for example. [7]). the analysis
is usually focused on extreme situations, such as very
high or very low frequencies. In our case. however.
we deal with strong interactions in the middle frequency
range (membrane diameter comparable to in-air wave-
length). Thus the extreme-situation attack of the problem
is not satisfactory, and the full fundamental theory
must be applied. In a recent paper [6] this theory has
been worked out and molded for numerical implemen-
tation. We will see that the fundamental approach gives
very good results for the prediction of sound radiation
of circular stretched membranes in the range of 0 <
ka < 5, and this makes a numerical algorithm based
on this theory attractive for computer-aided design.
For the high-frequency range, say ka = 5, one should
use the familiar high-frequency approximation. that
is, the air load is determined by the plane-wave imped-
ance poco (see [6]). This is a well-known technique
that will not be covered in this paper.

In Sec. 1 we examine the basic configuration and
governing equations, as well as a description of the
method for calculating the solution of the coupled sys-
tem. (The numerical procedure is given in the Appendix;
the mathematical background is given in [6].) In Sec.
2 we derive expressions for the near-field and far-field
characteristics which, in turn, will be used in Sec. 3.
where we examine some results. An important aspect
of full-range (electrostatic) membrane loudspeakers,
that is, the prevention of sound-focusing effects in the
higher frequency range by means of partial drive of
the membrane, is also covered in Sec. 3.

DRV~ Wd - heniin-

undersiood  In contrase,

1 THE VIBRATING STRETCHED MEMBRANE
IN AIR

1.1 Description of Membrane Vibration and Air-
Loading Effects

The equation of motion of the vibrating edge-clamped
membrane follows directly from a balance of forces
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acting upon the membrane (Fig. 1). If the membrane
excursion along the radius 0 < r < a is denoted by
n(r), then n(r) is the solution of the following differ-
ential equation (assuming a harmonic time dependence
el“n [6]:

Vi + @pan(r) — jozon(r) + F(r)

= oanare = oadr)) = 0. r = a,

where the varoas parameters are defined as follows.
The first term 10 Eq. (1),

I Qs

mir) [M“ e n(r)] )

is the membrane-restoring force which drives the
membrane back to its equilibrium position. This force
is determined by the membrane tension T [N/m] and
the membrane curvature V3n(r). The second term in
Eq. (1) denotes the membrane's inertial force, deter-
mined by the membrane density p,, (kg/m?] and mem-
brane acceleration. The third term accounts for effects,
such as an additional viscous damping, which may be
described by means of a specific acoustic impedance
zs [N - s/m*]. The fourth term, F(r) [N/m?], denotes
the external driving force in the positive z direction
per unit area. In this paper we only consider the fol-
lowing two forms for the driving force: - -

Fi(r) = F, O0=sr=<a . )
. L3
= < )
Fy(r) = {0 , 0 rla s

s €rla <1

which means that we will either drive the entire mem-

brane [F(r)] or a circular inner section of the membrane
[Fy(r)]. The driving force will be of constant amplitude
F along the driven section. The last term on the left-
hand side of Eq. (1) denotes the pressure difference
across the membrane; p . (r) denotes the surface sound

o 2.0~

~

N

Membrane
1.0
n(r/a)
f r 3
-2.0 -1.0 0.0 1.0
r/a

Fig. 1. Geometry of circular stretched membrane. The
stretched membrane M (tension T, surface density p,) is
clamped at its circumference r = a. The membrane deflection
in the z direction is denoted by q(r). o
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pressure at =, O, whereas p _(r) = —p_(r) is the surface
sound pressure at = 0. As stated in the Introduction.
this surface pressure term must be hundled with great
care in the anals<is of viveys !
because the mnteracon ~e:
surrounding air s novy oo

»',_u‘n» TeMDranes

The sound pressure ~ov0 zoat g point o 2o o
surrounding air must 7 Courve sansty cthe Helvnoo
equation:

Vip(r,z) + kpir o2 =)

p(r, 0%) = p.ri . r<oa h

p(r,07) = p_(ry . r< oy
where

3°
Vip(r, z) = — p(r. o)
a’.-
+ J (r : ( )
—— 3 r.: £
rar PV P

Finally, we have the well-known coupling constraint

ap(r, 2) _ ap(r, 2)
0z 2=0+ d9z 2=0-
= wzpon(r), r<a (6)

' whlch states that the normal component of the air particle
velocuy equals the membrane velocity at the mem-
brane—air interface (pg [kg/m3] is the density of air).
The problem now is to solve Egs. (1), (4), and (6)
simultaneously. We see that in these three equations
the surface pressure p .(r) = —p_(r) plays an essential
role. Therefore, in order to find a solution, we have to
focus on a solution for the surface pressure.

1.2 Calculation of Surface Pressure

The line of work for the construction of a solution
is as follows. First we express the membrane excursion
m(r) in terms of the surface pressure p,(r) by means
of a suitable Green function G(r|ro). This results in
the expression

wr) = f" p+(ro)G (r|ro)ro drg (7)
. 0

which is a formal solution of Eq. (1). (Details of the
function G(r}ro) may be found in [6].) Next we express
the sound pressure p(r, z) as a formal solution of Eq.
(4), in terms of p .(r), by means of the free-field Green
function G,(r, z|ry, zo), which yields

ro drg .
Zo’o

, d
cp(r,2) = f p+(ro)[a~ G(r, z|ro, 20)]
S 0 <0

(8)
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(Again, details of Ga(r, z|r¢, zo) will be found in [6].)
By applying Eq. (6) to Eq. (8) we obtain a second
expression for y(r),

: u a d
e . I opolrayg - -
AN [ eg e

reZory, 3-)"} .. )j i;:o*,O'rO dro .
)]

Now. equating Egs. (7) and (91 we obtain an integral
equation for p.er1. In [6] it is shown that this equation
can be solved accurately be means of a power series
expansion for p .r,

N N 2
dw pyF z Tela”

, A

Y Ar) = | ’
/ el 2n+/zr(n + 3/2)

(10)

where ['(x) is the gamma function of argument x. The
introduction of Eq. (10) enables us to transform the
integral equation into an infinite set of linear equations
from which any number of coefficients 7, may be de-
termined by means of a truncation at finite N and a
least-squares procedure. The numerical procedure for
this is given in the Appendix.

2 SOUND-FIELD CHARACTERIST'CS

2.1 Sound Pressure Level (SPL) aﬁd‘ﬂrectivity
The SPL (expressed in dB re 2 X 10~5 Nlmz)‘ is

calculated straightforwardly from the sound pressure

p(r, 2) which, in turn, is given in Eq. (29) and reads

- a’mzpoF i T
n

p(r‘ Z) T n=1
) nth
X J': (*) Jo(&£>fu+%(ll)e-j"z’“ de
o \M a .
(YETEL esp
"—J\/;"T_—Bz , n>p .

where Jo(x) and J,;+%(x) denote Bessel functions of
the first kind and of order 0 and n + %, respectively'
The angular distribution (or directivity function) is
usually determined in the far field. This means that we
have to calculatc p(r, z) for large values of R =
V'r? + z2. Although it is possible to use Eq. (11) for
the calculation ofp(r 2) in the far field, it is common
practice to introduce an asymptotic approximation in
order to simplify the calculations. The main reason for

doing this is easily understood: we do know that the o

far-field waves have a sphencally dxvergmg character,
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thus they must contain a term ¢ #**/R. This term is
normally left out in the definition of the directivity
function (see [4]), because it supplies no essential in-
formation. The directivity function then only contains
angular information, so in our case (axisymmetric) the
only spatial coordinate in the directivity function is
the off-axis angie 9. Without gomng into detail on the
mathematics, i1 must be mentioned that the foliow:ng
asymptotic far-field expression can be derived.

- R

- DI
R

Rsin 9 .,

e
p(r,z) = -
oI

= Rcos 9

,
i

where the directivity function D(8) is defined as

“40’290

F
D@®) = j ka cos 8

3o

a1 ka sin 0

n+%
> Jp-y(ka sin 8) .

(13)
For 8 = 0 the limiting form of Eq. (13) is found to be

D(0)

1l

limNoD(O)

i a*w?poF

T ka

N

x 3 Tn L (4)

2 2""I(n + %)(2n + 3)

The oh-axis directivity index DI is, as usual, calculated
from the ratio of (far-field) on-axis intensity and average
(far-field) intensity, which is easily calculated to be

|D(0)]?

(15)
sin 0|D(8)]2 do

DI = 10 log;o fm [dB] .

0

2.2 Radiation Impedance

The radiation impedance is usually calculated from
the ratio of surface pressure and surface velocity, in-
tegrated over the radiating area. In the case of stretched-
membrane radiation, however, this definition will cause
problems because the membrane deflection is likely to
show nodal lines, which will cause a singularity in the
specific acoustic impedance. (In the next section we
see that this effect truly occurs.) Let us therefore ex-
amine the “averaged” specific acoustic impedance z,
which is calculated from the ratio of averaged surface
pressure (p.(r))and averaged membrane velocity jw

{n(r)):

RTINS
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r p+(ryrdr
_ {pur)y _ Jo
2, = : = - . (16)
jo(n(r)) jw[ n(r)r dr
0 .

Since in the case of rigid piston vibration the averaged
specitic acoustic impedance according to Eq. (16) is
known «see. for example, {4]). we may compare the
pistor impedance and the membrane impedance directly
from this equation (which is done in Sec. 3.2).

3 RESULTS

3.1 On-Axis SPL and Influence of Parameters

In this section we focus on the most widely used
loudspeaker characteristic, its free-field sound pressure
level (SPL) at | mon axis. In Fig. 2 we see the calculated
response of a theoretical stretched-membrane loud-
speaker with parameters T = 100 N/m, p, = 0.02 kg/
m?, @ =0.123m. z;, = O N - s/m®, and a driving force
F = | N/m°. Calculations are carried out up to ka =
5. The frequency plot in Fig. 2 shows a typical stretched-
membrane response. At the low-frequency side, say
f <50 Hzor ka < 0.1, we have an 18-dB/octave in-
crease. The membrane's vibrational behavior is mass-
controlled in this region, which resembles the free-
piston behavior [2]-{4], where the mass component
of the radiation impedance is constant in the low-fre-
quency region and the resistive component shows a w*
dependence. At a frequency f = 75 Hz we see a sharp
resonance peak, mainly determined by the membrane
tension T and the mass of the air load. (The influence:
of the membrane density py, is negligible in this region.)

Next we take a look at the high-frequency end, say, -
f> 1 kHz or ka > 2, where we see a smooth 6-dB/
octave increase. In this region one can‘apply plane-
wave theory [6], that is, the air load becomes purely
resistive with a specific acoustic resistance pgcg, and
the radiated power is more and more focused on axis.
Neither the very low nor the very high frequency range

-

so.
70.0 V4
,
1
s0. |
-~
)
2
&
"
$0.
)
.o |
30.0

»d / 1

Fig. 2. On-axis SPL of stretched-membrane loudspeaker.
Response at 1 m on axis with parameters T = 100 N/m,
Pm =0.02kg/m?, a=0.125m,z, = ON - s/m®, and F = 1
N/m?. Calculations were carried out upto ka = 5.

'uquency?:g‘) kS :, w
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is of essential importance for our loudspeaker (insuf-
ficient sound radiation at the lower frequencies. un-
desired focusing effect at high frequencies). Instead.
we have to examine the situat:on in the region hetween
the basic resonance and. sav. ¢ = 2 rthat is, hetween
70Hz and | kHz spproximaieiv . where we seg a numoer
of membrane resonance effects. It may be interesung
to see what happens at the membrane surface in the
frequency range closely around one of these resonances.
Let us therefore examine the situation of Fig. 2 at the
following frequencies: /= 210, 245, 255, and 300 Hz.
In Fig. 3 the calculated surface pressure and membrane
deflection are shown for these frequencies. At 210 Hz
[Fig. 3(a)] we see that the surface pressure and the
membrane deflection show a nodal line in their ampli-

SOUND RADIATION IN STRETCHED-MEMBRANE LOUDSPEAKERS

tude, and that they are either in phase or in opposite
phase with the driving force, indicating that the vibration
1 almost purely mass-controlled. As frequency in-
creases to 245 Hz [Fig. 3(b)], the nodal lines move
inward radially: the nodal pressure line moves inward
more “rapidiy " than the nodal deflection line and even-
tually “passes™ the nodal deflection line. The whole
system behaves like two (balance-1 coupled mass-spring
systems. So :f frequency increases. we see that a typical
coupled mass-spring characteristic appears: an anti-
resonance frequency with the corresponding dip in the
SPL characteristic, followed by a sharp resonance fre-
quency. At 235 Hz [Fig. 3(c)] we have passed the res-
onance frequency, which is shown by the 180° phase
jump in both pressure and defiection. It appears that

”W r 1900 0.034 r 180.0
-— L -~
a F 90.0 R —~ 20.0 )
€ ° E 0.024 °
> J E °
Z 1.0 0. ~ - cosocencqd 0.0
- 3 -~ .
o~ - & -
- 2 e 0.014 g
s F-#0.0 o H-08.0 §
0.0 ~ v b~180.0 0.00 v ~180.0
©.0 0.2 0.4 / o8 0.8 1.0 0.0 0.2 0.4 s o.8 ve
r/a r/a
(a) 4
10.0+ r 180.0 0.184 ' - 180.0
[}
~
; $0.0 R — : - s0 o ':
o £ o.104 o
E © € ] ®
> ) < ©
£ S.0pmwew hoddiate d roo ~ — .-.------.>94° e
L = ' . I [] . e
L M g & 0.084 ] °
.8 ' F-96.0 g 3 L-s0.0 -
]
[ ]
U
0.0 v v - 180.0 0.004 - 180,
6.0 o2 0.4 0.0 0.8 1.0 °.0 0.2 K °.e 0.8 To'te e
r/a b) t/o
10.04 r 180.0 0.2 r 180.0
-— . -~ L -~
~ t0.0 7 ~ se0 T
o E o
3 ° E 3
S - ) < ©
z $.04 cemoeeoceeoems 0.0 —_ 0o osyessa - 0.0 ~
- s [ -~ [} .
= - -~ ’ -
£ ' 2 £ 2
4 (] L-00.0 & - ' L-90.0 G
]
0.0 g , 180.0 0.0 v - -y 180 0
0.0 0.2 0.4 0.0 0.8 1.0 9.0 0.2 0.4 0.6 0.8 1.0
r/o : /o
: (c)
1.04 r 100.0 0.0194 r 180.0
- s0.0 T - Fs0o0 T
N o E 0.0104 o
3 . £ °©
> ° & o
0.54 aak oo — b 0.0 ™
bl [ ~ [
-~ - ) -
s ° & 0.0084 °
a -00.0 a - F-90.0 o
0.0+ 180.0 0.000 -180.0
- 0.0 0.2 0.4 [N 0.8 1.0 .0
t/a

: -Fig; 3.‘ Calculated surface pressure and mcmb‘rane deflection. Solid lines—modulus; dashed linés——phase. (a) 210 Hz. (b)
245 Hz. (c) 255 Hz. (d) 300 Hz. Memb_ranerparametcrs as in Fig. 2.
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resonance effects occur very close to the point where
the nodal pressure line “passes” the nodal deflection
line. At 300 Hz (Fig. 3(d}] we have a situation that is
more or less symmetric with the one at 210 Hz and as
frequency increases. a second nodal deflection line will
show up “followed™ by a nodal pressure line, which
will eventua.ly “cause™ the next resonance. and <o on.
Of course. the noda. tines decoame @ pronouncad at
higher frequencies due 1o the Dact that the pir load ~e-
comes more and more resistive, wihich eveniudliy
heavily damps the vibration.

Another point ot interest is ihe induence of param-
eters. Of course. the effects may he studied qualitatively
from a simpler model, but the exact quantitative effects
can only be determined from the coupled model. Let
us first vary the membrane tension 7. Fig. 4 shows the
effect of a variation of tension by 50%. starting at
T = 100 N/m. Comparing the curves in Figs. 4 and 2,
we see that the most important effect due to tension
variation is a shift of the total SPL curve along the 6-
dB/octave line, so the membrane tension merely atfects
the position of resonance frequencies and does not affect
the average SPL.

Next we vary the membrane density. that is, we in-
crease the density by a factor of 10 (Fig. 5). The in-

soo I
1
ll Il
1.0 —
p’
[TX | |
a
A
-t
a
0
so.
= { :
1
.0, v :
J 4
30.0 DG
210 1d 10 -
frequency (Hz)
(a)
80.0 i
Pl
.01 Z
1
60.0
g
A4
\
g ~
7]
$0.0
I
0.
s0.0 /
»1d / 10 10 o
frequency (Kz)

(b)

Fig. 4. Influence of tension variation on on-axis SPL. The
on-axis resgonse at 1 m is calculated for (a) T = 50 N/m;
(b) T = 150 N/m.
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fluence of an increasing density is first noticed at the
high-frequency side, where the air load mass is neg-
ligible and the inertance effect (that is, a 1/0? or —12-
dB/octave dependence) causes a high-frequency rolloff
of —6 dB/octave. The low-frequency side is not affected
until the membrane weight becomes of the same order
of magnitude as the air load mass. which is some 0.125
kg m-inour case. In Fig. 5 it is clear that the increased
membrane aeight introduces the expected high-fre-
quency oot and lower resonance frequencies.

Finally we look at the influence of z,. For that purpose
we examine the case where =, is purely resistive (which
is the case when we use additional acoustic damping),
and after that we introduce a negative compliance, which
occurs in a voltage-driven electrostatic loudspeaker [8].
In Fig. 6 we see the influence of damping. We see that
the sharp resonances diminish as damping increases,
and a damping of some 40 rayl is needed to realize a
critical damping of the lowest resonance. As an aside
it must be mentioned that since the analysis is exact in
this case. it may be possible to reverse the procedure,
that is. to estimate acoustic impedances z; by means
of “tuning™ the calculated response to the measured
response.

The influence of a negative compliance c,, which
introduces an impedance z; = ~l/jwc,, is of course
most pronounced in the region where 1/c, > w?pg, as
is easily seen after substitution of z into Eq. (1). There
is an upper bound on the value of 1/c,, which follows ‘
from Eq. (1) after substitution of @ = 0 and F(r) = 0
[and consequently p .(r) = p — (r) = 0], which yields

1 1
TVin(r) + S+ =) =0,

r s a,
a g

n(a) ‘=;;o';*j(_>|"7;)'
The solution of Eq. (17) is T

0 alVTc, # jou

nir) = {CJo(jo,,r/a) . alVTe, = jo, (18
0.0 i
i
|
1
0.0 :
|
—- 0.0
2
&
@ 300 ]
1
40.0
f
30 - ‘
=0 / i frequency (:g) R 3

Fig. 5. Influence of membrane density variation on 'on‘-a‘xis
SPL.ZThe on-axis response at 1 m is calculated for p,, = 0.2
kg/m?. .
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where jg, is the nth zero of the Bessel function J, and
C is an arbitrary constant. From the solution we see
that i mcredsmu the value of | ¢, will vield an 'nstabxlm
at zero frequency when | -, = T3 o° = AT
So for stable operunion we havz o satisiy 3o, < S TNAT
a®. If we combine this restriction with the DL IOUN Y
found restriction on | o, for the region of mnduence,
then we see that we have 1o choose

I 5.7837
< T 19,

Substitution of the parameters from Fig. 2 vields
that the region of influence is restricted to f < 216 Hz
and the restriction for stable operation is li¢c, <
37012 N/m>. In Fig. 7 we see the result obtained with
the parameters from Fig. 2 plus an additional negative
compliance. It will be clear that the negative compliance
merely affects the basic resonance, and thus variation
of the negative compliance is an elegant method to
“tune” the resonance frequency without disturbing the
rest of the on-axis SPL characteristic.

3.2 Radiation Impedance

In Sec. 3.1 we have seen that for very high and very
low frequencies the membrane air load resembles the

n‘.~ T
"
0.0 //
= J
£ . rs
S8 f
g ]
0.0 N, I
40.0:
1
4 1
]
30. i 1:
ad / ] 10 '
frequency (M2)
(a)
s
2
70. /V
4
seo
g
= y 4
& 7
v
© "30.0
0.0
T 1 10 W
frequency (Hz)
(b)

Fig. 6. Influence of damping on on-axis SPL. The on-axis

“response at 1 m |s calculated for (a) z; = 20 N - s/m%;

(b) z, = 40 N s/m’.
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free-piston air load. For the frequency range in between,
however. there is an essential difference. In Fig. 8 we
see the averaged specific acoustic impedance (or nor-
malized mechanical impedance) of the freely vibrating
piston i ar {4}, Here the transition from low frequencies
ka <t} o higher frequencies (ka > 2.0) is very
smooth Y ae aere to use the impedance characteristic
of Fig. s as un approximation for the membrane air
i0ad. we woudd force the system to satisfy a prescribed
interaction oi membrane and air. Without going into
detail on the mathematics. it must be mentioned that
a uniform air load according to the free-piston imped-
ance forces the membrane resonances (not the basic
resonance) to increase by about an octave from the
“real” value. The reason for this effect is of course the
fact that if different parts of the membrane vibrate in
opposite phase. then there will be a considerable amount
of air that is "pumped” from one part to another and
vice versa, without effectively contributing to the sound
radiation. This air volume is thus responsible for a
mass load with a rather local character, which is difficult
to express in terms of a uniform load, especially close
to the resonance frequencies where the average volume
displacement may be very small, whereas there may
still be a considerable local displacement. In Fig. 9
we see the “averaged” membrane-specific acoustic

70.0 ,I
i

0.
~ i
=
o
&

50.0 ¥

J
400 '
v
ra
3o.0
210 W 10 W
frequency (Hz)
(a)
000
"
00 V4
[ yd

—~ €00 T
o
A
&
(7]

300 |

——
40 0
30 B
1 10* o
»d d frequency (Hz) LT Tl
M) . # C e

Fig. 7. Influence of ncgauvc ‘compliance on on-axis SPL. )
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impedance (with parameters according to Fig. 2), cal-

culated from Eq. (16). The extra mass load can be seen
from the sharp peaks in the calculated impedance. The
peaks are located near the membrane resonance fre-
quencies, so if this result is compared with the data
from Fig. 8. then it is easily understood that the mass
component :r. these peaks will cause lower resonance
frequencies. Since the positions of ihe resonance
frequencics are strongly affected by the +arous pa-
rameters, it is impossidie (0 determine an a.-parpose
membrane radiation impedance in the regicn around
ka = 1.

3.3 Directivity Index and Polar Patterns

The directivity index and polar patterns are calculated
straightforwardly from Egs. (13)—(15). In Fig. 10 we
see the polar patterns at ka = . 3. and 5 with
parameters according to Fig. 2 At low frequencies we
have the usual doublet pattern [Fig. 10(a)] with a
directivity index of 4.8 dB, whereas at higher fre-
quencies the radiation becomes more and more di-
rective. If we compare the results of Fig. 10 with the
data of the freely vibrating piston [4], it turns out
that membrane radiation is more directive than free-
piston radiation. (Although very much alike. the di-
rectivity index for this membrane is about | dB larger
atka=35.)
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3.4 Some Aspects of the Design of a Circular
Wide-Range Loudspeaker

In this section we examine some design aspects of
a (theoretical) wide-range membrane loudspeaker, based
on the parameters we have used previously (Fig. 2).
We assume that the membrane diameter, tension, and
weight are already chosen such that the desired basic
resonance frequency and high-frequency rolloff are
obtamned. We will assume a uniform driving force
F =1 N m", 50 the basic on-axis SPL characteristic is
givenin Fig. 2. First of all we have to supply appropriate
damping to tackle the resonance effects. From Fig. 6
we see that we should use a damping of some 40 rayl.
The next problem we encounter is the focusing effect
at higher frequencies (see Sec. 3.3). Fig. 11 shows the
calculated SPL at | m and 45° off axis. We see that the
comb effect is already very pronounced at 2 kHz, so
additional measures have to be taken. We will follow
the “traditional™ approach, which is that we will use a
partial drive of the membrane at higher frequencies in
order to reduce the radiating area and, in consequence,
to reduce the focusing effect. To this end we introduce
a parameter s [see Eq. (3)], which defines the circular
area 0 < r/a < s where the driving force is active, The
calculated on-axis SPL at I m is given in Fig. 12(a),
and the 45° off-axis SPL at 1 m in Fig. 12(b) for various

1
{ i 1l 1 JERE j A e W R
1¢ : .
1 Tt
T 4
".
s
<0
|
W
v
! 10’ W .14 1
(a)
100.0
s, an 4
: | R
s, m ‘
L4
~00
-100.
o W' W
ko
Fig. 9. Calculated (norm pﬁnﬁc acoustxc |mpedancc
of vibrating membrane. impedance is calculated

for a membrane with parﬁneters accordmg to Fig. 2. (a)
Modulus. (b) Phase. b .

J. Audio Eng. Soc., Vol. 37, No. 3, 1989 March




PAPERS

values of 5. The effect is, as expected, that a decrease
of s gives a decreased SPL and a reduced focusing
effect [indicated by a shift o1 the “comb dip™ toward
higher frequencies i Fig 125 MWe now <ee thur o
flat on-axis response may be approvimated by Usweton-
ing” to smaller radiating area~ ar higher frequenc.es.
and that the focusing effect wiil automatically decreuse
The complete design wiil o course consist of as muam
“segments” as possible to produce an optimal respense.
It must be emphasized that the response of the ioud-
speaker is less “smooth™ as s decreases (see Fig. 12).
This will strongly influence the choice of the switching
frequencies, and since knowledge of the exact SPLs is
important in this case, it will be clear that the exact
theoretical analysis is very useful.

3.5 Electrostatic Push—Pull Loudspeakers

Up to this point we have only considered theoretical
transducers, so we will be interested in the results for
a “real” case. Therefore we examine a circular elec-
trostatic push—pull loudspeaker with a membrane di-
ameter of 250 mm (Fig. 13). The construction of the
loudspeaker is quite traditional (see [8]): the thin
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SOUND RADIATION IN STRETCHED-MEMBRANE LOUDSPEAKERS

stretched membrane M (measured tension T = 73 N/
m, surface density p,, = 0.02 kg/m?)is clamped between
two stationary perforated electrodes E at a distance
J .= 2.3 mm and charged by a dc¢ source Vo =:1500
\". The ac audio signal sources V, = 300V2 V drive
the ziectrodes in opposite phase. The electrostatic
driving force £, on the membrane may be calculated
from S’

R .
Fe=2¢ “¢ = 213N (20)

(e = 8.85 x 107" is the dielectric constant of air).
The negative compliance that occurs in this setup may
be calculated from [8]

1 V3

— = 2g -; = 3275 N/m* . (¥3))
Ca dj

The impedance of the perforated electrodes depends
on the geometry of the holes and on frequency. Formulas
for the calculation of screen impedances may be found
in [4]. Finally we have to take into account the influence

2

ko=S5.0 DI 11.7 dB

Fig. le. Far-field polar patterns of vibrating membrane. The polar patterns are calculated for a membrane with parameters A
as in Fig. 2. Radial grid spacing 10 d/B, tangential grid spacing 10°. (a) ka = 0.1. (bYka = 1. (c)ka = 3. (d) ka = §. _
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of the slit impedance between the membrane and the
electrodes. For this, formulas are given in [9]. It must
be mentioned. however, that the influence of the slit
as well as that of the perforations (provided the holes
are large enough} are hardly noticed in this case. In
Fig. 14 we see a comparison of the caiculated and the
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Fig. 11. Calculated SPL at | m. 45° off axis. The SPL response
is calculated for a membranc with parameters as in Fig. 2.
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for reduced radiating area. The driving force is nonzero only
for 0 < r < s; other paramecters as in Fig. 2. (a) On-axis
response. (b) 45° off-axis response.
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20

Fig. 13. Experimental setup of circular electrostatic loud-
speaker. The membrane M is clamped along its circumference
between two stationary clectrodes E and charged by a dc
source V. The clectrostatic driving force is generated by
means of two ac sources V,, which drive the electrodes in
oppusite phase.
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Fig. 14. Calculated and measured SPL of electrostatic loud-
speaker. Response of a 250-mm-diameter electrostatic
push-pull loudspeaker at 1 m. Solid lines—calculated; dashed
lines—measured. Parameters are given in text. (a) On-axis
response. (b) 45° off-axis response. | . ’
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measured SPL at | m for this loudspeaker. Fig. 14(a)
gives the on-axis response whereas Fig. 14(b) shows
the 45° off-axis respense. As can be seen. the agreement
is quite good. whih v a sleur
retical model.

ulrdation oAt che cma sl
CAUIGAtion NDine o,

4 CONCLUSIONS

In this paper we discussed the unabysis of sound ra-
diation from circular stretched membranes in air 1t
has been shown that the interaction of air and membrane
is very important in the region around ke = | and that
the rigid piston model is not capable of describing the
vibrational behavior of the membrane. The proposed
numerical procedure. derived from the exact theoretical
model, may be used to predict the sound radiation from
circular vibrating membranes, in this case electrostatic
push-pull loudspeakers. The procedure may therefore
be considered to be a useful tool in the analysis and
computer-aided design of circular stretched-membrane
transducers.
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- APPENDIX
NUMERICAL EVALUATION OF THE VIBRATING
 MEMBRANE

~The surface pressure on a vibrating stretched mem-
brane, the radiated sound field, and the membrane de-
flection may be calculated from the following procedure.

- The mathematical background is given in [6].
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SOUND RADIATION IN STRETCHED-MEMBRANE LOUDSPEAKERS

A.1 Input of External Parameters

On entry. the numerical values of the following pa-
rametersare given: air density py (kg m'}, sound velocity
<o [m <l membrane radius a [m], density p, [kg/mzl,
and ension TN miL excitation frequency w [rad/s],
and ampiade f the time-harmone driving force F
(N m-!. There man he other external forces acting upon
the membrane. such as additiona! acoustic damping.
If these additiong! forces F,(reIN me) may be written
as Fu(r1y = —jwniriz,, then the vaiue of the (complex)
impedance =, must also be given.

A.2 Calculate Internal Parameters

From the input parameters we calculate three internal
parameters . 3. und v

\ ) 14
WPy — jwIg
= e ) I = ka,
a a ( T ) B

X

('Zapo) i
= aw| =7
Y T

where o denotes the normalized membrane wave num-
ber, B the normalized wave number in air, and vy is a
fluid-loading parameter. R

(22)

A.3 Calculate Series Expansion Coefficients
The coefficients 1,, n = 1, . - -+ N, are calculated
from a set of linear equations, » PR

N M M C
2 T,,[Z ‘yn(rm)\l’i(rm):l = E ‘I’i(rm)(b(rm) ’

n=i m=1| m=1

X 3

(23)

The functions V¥, (r) are defined as

K 2 . .
) = 2y° Jo(jorria)d wenjor)

S NiGa)e? — et
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J1 ! YN
SONTONE
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where Jo(x) and J,+3(x) are Bessel functions of the
first kind, H(}),4(x) is a Bessel function of the third
kind (or Hankel function), and jo, denotes the kth pos-
itive zero of the Bessel function Jo(x). The values of
K, M, and N are discussed below.

The function ®(r) is calculated from
O(r) = ‘\: e :

im: Jiniiaear =

s
Eq. 25 must be used 1n the case of a uniform driving
force. The case of a nonunitorm. steplike driving force
must be evaluated by means of a different expression
for ®(r). Eq. (26) must be used when the membrane
is driven at a section 0 < r < 5, 0 < 5 < q, that is,
when an inner part of the membrane is driven. When
the outer part is driven. that is, the sections < r < a,
0 < s < a, a combination of Eqs. (25) and (26) must
be used.

PAPERS

where I'(x) is the gamma function of argument x. The
membrane excursion q(r) may be calculated from

2F N
nr = "T [— o(r) + D, T,

n=1

(28)

n+\2

522 TooriaW e uCiok)
.“ N N A .

T JiGea” = ek
where the function ®(r) is defined in Eq. (25) or (26),
depending on the situation, as explained in Appendix
A3

A.5 Calculate the Sound Pressure Field

The sound pressure p(r. z) at any point in space may
be calculated from

2 N n+t
& 2sta) Jol jorria)d \oxs! p(r)—qi"“@fzf t<l)
o) = S (s (21)- o({ou‘ c;) 1(Jgks,a) . (26) . T & \a
k=1 TG joa” = Jox)
The values of K, M, and N define the points where X JO<E>J,,+_»&(}L) et gy, 2>0
infinite summations are truncated. The choice is not a
trivial and depends on the situation in question. In this (29)
paper the results were obtained from K = 320, M =
30; the value of N varies from N = 5 (ka = 0.1) to where
N = 10 (ka = 2).
A.4 Calculate Surface Pressure and Membrane - - { Vp? - p?, p=g
Excursion : -jVu? = g2, p>8
Once the coefficients 7,, n = 1, . . ., N, are cal- _
culated, the surface pressure p .(r) on the membrane p(r.2) = —p(r, = 2) z <‘ 0
is given by p(r,0) =0, r>a
'(r) _ a’poF § malal = P oy PO TR r<a
Al T 2 2""[(n + %) ) p(r,07) = —p(r,0%), r<a
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