Calculation of the surface pressure on a vibrating circular
stretched membrane in free space
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In this article, a method is presented for the calculation of the surface pressure on an edge-
clamped vibrating circular stretched membrane in an infinitely extended homogeneous
isotropic elastic medium. The coupled differential equations describing the (linear)
rotationally symmetric membrane deflection and the (linear) wave propagation in the medium
are solved simultaneously by the introduction of a series expansion of the surface pressure. The
coefficients in this expansion may be calculated numerically by means of collocation, which is

- demonstrated for the case of an edge-clamped vibrating circular membrane in air.

PACS numbers: 43.20.Tb, 43.40.Dx

INTRODUCTION

This article is concerned with the analysis of the fluid-
loading effects on the vibrational behavior of a circular
(loudspeakerlike) membrane in air (although the formal
analysis allows an arbitrary medium), excited by a homo-
geneous force distribution. The fluid loading is usually char-
acterized by a parameter € = Ap,/(27p), essentially the ra-
tio of fluid mass density p, and membrane surface mass
density p times fluid wavelength A. In many cases (under-
water acoustics, in-air plate vibrations), this parameter is
small and the analysis may focus on an asymptotic solution
in the limit e€1 (“light fluid loading”) whereas, in other
cases, an asymptotic solution in the limit €> 1 (“heavy fluid
loading”) may be of interest (see, for example, Refs. 1,2).In
this article, the range of € may very well include unity, which
may be referred to as “significant fluid loading.” The “mem-
brane-in-air” problem has received attention in the literature
(see, for example, Ref. 3), but usually the analysis is restrict-

ed to baffled membranes (Huygens-Rayleigh approach) .

and the farfield region (Fraunhofer zone). The nearfield
analysis often has a frequency restriction (very low or very
high frequencies).
In this article, we will focus on the unbaffled membrane
*in free space and give a numerical method for the analysis of
the nearfield behavior. In theory, the method is applicable to
an arbitrary frequency range (except for the in vacuo eigen-
frequencies of the membrane in the case of vanishing materi-
al damping). The line of work will be as follows: In Sec. I we
will examine the basic (mathematical) formulation of the

problem, whereas in Sec. II, a power series solution for the -

surface pressure on the membrane is calculated. In Sec. III
we will examine some results obtained for a loudspeakerlike
membrane vibrating in air. It must be emphasized that the
mathematical analysis in Sec. II is the main subject of this
article (more detailed results are reserved for future arti-
cles). In Sec. IT A, we start the analysis by the introduction
of a series expansion (derived by Bouwkamp®) for the sur-
face pressure. Next, by means of a “traditional” Green’s
function technique, we will derive two expressions for the
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particle movement at the interface membrane medium. One
expression results from the Helmholtz equation in free space
(comparable to the approach in “baffled-membrane” the-
ory, where the use of the Lamb or Sommerfeld integral leads
to a similar “King-like” expression®) and the other from the
membrane equation of motion, corresponding to an eigen-
function expansion (Secs. II B and C, respectively). It will
be shown that a high-frequency approximation can easily be
derived (which is a well-known fact,® but derived in a differ-
ent way here). The next step (Sec. II D) is to equate the two
expressions, which usually leads to an integral equation (or
an integro-differential equation) for the surface pressure,
but in our tase it leads to an infinite set of equations for the
power series coefficients. These coefficients may then be cal-

culated by means of a collocation technique: In Sec. II Fthe

numerical evaluation of the power series coefficients is ela-
borated. In the results (Sec. III), we will restrict our atten-
tion to the low frequency range, as we calculate some results
for the case of a loudspeakerlike thin membrane vibrating in
air for frequencies less than the second lowest in vacuo eigen-
frequency of the membrane.

We will only consider the case of rotationally symmetric

variations.

I. FORMULATION OF THE PROBLEM
A. The governing equations

We consider a circular stretched membrane of radius a
(m), surface mass density p(kg/m?), tension T(N/m), and
negligible thickness and bending stiffness, situated in the x-y
plane with its center at the origin. The membrane is clamiped
along its circumference r = a and embedded in an infinitely
extended, homogeneous, nonviscous, isotropic, and elastic
medium of density p, (kg/m*) and sound velocity ¢, (m/s).
We assume that a homogeneous force distribution’ F (N/

m?) is acting upon the membrane in positive z direction.

Assuming a harmonic time dependence e and applying a

small-signal approach, the governing equations for the -
membrane deflection 7(r) in positive z direction and the -




sound pressure p(r,z) in the surrounding medium can be
written as

1) +a’pn(r) — [p.(r) —p_(N] +F=0, r<a,
n(a) =0, (nH
Vip(rz) + k’p(rz) =0,
where

D4+(r) =p(r,0™M),

p-(r)=p(r07),

vi{}= (5;2- +== )

32

MO (G5 50

k%= (a/cy)>
Due to the geometrical symmetry, we may write

p(rz) = —p(r,—2),

(2)
p(r0) =0, rxa.

Next, we have the usual coupling constraint

ap(rz) _ 9p(r2)

az zm 0" 0z
which states that the normal component of the particle ve-
locity in the medium equals the membrane velocity at the
interface medium-membrane. Finally, from (2) and (3) at
r = a, we may derive that

ap(r,0)
ar

=w’pn(r), r<a, (3)

z=0"

= o’
. 4)
dp(az2) =o0.
oz =0
Thus, at the edge = q, there is neither outward-radial nor
axial particle movement. For reasons of continuity, we con-
. clude that -

o) o =0. - ' (5)
T, .ar i trta
Here, ‘we have an essential difference from the free-piston
model. Bouwkamp* has already proved that the radial parti-
cle velocity in a free-piston model will become singular at
ria.

B. The basic mathematical formulation

For a mathematical analysis it is convenient to intro-

duce normalized coordinates , and z, , normalized pressure
q(r,), and membrane deflection w(r, ) according to
w(r,) =n(r.a)(T/a*F),
q(r,,) =p(r,az2,a)(T /a’w’p,F), )
=r/a,
z, =2z/a.

The subscript # will be omitted in the remaining text. Substi-
tution of the normalized variables in Eqs. (1)—(5) leads to

the following set of equations:
Viw(r) + a®w(r) =Yq,.(r) — 1, <],

q+(") =q(’10+)’
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w(l) =0,
Via(rz) + B(rz) =

dq(rz)
dz

€))

=w(r), <1,
z=0%
dg.(n | g
ar rtt

where a@ = aw(p/T)'/? is the normalized in vacuo wave-
number in the membrane, f = ka is the normalized wave-
number in the medium, and ¥ = aw(2ap,/T)'/? is the nor-
malized fluid-loading parameter.

We see that the problem is essentially “controlled” by
three parameters: @, B, and y, which are defined in (7), apart
from the scaling factors in (6). These parameters may be
converted to another set of three parameters; for example,
onemay usea, M = S8 /a (the “Mach number”) and € = ¥*/
(20°B) = Apy/(27p) (the “fluid-loading parameter,”
which is used by Leppington?). Usually the calculations are
carried out for (very) small or (very) large values of €. For a
loudspeakerlike membrane in air, however, the value of €
may very well be in a range including unity, and it is this case
that we are interested in. '

Il. CONSTRUCTION OF A POWER SERIES SOLUTION I ‘
A. Introduction of oblate spheroidal coordinates

In order to find a solution ¢(7,z) to the Helmholtz equa-
tion in (7), one usually introduces a suitable transformation
of coordinates such that the equation is separable in the new
coordinates and the geometry of ‘the problem may be de-
scribed in coordinate planes. Bouwkamp* showed that in the
case in question we should introduce oblate spheroidal co-
ordinates according to

z=§y,
r=(1 _52)!/2(1 +xZ)llz’ o (8) |
156> -1, y>O0. Cor

The area r<1, z=0% now oorr&sponds to y= 0+
0*<£<1. It can be shown* that substitution of (8) into the
Helmholtz equation leads to a separable equat:on, and thus
the solution g(£,y) may be written as

9 =Y dEOX (. (9
Next, we introduce the power series
5@ = 3 cut” (10)
n=0

which may be shown to converge.* As we are merely inter-
ested in an odd solution with respect to £, we set ¢, = Oforn
even. The corresponding function ¢, () now reads

2.(6) =S dE(E)X,(0%), 0+<é<],
I .
or . (11)
$ 4 (1—Py1n, S

n=0

Finally, we use dg_ (r)/dr|,,, =0, which leads to ao =0 :
and ¢, (1) =0, and arrive at R

q+(’)= l’<l.
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-A)"+12 Kl (12)

3 6,1

LR

q9.(r) =

B. Expression for wi(r) resulting from the wave equation

An expression for w(r). the normalized membrane de-
flection, is obtained using the free-space Green's function
8(rpz|ro.@pz,) of the Helmholtz equation in (7). The nor-
malized pressure ¢(,z) in terms of the source distribution
¢, (r) and the free-space Green's function reads’

2 #
q(rz) =f f 2. (ry)
0 (]

sl 4,
< . -
where
g(rwlrwo,zo)
_ (41’) z 6, cos[n(@ — @,)1]
n=0
' XJ; (%- w (ro)J, (ur)e ~ =2 gy, (13)
, 1, n=0,
b= 2, n#0,
o= (ﬁZ_“Z)l/z’ B>#x
_j(”z__ﬁz)llz, B<l‘-

From (13) it is clear that the @ integration may be carried
out, leaving only the n = 0 term. The result (14) is the “un-
baffled” version of the Lamb or Sommerfeld integral:

1 o
q(r.z) =J; q+(ro)f Jo(ur)Jo(ury)

Xe *udur,dr, z>0. _ (14)

:'Integral (14) reduces, not surprisingly, to a double Hankel
transform for z10. Next, we use the coupling constraint from

N,
E'ng’.ﬁ o -_-.w(r),, r<l1, (15)
. and arrive at
" 1
w(r) = -J'f Jo(ur)ou dﬂfo .(r,)
0
XJo(pre)rodr,, r<1. (16)

Finally, we substitute the power series (12) into (16)
and use the identity®

i
f r(1 —2)*+ V2] (sr)dr
0

3\/ 1)+ 2
=+ 'ﬂr(n + ?)(T) o3 (x), (17
which yields
w(r)= —j E a 2"“’21‘(n+ )I (rB), <1,
Cphees " (18)

. «© l n+1/2
LB = f (;) oUWy 32 (Ve
_ - Jo
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Substitution of a large value for 8 into (18) yields a high-
frequency - approximation. For 8> 1, the integral I, (7,8)
may be approximated by’:

L 1 n+172
ﬁf (—) Jo(ur)J,
0 \u

=431 -

w432 ()dp

PY"H/T(n+3), 1>r>0.
(19)

Using this result in (18), we get

W)= —j8 3 a,(1—rF)" 1=

n =1

~jPg.(r), B»1.

(20)

Substitution of the scaling factors (6) and 8 = ka into (20)
yields the specific acoustic impedance z,:

2, =p. (r)/ jpocown(r)]1 =1, kapl, 21

which is a result already reported by Morse and Ingard,® but
derived in a slightly different way here.

C. Expression for w{r) resulting from the membrane
equation

An expression for w(r) starting at the membrane equa-
tion (22) is obtained in the same way as in the previous
section, using a suitable Green’s function, which results in an
eigenfunction expansion. We have the membrane equation

Viw(r) + @w(r) =yq.(r) =1, K1, _
w(l) =0, ) o (22)
and its solution®

] .
w(r) =J [+ (ro) — 11G(r|ro)ro dre, <1,
0 o

where

i Uo(jom’)-’o(jm’o) _
m=t Sy (om ) (a? —fm)
and ji,,, are the zeros of Jy(r).

Using again the power series expansion (12) and the

integral (16), the expression for w(r) in (23) may be calcu-
lated stranghtforwardly

Griry) = @

w(r) = —®(ra) + 3 a,2+17
n=1
Xr(n-}-i)‘l’h(fya,}'); ’(l’
where :
21275 Clom "W + 372 Com)
¥, (ray) = ; : » (24
¥ mm I\ Com V(@ = o Va3 .
. L& WoCjom?)
d(ra) =
mZI Jl(jOm )jOm (a2 —jzm)
where we have used’
Ji1Uom
f JO(.’Om’O)’O dry = 1(Jom) .
JOm

The function ®(r,a) in the nght-hand side of ( 24), wlnch |
corresponds to the forced in vacuo vibration, may be wntt;q

J.H. Streng: Pressure on vibrating membrane ~ 681




as [1 —Jo(ar)/Jy(a))/a?, as is easily checked by substitu-
tion into (22). Clearly, the eigenfunction expansion method
fails for the in vacuo eigenfrequencies where a = j,,,. This
problem is discussed by Leppington? and we will not deal
with it here [for a loudspeakerlike membrane, the resonant
modes are usually damped:; this (viscous) damping will en-
ter the membrane equation as a nonzero imaginary part of
al. '

D. Caiculation of the power series coefficients

If we equate the right-hand sides of (18) and (24), we
obtain the following expression:

) i 'a.."H/zr(n + —;—) V1. (rB) + ¥, (ra,y) ]

=®(ra), r<1L (26)

Any number of coefficients a,, say. N, may be calculated
from (26) by means of collocation: Substitution of N' differ-
ent values of 7 into (26) will give a set of N linear equations
for the coefficients a”, n = (1...N). We see that a fast conver-
gence of the functions ¥, (r,a,¥) and ®(r,a) is ensured by
the presence of a factor j3,, in the denominators, provided
that @ #jy,. In Sec. II F we will examine the behavior of the
function I, (r8).

E. Calculation of the nearfield

For a high-frequency calculation, we may use the ap-
proximation (20) and the membrane equation of motion

.(22) to calculate the membrane deflection and the surface

pressure. The solution is easily found to be .
w(r) = — [1 = Jo(or)/Io(0) /P, @n

where 0 2 = (a® — j)¥*/B. .
Once the surface pressure is calculated from (26), we

"-may calculate the pressure throughout the medium from

{14) and the property of symmetry q(rz) = —g(r, —z).

-'We notice that we do not encounter any numerical problems

due to the behavior of the term e =/ in (14). A field quanti-
ty that may be of special interest in the analysis of the fluid-
loading effects is the time-averaged power flow or (vector)
intensity I(7,z). The intensity is calculated from half the real
part of the product of pressure and complex conjugate of the
particle velocity; the particle velocity may, as usual, be cal-
culated from the gradient of the pressure. Using normalized
variables (6), the intensity may be written as ,
dq(rz) dq(rz)
ard, ' oza, )] > (28)

where C'is a positive constant, &,, 4, denote unit vectorsin r,
z directions, respectively, and the horizontal bar denotes
complex conjugation. The pressure gradient in (28) may be
calculated from (14) without numerical problems.

I(rz)=C Re[ —jq(r,z)(

F. Numerical evaluation

The numerical evaluation of Eq. (26) yields no prob-
lems except the integral in I, which has a strongly oscillating
integrand, which may well lead to severe numerical difficul-

~ ties. In order to avoid this problem, we rewrite the integral
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1,(rB) = (VB La (r8) —j(1/B)"~ L, (1),
where ' '

T1yr+2 21/2

(—;—) (1 =25 Jo(Ber), , 5, (Bt)dt,
(29)

x® l n+1/2

1, (rf) = f (T) (2= DB, , 5,2 (oYL

1

The first integral in (29) may easily be calculated numerical-
ly, whereas the second calls for an alternative procedure. We
rewrite 7, accordingly: 1

L,(rB) = [} (rB) +1,‘.§’(rﬂ)]/2.
where

ID(rB) = J» (%)H 12
]

X (12 =12 (B H (" ,,, (Be)dt,

I'(nz')(rﬁ) =J-ae (l)n+ 72
1 )

X (2= 1)"2y(Btr)H 2 4, (Brydt.

The two right-hand side integrals in (30) may be calculated.
by means of a contour integration in the complex ¢ plane: the

first integral along a contour I'" and the second along I'2,

The contours are defined as (see Fig. 1)

Lz (rB) =f

0

(30) -

r(ll —_ tE(Cﬁ”UC&”UC,‘”UCi“),

C,(,” = [l,R ]’
C{ = [Re®|0<p<n/2], e
c = iRy, -

C = (e*|n/25950),
R—c, T symmetric to " with respect to thereal axis

FIG. 1. Integration contours in the complex ¢ plane.
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The contributions along C{’ and C ¥’ vanish for R — o,
due to thebehaviorof H,, , ;,, (¢) for |¢ | - . For the contri-
bution along C", where (12— 1)"2=j(1 —t%)"? we
have to evaluate

1 n+l/2- S s
(—-) JA — Yy S (BerYH L . (Be)dte
o \ L

= _r (i) as sV (Brs)
1

s
X (1) =32 H ", (jBs)ds. (32)
Using the relation’
(l/j).—lﬂH,..;.s/z (Jﬂs) = (- 1)"Kn+ 372 (BS)Z/(j”)»
(33)

it may be shown that the integral in (32) is purely imaginary,
whereas the original integral (30) is real valued. Hence, the
contribution along C ("’ is of no importance. The same holds
for the contribution along C(®, where (t>-1)'?

= —j(1 —t2)"2 Finally, we calculate the contribution
along the quarter-circle segments C ('), where we substi-
‘tute ¢ = ¢*. Using simple geometry we may show that

(zz-l)vz=[z<l¢l>. 0>¢> —7/2, a

where Z(@) = (2 sin )2/ + 7272 4nd the horizontal
bar denotes complex conjugation.

Now, if we substitute (34) into the right-hand side of
(30), together with z = ¢/ and the following identities’:

Jo(i) = m, H,(,z_z_J/z (E) = H,(,”3/2 (Z), (35.)

+

we obtain the contribution along C ("’ + C®, which can be
written as

['(lp + (2)(’.,5)
/2
____J(; (2 sin ¢)l/21m [eilw(l - n) *""Jo(rﬂe"’)

XH') , (Be) ldp. (36)

Finally, we may use the residue statement for the contours
L@ and return to (29), where we now have

L,(rB) = (1/B8)" =3 o (r.B)
+ (I/B)" ¥4I P+ D (rB). 37

Both right-hand side integrals in (37) can be calculated nu-
merically without severe problems for nonzero values of B.

(@) Surface pressure () Membrane deflection
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FIG. 2. Vibrating membrane in air at 30 Hz.
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© intensity tension, 40 N/m; weight, 0.0ik;/m’; driv-
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$ 48840 0080102320204 2 020422 = phase; (b) membrane deflection: solid
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lil. RESULTS

A. The vibrating membrane in air
As an example, we examine the following case:
a=0.125m, T=40N/m, p=0.01kg/m?
F=1N/m? ¢,=343m/s, p,=1.18kg/m?,

which correspohds to a loudspeakerlike vibrating membrane
in air. The collocation points in the calculation of the results
of this section were chosen at equal intervals along the radius
0<r< 1. The calculations showed a fast convergence of the
power series (12). For low frequencies (3 = ka=0.1). the
first four coefficients were sufficient to give good results, i.c.,
ay <1073 max{ay _,...,a,}, whereas for higher frequencies
(B = ka=0.6), the number increased to about seven. A
maximum relative integration error of 10~* and truncation
of the Green’s function summation in (26) at m = 320 were
chosen to obtain the results of this section.

38)

B. Calculated surface pressure, membrane deflection,
and intensity

We focus on the lower frequency region at frequencies
50 (8 =0.1145) (Fig. 2), 150 (8 = 0.3435) (Fig. 3), and
300 Hz (8 =0.6869) (Fig. 4). The calculated intensity is

e

represented by arrows, pointing in the direction of the inten-
sity. The length of the arrows is a linear measure for the
logarithmic intensity; the length of the longest arrow is set to
0 dB; zero length then indicates — 30 dB or less.

At 50 Hz we have a masslike reaction of the surrounding

air, which can be calculated from the ratio of the surface

pressure [Fig. 2(a)] and the membrane deflection [Fig.
2(b)]. The calculated intensity [Fig. 2(c) ] shows a typical
doubletlike flow of power: maximum radiation in forward
direction and no radiation in the plane of symmetry. At 150
Hz (Fig. 3), we get a sharp peak in the acoustic impedance
caused by a nodal line in the membrane deflection [Fig.
3(b)]. At the same time, we see that the phase of the surface
pressure [Fig. 3(a) ] has made a 180° change compared with
the 50-Hz case, indicating that we have passed the funda-
mental resonance frequency of the “mass-spring system”
built up by the air mass and membrane tension (a frequency
scan shows a resonance frequency of approximately 65 Hz in
the case in question). The calculated intensity [Fig. 3(c)]
clearly shows the effect of the two membrane regions vibrat-
ing in opposite phase: The central part of the membrane
radiates power, whereas the outer part is receiving power. At
300 Hz (Fig. 4) the situation is even more dramatic. Here,
we have two nodal lines {Fig. 4(b)], and the calculated in-
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. 18 ‘ 900 8 ; - 900§
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: | |
! .
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r/a 70]
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m; tension, 40 N/m; weight, 0.01 kg/m?%

TRy Ny T

R R RN e iold = madulus,  dasbed

f””’f’f’f’fﬁf’fﬁﬂ/ﬁﬂ/l =moduius,dasbd=phnse;md(c).time-

0.8 ’f””f’*’f’f I A B B I O O VA avengedintensity:maximumvee(orlangth,

2424 8888488048800 008nn 0dB; zero length, < — 30dB.
IR NN EEREEN NN NN
BN EEEEEEEEEEEE NN N PR
MEEEEREENNEEEENEEREEEIIIPIPEa
AR R R R R RN
< R IR K 3N B 3N BN BE BK B BV JF BV BV IV IV 2P P NP AP
’******”f’f,””/’/l’l’
o.‘!*\\****’f’f”””””’l’
LA SLSL I LI BN IR OF JE BF IF I I V0 P 2P R
..\\\'\\**”f’fﬂ/ﬂ!lz,"”-
".\\\**’,fff’,””’Jooo
o.zdl"\\\*’ffff””’-'--‘o-
AN R R F PSSO at:
::’r\\\*f’ffff/l..\‘\,.-.
%% 0.2 0.4 06 0.8 1.0 12
r/a

. tensity [Fig. 4(c)] shows a strong interaction between the
various membrane regions through the surrounding air.

The results presented in this section are merely meant to
demonstrate the use of the method described in the previous
sections. More detailed results are reserved for future arti-
cles.

IV. FINAL REMARKS

In the previous section we have calculated the mem-
brane surface pressure by means of collocation, with colloca-
tion points at equal distances. This choice is not at all trivial,
and it is worthwhile to investigate the existence of an opti-
mum spacing. Another approach is to carry out a least-
squares procedure on Eq. (26) in order to determine the
coefficients a, ; i.c., we may write (26) as

i a,F,(r)
nm=]

We can try to minimize the function

1 N
E@ay) = [ (C0)= 3 afn)rar, o)
(1] .
where a minimum is reached when 9E /da, = 0. If we carry

= C(r). (39)

. out this operation, we see that a set of linear equations is
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obtained from which the coefficients a, may be calculated: o
f F (r)F,(r)yrdr —f F,(r)C(r)rdr,
n = l

i=1.,N. (41)

It must be remarked that Eq. (26), from which the pow-
er series coefficients are calculated, must be handled with
some care in the numerical evaluation. For large values of »
(say n> 10), the factor 2"+ '2I'(n + 3/2) becomes very
large, whereas the functions 7, and ¥, become very small.
This behavior can cause numerical problems, and it may be
necessary to carry out extended precision calculations. Cal-
culation of coefficients with large indices will only be neces-
sary, however, for the hlgh-frequency range, so one could
also use the high-frequency approximation, Eqs. (20) and
(27).

The reader may be interested in the reason why the pow-
er series expansion (12) works quite satisfactorily in solving
the problem, whereas an expansion of ¢, (r) in terms of, for -
example, the eigenfunctions Jy( ji,,,”) of the membmne, %
usually does not. The main reason is, of course, that the
expansion (12) fits the fluid behavior because it results di-
rectly from the (transformed) Helmholtz equation, and it =~
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incorporates a priori the correct edge behavior of the surface
pressure.

Another point of view may be to regard Eq. (16) as the
description of a filtering process; i.e., we rewrite (16) as

oo 1
w(r) =J (—jo) (J ‘7+(’o)Jo(#’o)’odro)Jn(#")ﬂ du,
o o

(42)

which states that the (Hankel) transform of ¢ . (#) is filtered
in the u-domain by a “transfer function™ ( — jor), whereafter
the inverse transform delivers w(#). For high frequencies
(B> 1), it may be seen from the definition of ¢ in (13) that
this transfer function is essentially constant over the range
where the u-transform of ¢ | (7) has a significant value. This
“all-pass” effect will result in an approximately equal shape
of w(r) and ¢, () at high frequencies [see result (20) ]. For
low frequencies (8 <1 or f=1), however, the filter’s influ-
ence is essential; if we expand ¢ (r) at low frequencies in
terms of the eigenfunctions Jy(j,,7) of the membrane
{which does not a priori fulfill the edge constraint
dq., (r)/dr|,,, = 0], then it is easy to show that the “fi}-
tered” u-transform of g, (r) has important high-u compo-
nents, whereas the expected w(r) (smooth at low frequen-
cies) has not. In consequence, we may expect a bad
convergence of the chosen power series because somehow we
have to cancel these high-u components. Using Eq. (17), it
is easy to show that the filtered u-transform of expansion
(12) does not contain high-u components and thus may be
expected to show a better convergence.

Several other Bessel-like expansions have been investi-
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gated and it turns out that bad convergence always corre-
sponds with high-u components in the filtered u-transform
of the terms of the chosen expansion.

It must be remarked that Bouwkamp* prefers an expan-

sion of ¢, () in terms of (orthogonal) Legendre polynomi-
als, i.e., :

q+(") = i anP2n+l[(1""r2)”2]9

n =10

(43)

which has some advantages in the analysis of the free vibrat-

ing disk, but essentially does not differ from (12).
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