
directions or regions and as such they might well be 
called waveguides. The familiar plane wave tube 
may well be considered to be a special case of a 
horn as it  certainly constitutes a waveguide.  
Secondly, horns act as impedance matching devices 
similar to the action of an electrical transformer.

Horn surfaces define a bounded region whose 
cross-sectional area increases from the input to the 
output in a loudspeaker application. The acoustic 
power flowing through a cross section of area S, 
when the acoustic pressure and particle velocity are 
in phase, is the product puS. The product uS is called 
the volume velocity and is denoted by U therefore 
the acoustic power flow is pU. At the input end of 
the horn where S is small and the acoustic pressure p 
is large, the volume velocity for a given acoustic 
power is small.

At the output end of the horn where S is large, the 
volume velocity is large and the acoustic pressure is 
small for the same acoustic power. This behavior is 
analogous to an electrical step down transformer 
that has a large voltage and small current in the 
primary and a small voltage and large current in the 
secondary.

Horns were used in acoustics long before their 
principles of operation were even partially under-
stood. The earliest hearing aid devices were based 
on horns with sound transmission in the reversed 
sense in that the object was to convert large U and 
small p into large p with small U to accommodate 
the fact that the ear is a pressure sensitive organ. 
Some of the earliest acoustic recordings also 
employed horns operating in reverse with the mouth 
of the horn collecting energy over a large area and 
concentrating it into a small area to actuate a small 
diaphragm mechanically coupled to a recording 
stylus. This procedure was reversed in the reproduc-
tion process wherein the horn was employed in the 
more conventional sense.

Horns have also been employed as the basis of 
many musical instruments. The requirements of a 
horn to be used for sound generation are radically 
different from that of sound reproduction or rein-
forcement. In the case of sound generation, reso-
nances in the horn are desirable and in fact,  
essential. In sound reproduction or reinforcement, 
however, resonances are undesirable and steps must 
be taken to minimize their existence. This under-
scores the necessity for having an underlying theory 
of horn operation to guide the construction for 
various applications.

Horn theory stems from the original work of 
Euler, Lord Rayleigh, and Webster. Webster was the 
first to introduce the concepts of specific acoustic 
impedance and analogous acoustic impedance, both 
of which have proven to be very valuable in acoustic

analysis. What is known as Webster’s horn equation
is a wave equation that in the strictest sense is
correctly applicable to only three waveguide struc-
tures. These are the plane wave tube, the conical
horn, and the cylindrical horn. Webster’s equation
employs only a single space variable in the axial
direction implying that the acoustic pressure is
uniform over an appropriately drawn cross section
of the guide or horn structure. This is satisfied
exactly in a plane wave tube of limited diameter that
is excited at the input by a plane wave.

The equation is also exact for a conical horn that
is excited with a spherical wave and for a cylindrical
horn that is excited by a cylindrical wave. The appli-
cation of the equation to other horn structures is
only approximately correct and then only when the
horn opens up or flares very slowly. It is this last
requirement that is often lost sight of in practice.

The simplest horn geometry is that of a trun-
cated cone wherein acoustic energy in the form of a
diverging spherical wave is introduced into the
small end of the cone and subsequently propagates
freely within the cone as an outgoing wave as
suggested in Fig. 18-24.

In order for this horn to work properly, the
acoustic wave introduced at its small or throat end
must have a radius of curvature equal to r0, where r0
is measured from the virtual apex of the truncated
cone. The “natural fit” means that the spherical
wavefronts diverging from the apex would every-
where be normal to the bounding surface provided
by the cone and all energy flow would be radially
directed. The particle velocity in such a wave
motion would be tangent to the interior walls of the

Figure 18-24. A spherical wave has a natural coordi-
nate fit in a conical horn.

r0

18.9 Horns and Compression Drivers

Horns play two fundamental roles in acoustics. 
Firstly, they are directional control devices serving 
to guide the airborne acoustic energy into particular



horn and there would be no reflections at the interior
wall surface. Internal reflections occur when the
particle velocity has a component normal to an inte-
rior wall surface. Plane waves, as another example,
form a natural fit in a straight tube of constant cross
section. In both instances the wave motion can be
described using only a single spatial coordinate and
as such are called single parameter waves. A third
geometry that provides a natural fit is that of a horn
formed from a sector of a cylinder. Here, however,
the wave introduced at the throat must have a cylin-
drical wavefront. So far as is presently known these
three geometries are the only ones that satisfy the
natural fit or single parameter conditions exactly.

As a straight tube of constant cross section of
course is not a horn in the strictest sense, that leaves
only two natural horns. Many other horn shapes
have been employed with varying degrees of
success, however, but they are only approximately
single parameter devices and all suffer from
bounding wall reflections to a greater or lesser
degree. An analysis by Morse concludes that in
order for a horn shape to approximately fall under
the conditions necessary to satisfy Webster’s horn
equation, the rate of change of the square root of the
cross-sectional area with respect to the single axial
parameter must be much less than one. To what
degree some common horns satisfy or fail to satisfy
this criterion is a point worthy of examination.

Webster’s equations for single parameter horns
are

(18-69)

In these equations χ is the appropriate single
space variable and the other symbols have their
usual meanings. The area symbol S must be treated
carefully. In a true one parameter horn it is the
surface area of the appropriately shaped wavefront
as a function of position. In other horns the assump-
tion is made that the wavefronts are approximately
plane and S is the true cross sectional area of the
horn as a function of position.

The first of Eq. 18-69 when applied to the
conical horn becomes just the spherical wave equa-
tion. The second of these equations allows the deter-
mination of the specific acoustic impedance at the
throat of the horn. The specific acoustic impedance
is the ratio of the complex acoustic pressure to the
complex particle velocity. The mechanical imped-
ance is thus the product of the specific acoustic

impedance with the wavefront area S. With a suit-
able horn driver, these expressions are identical to
those of a pulsating sphere of radius r0 with the
exception that all of the energy diverges through the
horn rather than through the surface area of a sphere
of radius r0. The sound intensity on the axis of the
horn is thus increased by the ratio of the area of the
sphere to the wave entrance area of the horn. This
ratio is  where θ is the angle between
the horn axis and the interior surface of the horn.

For example, if the coverage angle of the horn is
40º, θ is 20º and this ratio is 33.16. This number is
identical to the axial Q of the horn. This corresponds
to a pressure level increase of about 15 dB on the
axis of the horn as compared with that produced by
a pulsating sphere without the aid of a horn. Thus
far the horn has been treated as if there were only an
outgoing wave. This would strictly be true if the
horn were infinitely long. For any horn of finite
length a reflection will occur at the mouth and a
portion of the original energy will be directed along
the horn back towards the driver. Such reflections
can lead to the production of standing waves having
resonant frequencies related to the horn length. It
has been found in practice that there is only a negli-
gible mouth reflection if the mouth perimeter is
about 3 times the free space wavelength at the
frequency of operation. Horns intended for use at
low frequencies are thus large, unwieldy devices.

Salmon has described a family of horns that can
have approximately single parameter behavior when
they flare slowly enough. Members of this family
are described by

(18-70)

S0 is the cross-sectional area at the throat where χ 
is 0. A scale factor denoted as h is indicative of the 
rapidity of flare with small values of h corre-
sponding to rapid expansion. T is a shape factor 
determining the general properties of the horn near 
the throat. When T = 0, Eq. 18-70 generates a 
catenoidal horn. When T = 1, an exponential horn
results. When T = h/χ0 and is allowed to approach ∞ 
by letting h become very large, a conical horn 
results. Each of these horns merits individual atten-
tion. The descriptions given in each instance assume 
the horn is long enough so that mouth reflections 
can be ignored.
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