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1. Introduction
In the diyAudio thread https://www.diyaudio.com/community/threads/single-stage-active-riaa-
correction-with-second-or-third-order-butterworth-high-pass-included.413649/ , I described a way 
to include a second- or third-order Butterworth high-pass filter in a phono preamplifier with active 
RIAA correction by using a somewhat more elaborate feedback network than is usually used. An 
example is shown in Figure 1.

Figure 1: Example of a phono preamplifier circuit as described in the diyAudio thread

Even when the loop gain is assumed to be infinite at all frequencies, due to the high order of the 
feedback network, exactly calculating the component values is difficult. I therefore resorted to some
coarse approximations and tweaking with a pole-zero extraction program.

In section 2 of this document, these coarse approximations are described. In section 3, a more 
accurate approximation is given, or actually an accurate approximation for placing the RIAA zero 
and an exact method for placing the RIAA poles and subsonic filter poles once R8 has been chosen 
to place the zero. The exact method can easily lead to negative or complex resistor values, though.

In both cases, all components are assumed to be ideal and loop gain is assumed to be infinite at all 
frequencies. A way to correct for finite loop gain due to finite gain-bandwidth product is given in 
the attachment of post #100 of the diyAudio thread, 



https://www.diyaudio.com/community/attachments/riaafinitegbp-pdf.1438365/

The time constant of the first RIAA pole will be called τp1, the time constant of the second RIAA 
pole will be called τp2 and the time constant of the RIAA zero will be called τzRIAA. Their values are 
in principle τp1 = 3.18 ms, τp2 = 75 μs and τzRIAA = 318 μs, but the time constants of the poles have to 
be slightly reduced when you want to precorrect for finite gain-bandwidth product, as explained in 
the document about that subject.

Although it is not further analysed in this document, Figure 2 shows how the circuit could be 
combined with an electrically "cold" input resistance for very low noise. This configuration is only 
applicable to discrete designs.

Figure 2: Version with an electrically "cold" input resistance for very low noise

2. Idea behind the circuit and first approximation for finding 
the component values

When you just look at the topology and ignore the component values, Figure 3 is a rather 
conventional RIAA amplifier (you could make it even more conventional by connecting R7 in 

parallel with C5, that doesn't matter much for the principle).



Figure 3: Almost conventional phono preamplifier

Normally, C8 is used to cause roll-off in the subsonic region and the network R7...R8, C5, C6 

realizes the RIAA poles and zero. In this case, however, I use C8 to realize the lowest RIAA pole at 

-1/(3.18 ms) and R7 to get subsonic roll-off.

Note that C8/C5 = 1000, meaning that without the subsonic roll-off, the DC gain would be 1001, a 

very ordinary value for a moving-magnet amplifier (1 kHz gain roughly 40 dB).

With everything ideal, at the value of the Laplace variable s where the impedance of C8 cancels the 

impedance of R12, the feedback disappears and the gain goes to infinity. This means that there is a 

pole at exactly -1/(R12C8), so if this has to be the first RIAA pole, one needs R12C8 = 3.18 ms. It's 

actually 3.196 ms in the schematic, pretty close.

The disadvantage of using C8 for the first RIAA pole is that C8, which has a relatively large value, 

needs to be accurate to get an accurate first RIAA pole. (C8 has practically no effect on the gain at 

frequencies much greater than 50 Hz, so its tolerance affects deep bass, but not channel balance.) 
The advantage is that you can include better subsonic filtering in the loop by adding two more 
resistors and a capacitor.

As an intermediate step, suppose you could add an ideal inductor with a huge value between the 
output and the negative input of the op-amp, chosen such that it resonates with C5 at the desired 

subsonic roll-off frequency, and that you chose R7 such that it damps the LC circuit to a quality 



factor of ½ √2. The subsonic response would then be very close to second-order Butterworth. That's
because the gain of the RIAA correction amplifier is one plus the ratio of the feedback impedance to
the impedance from the negative op-amp input to ground, and that "one" is quite negligible at low 
frequencies. Mind you, R8 and R9 contribute to the damping of the LC circuit, but not by much. You

could also choose a quality factor of 1 and design the AC coupling at the input for the same cut-off 
frequency. The combined response is then third-order Butterworth.

Such an ideal inductor is totally impractical, but it can be approximated with a T network consisting
of two resistors with values much smaller than R7 and a capacitor to ground at the point where they 

are connected, see Figure 4.

Figure 4: Now with subsonic filter

The transfer from the voltage going into R11 to the current coming out of R10 rolls off at a first-

order rate from some very low frequency onwards, like would be the case with an inductor.

One way to dimension the circuit is to do some rough approximate calculations for the values and to
then fine-tune them using a pole-zero extraction program (or a simulator that does AC sweeps, 
although that is less convenient).

Regarding those approximate calculations:

R12C8 = τp1

where τp1 is normally 3.18 ms, to get the first RIAA pole at the right spot. This is exact when 
everything is ideal. I introduce a symbol for the time constant of the first RIAA pole so you can 



easily reuse the calculations for some other correction or tweak the time constants to precorrect for 
finite gain-bandwidth product.

The DC gain would be 1 + C8/C5 without subsonic roll-off, so C8/C5 = 1000 gives you a midband 

gain of roughly 40 dB, as the midband gain of a RIAA preamplifier is roughly 10 times smaller than
the DC gain would be without any subsonic roll-off.

At s = -1/(R8(C5 + C6)), the impedance of the network R8, C5, C6 goes to zero and the gain of the 

circuit becomes 1. As a gain of 1 is pretty close to 0, this must be close to the location of the RIAA 
zero. That is,

R8(C5 + C6) ≈ τzRIAA

where τzRIAA = 318 μs.

At s = -1/(R8C6), the impedance of the parallel connection of C6 and R8 goes to infinity. The 

impedance of the whole feedback network remains finite due to the other branches R7 and R11, C7, 

R10, but it does get pretty large. That means the second RIAA pole must be close, so we get the 

extra criterion

R8C6 ≈ τp2

where τp2 is normally 75 μs.

Hence,

(C5 + C6)/C6 ≈ τzRIAA/τp2

C5 ≈ (τzRIAA/τp2 - 1) C6

This boils down to C5 ≈ 3.24 C6 when τzRIAA and τp2 have the normal values (those with no 

precorrection for finite gain-bandwidth product). In the pole-zero extraction program, a slightly 
lower ratio usually works out better due to everything that gets neglected here. 6.8 nF and 2.2 nF 
(ratio 3.090909...) or 10 nF and 3.3 nF (ratio 3.030303...) tend to work better than 22 nF and 6.8 nF 
(ratio 3.2352941176...).

The (theoretical) inductance L is chosen to resonate with C5 at the required subsonic roll-off 

frequency and R7 is chosen to get the desired quality factor. R10 and R11 get convenient values 

much smaller than R7 with R10 also much greater than R12. We then have

C7 = L/(R10R11)

The RCR T-network that approximates an inductor actually approximates an inductor with 
inductance L = R10 R11 C7 and a series resistance of R10 + R11. At low frequencies, it stops 

behaving inductively, it just turns into the series connection of the two resistors. As a result, one of 
the zeros of the high-pass filter that are supposed to lie at s = 0 actually lies somewhere around 
s = -(R10 + R11)/(R10 R11 C7).



For the second-order cases, I have used the first-order high-pass (AC coupling) at the input to cover 
this zero by making the input RC time constant approximately equal to R10 R11 C7/(R10 + R11), or 

actually to a more accurate value for the displaced zero found by the LINDA pole-zero extraction 
program. With a FET op-amp and split supply, one can also decide not to correct for the zero and 
leave out the input AC coupling altogether. 

For the third-order case, I have used the input AC coupling to make the real pole of the third-order 
Butterworth response, so I couldn't use it to cover the displaced zero. I used the output AC coupling 
in that case, or simply did not cover the zero. The effect of the zero not being in the origin is 
typically only seen below 1.something Hz anyway.

There is another zero not exactly in the origin, this is related to the + 1 term in the gain expression 
of a non-inverting op-amp amplifier. It is so close to 0 that I decided not to bother correcting for it.

A minor improvement was implicitly suggested by hbtaudio, see Figure 5. When you split R6 into a 

resistor R6 after the input coupling capacitor and a resistor R0 before the input coupling capacitor, 

the time constant of the input RC coupling network can be set accurately without needing awkward 
values for C2. You will then need awkward values for the resistors, but those are available in E96 

values, while capacitors are at best available in E24 values and more often than not only in E6 
values. 

Figure 5: Example of splitting R6. Assuming 1 kΩ source resistance, the cut-off 
frequency is within 1 % from 16 Hz while only standard values are used.

2.1. Step-by-step procedure

A. Look at the document https://www.diyaudio.com/community/attachments/riaafinitegbp-
pdf.1438365/ to decide if you want to correct for finite gain-bandwidth product. Correcting is useful
when you use a relatively slow op-amp to make a phono preamplifier with a high gain. If not, τp1 = 
3.18 ms, τp2 = 75 μs and τzRIAA = 318 μs.

B. Choose convenient values for C5 and C6 with a ratio just above 3, such as 6.8 nF and 2.2 nF 
(ratio 3.090909...) or 10 nF and 3.3 nF (ratio 3.030303...). These tend to work better than 22 nF and 



6.8 nF, even though their ratio (3.2352941176...) is closer to the theoretical 3.24.

C. Choose a convenient value for C8 that is about 10 times the desired gain at 1 kHz times C5. For 
example, C8 = 6.8 µF when C5 = 6.8 nF for a gain at 1 kHz of about 100 times (40 dB).

D. Calculate R12 using R12 = τp1/C8. Assuming a moving-magnet phono preamplifier, one would 
normally want R12 to be somewhere in the range from 100 Ω to 1 kΩ to keep the load on the op-amp
reasonable and to ensure that the feedback network won't dominate the noise. Scale the capacitors 
and start over again when the calculated R12 is impractical.

E. Calculate R8 twice, once using R8 ≈ τp2/C6 and once using R8 ≈ τzRIAA/(C5 + C6). Pick a value 

somewhere in the middle.

F. When the desired subsonic cut-off frequency is fsub, calculate L = 1/(4π2 fsub
2 C5).

G. If a second-order Butterworth response (so Q = ½√2) is desired, choose R7 = ½√2 √(L/C5). For a 
third-order Butterworth response (pole pair Q = 1) is desired, choose R7 = √(L/C5).

H. Pick values for R10 and R11 that are much greater than R12, yet much smaller than ½ R7.

I. Calculate C7 = L/(R10 R11). You can tweak R10 and/or R11 a bit to get a more convenient value for 
C7. For example, round the calculated C7  to the nearest standard value and then change R11 into R11 
= L/(R10 C7).

J. For the second-order case, decide whether you want to use an input coupling capacitor. If so, 

choose it such that (R6 + RDC,cartridge) C2 ≈ (R10 R11 C7)/(R10 + R11), or if you use a resistor R0 to 

ground before the coupling capacitor, (R6 + RDC,cartridge R0/(RDC,cartridge + R0)) C2 ≈ (R10 R11 C7)/(R10 + 

R11). Obviously, R6 R0/(R6 + R0) needs to be equal to the parallel load resistance that the cartridge 

requires, usually 47 kΩ for a moving-magnet cartridge.

For the third-order case, you need an input coupling capacitor, and it needs to be chosen such that 

(R6 + RDC,cartridge R0/(RDC,cartridge + R0)) C2 = 1/(2πfsub).

K. Either fine-tune the values using a pole-zero extraction program or an ordinary simulator or 
measuring equipment, or use the method of section 3 of this document to find more accurate values.

L. If the gain at 1 kHz is far below 40 dB, it may be necessary to add a first-order low-pass filter at 
the output to correct for the ultrasonic zero. Its cut-off frequency has to be approximately 2122 Hz 
times the voltage gain at 1 kHz.

3. More accurate approximation
Without the tweaking step K at the end of the procedure of section 2, the RIAA correction values 
can be off by a few percent, that is, by an amount that is not negligible compared to the tolerances 
of accurate capacitors and resistors. It would be nice to find an exact solution or a better 
approximation.

I have only found a better approximation for placing the zero. Once R8 is chosen based on the 
desired zero location, I have an exact procedure for placing the RIAA poles and the complex pole 
pair of the subsonic filter. It consists of these steps:



1. Choose and calculate values for C5, C6, C8 and R12 using steps A...D from section 2.

2. Calculate the R8 needed to get the zero at the right place while approximately taking into account 
the effect of R12, as will be explained in section 3.1.

3. Use some fairly complicated exact expressions for the rest, see section 3.2.

4. Execute steps J and L from section 2 to dimension the input coupling capacitor and output first-
order filter (if any).

I'm still not sure whether the results of the fairly complicated expressions are of any practical use.

3.1. Recalculating R8

According to the approximation of section 2, the RIAA zero must be close to the value of s that 
makes the impedance of the network C5-R8-C6 equal to zero. It is not exactly at that value of s, 
though, because the gain actually becomes 1 rather than 0 when the impedance of the network C5-
R8-C6 is zero.

The gain would become zero if the impedance of the network C5-R8-C6 became the opposite of the 
parallel impedance of everything else that is connected to the negative op-amp input. This follows 
directly from the gain equation for a non-inverting op-amp stage: 1 + ZA/ZB , where ZA is the 
feedback impedance and ZB the impedance to ground. When ZA = -ZB, the sum is zero.

At frequencies around 500 Hz (that is, around the desired corner frequency of the RIAA zero), the 
parallel impedance of everything else that is connected to the negative op-amp input is dominated 
by R12. One can therefore equate the impedance of the network C5-R8-C6 to -R12 to get a better 
approximation of the location of the zero.

Writing out the equation for the impedance of the network C5-R8-C6 results in 
s R8(C5+C6)+1

sC5(s R8 C6+1)
. 

Equating this to -R12 results in

s R8(C5+C6)+1
sC5(s R8 C6+1)

=−R12

s R8(C5+C6)+1=−s R12C5(s R8C6+1)

s2 R12C5 R8 C6+s ( R8(C5+C6)+R12C5 )+1=0

s=
−R8(C5+C6)−R12C5±√(R8(C5+C6)+R12C5)

2
−4 R12C 5 R8C6

2R12C5 R8 C6

This equation gives two zero locations. The plus solution is the zero closest to the origin. This must 
be (the approximation to) the desired RIAA correction zero, the other must be (an approximation to)
the ultrasonic zero that non-inverting RIAA preamplifiers always have because the gain goes to 1 
rather than 0 at high frequencies.

Hence,

zRIAA=−
1

τzRIAA
=

−R8(C5+C6)−R12C5+√(R8(C5+C6)+R12C5)
2
−4 R12C5 R8 C6

2 R12C5 R8C6



2R12C5 R8 C6 zRIAA+R8(C5+C6)+R12C5=√(R8(C5+C6)+R12C5)
2
−4 R12C5 R8C6

Squaring both sides,

4 R12
2 C5

2 R8
2 C6

2 zRIAA
2

+4 R12C5 R8 C 6 zRIAA (R8(C5+C6)+R12 C5)+(R8(C5+C6)+R12 C5)
2
=  

(R8(C5+C6)+R12C5)
2
−4 R12C 5 R8 C6

4 R12
2 C5

2 R8
2 C6

2 zRIAA
2

+4 R12C5 R8 C 6 zRIAA (R8(C5+C6)+R12 C5)=−4 R12C5 R8 C6

R12C5 R8C6 zRIAA
2

+zRIAA (R8(C5+C6)+R12 C5)=−1

R8 (R12C5 C6 zRIAA
2

+ zRIAA(C5+C6))=−1−zRIAA R12C5

R8=
−1−zRIAA R12C5

R12C5C6 zRIAA
2

+z RIAA(C5+C6)
=

−
1

zRIAA

−R12C 5

R12C5C6 z RIAA+C 5+C6

Using

zRIAA=−
1

τzRIAA
,

R8=
τzRIAA−R12C5

C 5+C6−
R12C5 C6
τzRIAA

=
τzRIAA

C5+C6 (
1−

R12C5
τzRIAA

1−
R12

C5 C6

C5+C6
τzRIAA

)
The first factor of the right-hand side of the equation equals the rough approximation from section 
2, the second factor corrects for the effect of R12.

3.2. Calculating the rest given C5, C6, C8, R12, R8 and the desired pole 
positions

Not counting the input (and output, if applicable) AC coupling networks, the poles of the phono 
preamplifier are the zeros of its feedback network: around the values of s that result in no feedback, 
the gain tends to infinity. To get the RIAA correction poles and the pair of complex poles for 
subsonic filtering at their right places, it therefore suffices to calculate the zeros of the feedback 
network, see Figure 6.



Figure 6: Feedback network

The transfer from feedback network input voltage to feedback network output voltage is zero when

s=−1/(R12C8) , because the impedance of the branch R12-C8 becomes zero at this value of s. 

There is therefore a zero of the feedback network and a pole of the whole amplifier at

s=−1/(R12C8) , as was already known.

For other values of s, the feedback network transfer can only be 0 when there is no current flowing 
through the branch R12-C8. The values of s that make the current cancel can be calculated using the 
simplified network of Figure 7.



Figure 7: Simplified feedback network for calculating all feedback network zeros (which are phono 
amplifier poles) but s = -1/(R12 C8)

Clearly, using L = R10 R11 C7,

I
V

=
1
R7

+
1

sL+R10+R11

+
1

1
sC5

+
R8

s R8 C 6+1

Hence,

I
V

=
1
R7

+
1

sL+R10+R11

+
sC5(s R8 C6+1)
s R8(C5+C6)+1

I
V

=
(sL+R10+R11)(s R8(C5+C6)+1)+R7(s R8(C5+C6)+1)+sC5(s R8 C6+1)R7(sL+R10+R11)

R7(sL+R10+R11)(s R8(C5+C6)+1)

Rewriting the numerator and dividing it by R10 + R11 + R7 to make the zeroth-order term 1 results in

a3 s3
+a2 s2

+a1 s+1

with



a3=
L R7 R8C5 C6

R10+R11+R7

a2=
L R8(C5+C6)+R7 C5 L+R7(R10+R11)R8C5C6

R10+R11+R7

a1=
L

R10+R11+R7

+R8(C5+C6)+
R7(R10+R11)

R7+R10+R11

C5

The required values of a3, a2 and a1 follow from the desired RIAA and subsonic filter pole positions.
That is, as the first RIAA pole is realized with the network R12-C8 that is excluded from Figure 7, 
the second RIAA pole and the complex pole pair of the subsonic filter determine a3, a2 and a1. The 
second RIAA pole contributes a factor sτp2 + 1 to the denominator of the transfer function of the 
phono preamplifier, while the complex pole pair of the subsonic filter contributes a factor

1

ωn
2

s2
+

1
ωnQ

s+1 , where for a Butterworth filter, ωn = 2πfsub and Q = ½√2 for the second-order 

case and Q = 1 for the third-order case. Multiplying these factors,

(s τp2+1)( 1

ωn
2 s2

+
1

ωn Q
s+1)=

τp2

ωn
2 s3

+( 1

ωn
2 +

τp2

ωnQ )s2
+(τp2+

1
ωnQ ) s+1

so the required values are

a3=
τp2

ωn
2

a2=
1

ωn
2
+

τp2

ωn Q

a1=τp2+
1

ωn Q

The ai are therefore known, as are C5, C6 and R8 (although the value we have for R8 only puts the 
RIAA zero at approximately the right place).

As the factor
L

R10+R11+R7

occurs all over the place, I will call this τL to simplify the equations. I 

will also introduce Rpar, which denotes the parallel value of R7 and the series connection of R10 and 
R11. That is,

τL≝
L

R10+R11+R7

Rpar≝
R7(R10+R11)

R7+R10+R11

The equations for the polynomial coefficients can now be simplified to:



a3

R8C5C6

=τL R7

a2=τL R8(C5+C6)+τL R7C5+Rpar R8C5C6

a1−R8(C5+C 6)=τL+Rpar C5⇔ τL=a1−R8(C5+C6)−Rpar C5

Substituting the first of these three equations into the second:

a2=τL R8(C5+C6)+
a3

R8C6

+ Rpar R8C5C6

which eliminates R7. Using the third equation to also eliminate τL,

a2−
a3

R8 C6

=(a1−R8(C5+C6)−Rpar C5) R8(C 5+C6)+Rpar R8C5 C6

a2−
a3

R8 C6

=a1 R8(C5+C6)−R8
2
(C 5+C 6)

2
−Rpar C5 R8(C5+C6)+Rpar R8 C5C6=  

a1 R8(C5+C6)−R8
2
(C5+C6)

2
−Rpar C5

2 R8

Rpar=

a1 R8(C 5+C6)−R8
2
(C5+C6)

2
−a2+

a3

R8C6

R8 C5
2

The formerly unknown Rpar is now expressed in known quantities.

As τL=a1−R8(C5+C6)−Rpar C5 , τL is now also solved.

R7=
a3

R8 C5 C6 τL

R10+R11=
1

1
Rpar

−
1
R7

L=τL(R7+R10+R11)

C7=
L

R10 R11

R10 and R11 are not uniquely found, because only their series value and the value of L = R10 R11 C7 
matter for the operation of the circuit of Figure 7. That is, there is some freedom to choose a 
standard value for C7 and adjust the resistors.

Defining R1011≝R10+R11 , the values for R10 and R11 for a given C7 can be calculated like this:

R1011=
1

1
Rpar

−
1
R7

R10+ R11=R1011



R11=
L

R10 C7

R10+
L

R10 C7

=R1011

R10
2
−R1011 R10+

L
C7

=0

R10=

R1011±√ R1011
2

−4
L

C7

2

R11=

R1011∓√R1011
2

−4
L
C7

2

That is, either the plus solution has to be chosen for R10 and the minus solution for R11 or the other 
way around. I'm in favour of using the plus solution for R10, as this makes the approximation used 
for R8 slightly more accurate.

In order to get real values out of these equations, the following inequality has to be satisfied:

R1011
2

−4
L

C7

≥0

or

C7≥
4 L

R1011
2

A practical approach is to choose the smallest standard value greater than or equal to 4L/R1011
2 for C7

and then to calculate R10 and R11.

When you attempt to use this method, you will find that R7, the minimum allowable C7, R10 and R11 
are all very sensitive to the ratio C5/C6. This is logical: in first approximation, the ratio of the RIAA 
correction second pole to the RIAA correction zero depends only on C5/C6. We now use the small 
dependence on R7, C7, R10 and R11 that was neglected before to correct for a slightly wrong ratio  
C5/C6, but as there hardly is a dependence on R7, C7, R10 and R11, they have to change a lot to correct 
a small change in C5/C6. An example is shown in Figure 8.



Figure 8: Spreadsheet screenshot illustrating the 
large sensitivity to C5/C6. Fout:502 is an error 
message due to real variables getting complex 
values. When the value for C7 in the second column
is increased to 1 μF, R10 and R11 get real, but go 
negative.

Putting the values of the first column into a pole-zero extraction program shows that the poles end 
up where they should within the numerical precision of the program. The RIAA zero is off, but only
by about 0.077 %, which seems to show that at least for this example, the approximation used for 
calculating R8 is good enough for most practical purposes.

It should be noted that the approximation for the RIAA zero was made assuming that

R12≪
R7 R10

R7+R10

. Solutions that actually meet this criterion are therefore to be preferred.

4. Conclusion
A simple way to incorporate a second- or third-order Butterworth high-pass filter in a single-stage 
active-correction phono preamplifier has been presented. Calculating the component values can 
either be done with a couple of rough approximations and some tweaking, or with a whole bunch of
relatively complicated expressions that can lead to negative or complex values for two resistors 
when the ratio between two capacitances is not quite what it should be.
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