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1. Choice of pole locations
I've chosen a Gaussian-to-6 dB low-pass filter at about 500 krad/s with one extra negative real pole 
added to it. This has a very good phase response over its passband while falling off much steeper 
above its passband than the 0.05° linear phase filter I used for my valve DAC, which reduces the 
amount of ultrasonic noise that comes through. The extra negative real pole can be implemented as 
a passive RC section to get some suppression of high-frequency spikes before reaching the first op-
amp, in order to prevent slewing induced distortion. Its position has been tweaked to further 
improve the phase response and to get about the same in-band roll-off as the  0.05° linear phase 
filter I used for my valve DAC, so the digital roll-off compensation works for both.

The target pole locations were:

-1.25 Mrad/s and (-271665 +/- 171562.5 j) rad/s for the first filter stage
(-233613.5 +/- 499550 j) rad/s for the second filter stage
(-110183.5 +/- 753361.5 j) rad/s for the third filter stage

2. Compensating for the effect of finite op-amp gain bandwidth
product in an integrator

The circuit of the upper part of figure 1 is a simple op-amp integrator. Assuming that the op-amp is 
ideal (has nullor properties), its negative input is at ground potential. When the input voltage is Vin, 
a current Vin/R flows through the resistor, a voltage  Vin/(sRC) drops across the capacitor and the 
output voltage becomes -Vin/(sRC), assuming that the resistor and capacitor are also ideal. So far, so 
good. Conversely, the input voltage is -sRC Vout. 



When good resistors and capacitors are used, the main non-ideality in a practical implementation of 
the circuit is usually the finite gain-bandwidth product of a practical op-amp. With its positive input 
grounded, an op-amp with open-loop gain 2πfGBP/s requires an input voltage of -(s/2πfGBP) Vout at its 
negative input to produce an output voltage Vout.

Imagine R in the circuit with an ideal op-amp is replaced with a potmeter with the wiper open. 
Depending on the position of the wiper, the voltage on it can then be anything between -sRC Vout 
(wiper turned to the input) and 0 (wiper turned to the virtual ground). As long as RC ≥ 1/2πfGBP, 
there is a wiper position where the voltage is the -(s/2πfGBP) Vout that a non-ideal op-amp would 
need.

Hence, using an op-amp with finite gain-bandwidth product, the effect of the finite gain-bandwidth 
product can be compensated for by connecting the inverting input to a tap on the input resistor. 
Practically, this means that resistor R is split into a part Rcmp =  1/(2πfGBPC) and Rremainder = R - Rcmp. 
Resistor Rcmp is connected straight in series with the integration capacitor C and the resistor to the 
negative input is reduced to Rremainder. This is shown in the bottom circuit of figure 1.

For simplicity, in the rest of this document, the op-amps will be assumed ideal. Most of the circuits 
can be corrected for finite gain-bandwidth product using the method explained in this section.

Figure 1: Integrator with an ideal and a non-ideal op-amp



3. Replacing integrators with ideal inductors to simplify 
calculations

Figure 2 shows a subcircuit that's often found in multiple feedback (MFB) filters. When you apply a
voltage step from 0 to V at the input, a current V/Ra + V/Rb will immediately start flowing into the 
input. As the integrator output voltage builds up, the input current increases. All in all, the input 
impedance is equal to the parallel connection of Ra, Rb and an inductance L = Ra Rb Ca, as can be 
verified by straightforward network analysis.

Figure 2: Subcircuit often found in MFB filters

When the desired parallel resistance Rpar and inductance L are given and Ca is chosen, the required 
resistor values are
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There are two solutions because swapping the resistors results in the very same impedance.

4. Second-order MFB sections
Adding a resistor Rc and a capacitor Cb to the circuit of section 3 results in a second-order MFB 
low-pass stage, which is equivalent to an LRC parallel network with  L = Ra Rb Ca, with R = Ra // 
Rb // Rc where // stands for in parallel with, and with C = Cb. Hence,
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Figure 3: Second-order MFB stage

As capacitors come in fewer standard values than resistors and as the DC gain is -Rb/Rc, it is handy 
to choose the capacitances, the pole positions and the ratio Rb/Rc and to calculate the rest. In the 
remainder of this section, we will define A = Rb/Rc.

Assuming the target poles are a complex conjugate pair, one can calculate ω0
2 = (Re(p))2 + (Im(p))2 

and Q = -ω0/(2 Re(p)). Given this, A = Rb/Rc and chosen values for Ca and Cb, one can derive that
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When complex or negative values are found, the choice of Ca and Cb was not suitable. I haven't 
checked this for this type of filter, but usually the Q factor becomes most accurate when capacitance
ratios are used that only just make the expression under the square root positive, that is the largest 
ratio that still meets
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5. Third-order MFB section
The first filter stage of the DAC is a third-order MFB section. It has some purely passive filtering 
before reaching the first op-amp, which helps to prevent slewing-induced distortion. It also 



complicates the mathematics.

Figure 4: LRC equivalent of a third-order MFB stage

Figure 4 shows the RLC equivalent of this stage. I've calculated the transfer from the voltage source
to V3 (voltage at node 3) by replacing the voltage source and R1 by their Norton equivalent to reduce
the number of nodes by one and then applying modified nodal analysis. The result is:
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Of course the voltage at node 3 is not the output voltage of the entire MFB stage, but as a system 
has only one characteristic polynomial, the denominator and the pole positions must be the same.

In order to get the poles at the intended locations without having to solve third-order equations, you 
can calculate the desired coefficients of the denominator polynomial and equate them to the 
expression that was just found. That is, suppose the desired poles are p1, p2 and p3. The desired 
denominator polynomial is then
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To make the equations simpler, let's introduce
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so the desired denominator polynomial becomes
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When you choose C1, C2 and R1 R2/(R1 + R2), which will be called R1p2 from now on, rearranging 
lots of terms gives:
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As usual, the trick is to choose C1, C2 and R1p2 = R1 R2/(R1 + R2) such that you get positive real 
outcomes.

6. Reduced DC blocking capacitor output stage
The output stage features a DC blocking capacitor that's inside a feedback loop to get away with a 
relatively small value, at the expense of subsonic peaking at the op-amp output. It has a second-
order high-pass response. The schematic is shown in figure 5. R2 represents the parallel connection 
of a resistor that keeps the output biased at 0 V and the load.

Figure 5: Output stage



Skipping R4 and C4 for the time being and using modified nodal analysis to calculate the transfer 
from node 1 to the output results in
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The numerator shows that there is one zero in the origin and one negative real zero, while a normal 
second-order high-pass has two zeros in the origin. This can be corrected for with R4 and C4 by 
choosing
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As R2 is not in the equation, this correction will work for any load resistance.

The denominator of the transfer shows that there are two poles with
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, both the numerator and the denominator of Q have a sensitivity of ½ to R2. 

That is, there is an optimum in Q as a function of R2 for this value of R2. This optimum is actually a 
maximum.
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If you want to prevent subsonic peaking across the load for any load resistance, Qmax has to be 
smaller than or equal to ½√2, as an optimally flat second-order high-pass has a Q of precisely ½√2. 

This is met when
C2C3

C2+C3

≤C1 , so the capacitance of the series connection of C2 and C3 has to be 

smaller than or equal to C1 to prevent peaking across the load for any load resistance (preferably 
equal, if you want the response to be as flat as possible under this constraint).

If you don't mind a small amount of subsonic peaking at some load resistances, Qmax can be made a 

bit larger, for example 1. This is met when
C2C3

C2+C3

=3C1 , so the capacitance of the series 

connection of C2 and C3 can then be up to three times C1. I've used a ratio of two in my DAC, so it 
is somewhere in between with a maximum Q of  ½√3.
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