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Chapter 1

Introduction

This rapport is a hand-in to the assignment ]3 under the Ph.D./Industrial course 31359 on
switch-mode audio power amplifiers. The assignment targets modelling the small signal gain of
the only intended nonlinear component in continuous PWM modulators, namely the comparator.
It is derived in [1] that the comparator in any pulse-width modulated system, clocked or self-
oscillating, can be modelled as a constant gain. This can be exploited to calculate to STF (Signal
Transfer Function) and NTF (Noise Transfer Function) of a PWM modulator, without doing
time consuming single-tone bode-plot simulations in the time domain.
It is shown [1] that the constant gain is directly related to the slope of the carrier at zero crossing
at the input of the comparator together with the amplitude of the supply voltage. This has led
to the mathematical proof that the simplest self-oscillating hysteretic amplifiers has an improved
NTF compared to it’s triangular-clocked counterpart. These result are recreated in this report
together with the analysis of phase-shift self-oscillating amplifiers (COM) and more advanced
loop configurations that includes an output filter and additional noise shaping. In the case of
a phase-shift modulated amplifier, the equivalent small-signal gain of the comparator can be
approximated by analysis of the open-loop TF (Transfer Function) alone [2].
Since a PWM modulator is in fact a sampled system, is can be modelled as a discrete time
system [1]. This explains aliasing of noise down in the audio band and the existence of image
components around the switching frequency and it’s harmonics which can also move down into
the audio band. In relating to predicting the STF and NTF there is however no need setup a
complicated z-domain model.
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Chapter 2

PWM model

The basic structure of a PWM modulator with feedback can be seen in Figure 2.1.

Figure 2.1: Common PWM model (picture from [1]).

The system consists of a infinite gain with a saturated output connected to Linear Time Invariant
Continuous-time filter network with an optional external clock input. The three interesting
signals in the system are the input reference x(t) the carrier c(t) and the PWM output p(t).

Figure 2.2: FFT analysis of 100 single tome measurement of a COM amplifier with a switching
frequency of 1Hz. The ratio between the spectral value of c(t) and x(t) is constant up to very
close to the switching frequency.

Figure 2.2 shows a series of single tone measurements of the frequency domain gain ratio between
c(t) and x(t) for a COM configuration of the LTI network (see more in chapter 4). It appears from
the figure that the gain is constant up to very close to the the switching frequency. This result
forms the base for the continuous time small-signal model in 2.3 which replaces the switched
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2.1. DISCRETE TIME MODEL AND NOISE

model in 2.1.

Figure 2.3: Small-signal model of PWM modulator for s-domain analysis (picture from [1]).

In the small-signal model the comparator and the optional external clock is replaced by a constant
gain block K. This allows the designer to find the s-domain STF and NTF of the system.
Especially the NTF is interesting here, since it explains the suppression of distortion components
and noise down in the audio band. As it will be shown in the following chapters, this continuous
time small-signal model predicts STF and NTF to a very high accuracy under the condition
that the correct gain K can be found.

2.1 Discrete time model and noise

The continuous time small signal model has its shortcomings. It does not explain why the sys-
tem exhibits aliasing. A PWM modulator is in fact a sampled system with sampling rate 2fsw.
For the purpose of examine sampling effects the s-domain model 2.3 should be replaced by the
z-domain model in 2.4 according to [1].

Figure 2.4: Small-signal model of PWM modulator (picture from [1]).

The LTI continuous time network is detonated H(s) and H(z) is the equivalent discrete time
version. The discrete time model has two new inputs, namely the noise sources ec(t) (compara-
tor noise) and ep(z) (power stage errors). Since the sources x(t) and ec(t) are filtered but then
sampled, aliasing of frequency components above the nyquist frequency fsw will occur. x(t) will
typically contain quantization errors from a D/A converter as well as random noise. ec(t) is
a noise generated by comparator and the passive components in the filter implementation of
H(s). The bandwidth of this noise source is considered infinite [1] but it’s limited before the
sampling by the equivalent bandwidth of the input stage in the comparator, detonated with the
time constant τd. Since the bandwidth of the input stage is several orders of a magnitude higher
that the nyquist frequency aliasing of the noise down in the audio band will occur. This can
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2.2. ONE MODEL FOR EACH PURPOSE

decrees the dynamic range of an amplifier or give rise idle tones caused the quantization errors
from a D/A converter.

2.2 One model for each purpose

In practical designs with proper pre-filtering of x(t), a low-noise comparator and feedback from
the power stage p(t), aliasing of noise down in the audio band is generally not a problem and
the signal to noise ratio is large. The dominating problem in PWM modulators is power-stage
errors and modulation nonlinearity, which both results in distortion (detonated by the noise
source ep). Concerning this, the NTF explains the suppression of distortion components and is
therefore the main performance parameter. For this purpose the s-domain model 2.3 is sufficient
and predicts the NTF with a high accuracy if the right gain K is found (See Chapter 3 and
Chapter 4).
The NTF also describes the reduction of original open-loop output impedance, which is of a
concern in practical amplifiers with an output-LC-filter.

2.3 Finding the gain

There are several ways to find the small-signal gain of the PWM comparator. The single tone
measurement (Figure 2.2 and chapter 4) is the most accurate approach, but it requires time
consuming FFT analysis and only provide a numerically value of the gain. The single tone
measurement does therefore not provide any insight on what affects gain and is therefore best
for verification and not as a design tool.
In [1] and Appendix E it’s derived that equivalent small-signal gain K of a PWM comparator
can be calculated by looking at the carrier waveform c(t) and the PWM output waveform p(t).
Figure 2.5 shows the conceptual waveforms for a COM PWM modulator.

Figure 2.5: Carrier c(t) and PWM output p(t) of a COM amplifier.

For a certain switching frequency and supply voltage the gain K is directly proportional to slope
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2.3. FINDING THE GAIN

of the carrier waveform ċ0 at zero-crossing [1] and is given by:

K = 4VDD
fsw

ċ0
(2.1)

In many cases whether it’s a clocked design, a self-oscillating hysteretic modulator or a phase-
shift modulator, the three unknowns in (2.1) can often be derived symbolically.
Because the zero-crossing slope approach allows prediction of the gain, it will be used extensively
throughout the rest of this report.
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Chapter 3

Reference configurations

In Figure 3.1 the generic 1st order PWM model from [1] can bee seen. The model has three
configurations, which are listed in Table 3.1, and serves as a reference for what can be achieved
with a 1st order clocked or self-oscillating hysteretic design.

Figure 3.1: Generic 1st order PWM modulator with five design parameters a, h, ∆T , VDD and
ω0.

Configuration A is a standart clocked PWM modulator with feedback.
Configuration B is related to A but has a smaller clock amplitude and a stabalizing delay ∆T .
This results in a higher small-signal comparator gain K, but makes the configuration ripple
unstable with a large input signal x(t).
Configuration C is a non clocked design and represents a self-oscillating hysteretic amplifier.

VDD = 1
ω0 = 1

a h ∆T Comment

A 2VDD 0 0 Ripple-stable clocked PWM
B 1VDD 0 1

8fclock
Zero input marginally ripple-stable
clocked PWM

C 0 1
4 0 Self-oscillating hysteretic

Table 3.1: Three special cases of the generic PWM model in Figure 3.1

The characteristic waveforms of the three configurations can be seen in Figure 3.2.
For case A and B the switching frequency is given by:

fsw,A|B = fclock (3.1)
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Figure 3.2: Carrier waveforms of case A, B and C.

This gives fsw,A|B = 1Hz. In the self-oscillating configuration the switching frequency is given
by:

fsw,C =
1

4
(
∆T + h

ω0

)
=

ω0

4h
(if ∆T = 0) (3.2)

This equals fsw,C = 1Hz with the parameters in from 3.1.

By looking at the waveforms it’s interesting to note that slope of the carrier at zero-crossing in
all three cases is given by the same relation:

ċ0 = ω0 (a + VDD) (3.3)

The slope is not a function of the delay ∆T nor the size hysteretic window h.

In order to maximize the equivalent small-signal comparator gain K from (2.1), the slope ċ0

should be as small as possible. With the parameters from 3.1, A has a slope of 3, B 2 and C 1.
By using (2.1) the gain of the three configurations becomes:

KA = 4VDD
fclock

ω0(a + VDD)
=

4
3

fclock

ω0
(3.4)

KB = 4VDD
fclock

ω0(a + VDD)
= 2

fclock

ω0
(3.5)

KC = 4VDD
1

4
(
∆T + h

ω0

)
ω0 (a + VDD)

=
1

ω0∆T + h

=
1
h

(if ∆T = 0) (3.6)
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3.1. NTF FOR CASE A, B AND C

Case C has a gain of KC = 4 and outperforms B with KB = 2 together with A KA = 1.3̄. The
self-oscillating configuration therefore obtains the highest gain at a given switching frequency.
In case A and B the gain K can be increased by increasing fclock or by decreasing ω0 (equation
(3.4) and (3.5)). The same property applies to the self-oscillating case C. Decreasing h increases
the gain in (3.6) and also the switching frequency (3.2).

3.1 NTF for case A, B and C

The linear model for the three PWM configurations can be seen in Figure 3.3. The integrator
block from the switched model (Figure 3.1) has been split into to, in order to reveal which part
of the network that forms the open-loop transfer function Go(s).

Figure 3.3: Linear model of the generic 1st order switched PWM modulator from 3.1.

The NTF is given by:

p(s) = pe(s)−KGo(s)p(s) ⇔

NTF (s) =
p(s)
pe(s)

=
1

1 + KG0(s)
(3.7)

and describes how well powerstage errors, modulation errors and noise, pe(s), is suppressed.

The STF is given by:

p(s) = K (x(s)Gx(s)−G(o)p(s)) ⇔

STF (s) =
p(t)
x(t)

=
KGx(s)

1 + KGo(s)
(3.8)

and describes the signal gain through the system from the reference x(s) to the output p(s).

We’re now able to derive the NTF (s) for the three configurations. In case B a 1st order pade
approximation is used to express the delay ∆T :

NTFA(s) =
1

1 + ω0
s

4
3

fclock
ω0

=
3

4fclock

s
3

4fclocks + 1
(3.9)

NTFB(s) =
1

1 + ω0
s

−T
2

s+1
T
2

s+1
2fclock

ω0

=
1

2fclock
s(T

2
s+1)

s2 T
4fclock

+ s
(

1
2fclock

− T
2 + 1

) (3.10)

NTFC(s) =
1

1 +
(

ω0
s − h

)
1
h

=
h

ω0
s =

2
4fsw

(3.11)
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3.2. NTF BANDWIDTH OF THE THREE CONFIGURATION

The three NTF’s is plotted in Figure 3.4.

Figure 3.4: Magnitude plot of the NTF(s) for the three PWM configurations A, B and C.

It’s clearly seen that the self-oscillating configuration C has the best suppression of errors.
Although configuration B is an optimized version of A, the NTF proves no reason to use it given
it’s ripple-instability at large signal inputs.

3.2 NTF bandwidth of the three configuration

The NTF bandwidth of a system con be found by solving:

1 = |NTFlf (j2πfbw)| (3.12)

where NTFlf is the low frequency asymptote of the NTF.

For the three configurations the bandwidth is:

NTFA lf (s) =
3s

4fclock
⇒ |NTFA lf (j2πfbw)| = 1 =

3 · 2πfbw

4fclock
⇒fA bw =

2
3π

fclock (3.13)

NTFB lf (s) =
s

2fclock
⇒ |NTFB lf (j2πfbw)| = 1 =

2πfbw

2fclock
⇒fB bw =

1
π

fclock (3.14)

NTFC lf (s) =
s

4fsw
⇒ |NTFC lf (j2πfbw)| = 1 =

2πfbw

4fsw
⇒fC bw =

2
π

fsw (3.15)

Case C has the highest NTF bandwidth of the three configurations. It also follows that to only
way to improve the NTF of a 1st order system and increase the NTF bandwidth, is to increase
the switching frequency. Changing the proportional gain ω0 in any of the configurations, leads
to no improvement at all. In a normal linear amplifier, an increase in proportional gain would
lead to a higher bandwidth and better NTF. This is one of the fundamental differences between
switched amplifiers and linear amplifiers.
This concludes that the only way to improve a PWM amplifier, besides increasing the switching
frequency, would be to move to a higher order system. This is the subject of Chapter 5.
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3.2. NTF BANDWIDTH OF THE THREE CONFIGURATION

In Figure (3.5) the three NTF functions are plotted using the script in Appendix A and Appendix
B. Each NTF plot has three lines. The 1st line is the calculated NTF(s) based on calculated
gain. The 2nd line is the measured NTF based on 100 single tone runs. The 3rd line is the
calculated NTF(s) based on a measured gain.

Figure 3.5: NTF of the three PWM configurations with a switching frequency of 1Hz. 1st line:
calculated NTF(s) based on calculated gain. 2nd line: measured NTF based on 100 single tone
runs. 3rd line: calculated NTF(s) based on single tone measured gain.

For case A and B the calculated gain does not match the measured gain, which results in
approximately 4dB’s of error in the NTF. With the correct measured gain, the calculated s-
domain NTF is consistent with the measured NTF up to the switching frequency. This indicated
that the carrier-slope based gain approach [1] is not fully accurate.
Concerning the levels of the three NTFs, case C has 4 − 6dB more error suppression than the
clocked configurations. This is not much taking into account that the hysteretic amplifier has a
variable switching frequency. On the other hand case A and B rely on a clean clock source, are
more complex than the self-running hysteretic configuration and does not modulate directly on
power-stage errors. All things considered, the hysteretic modulator is the best configuration.
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Chapter 4

The COM modulator

In Section 3.1 we saw that the self-oscillating hysteretic amplifier outperformed the clocked
PWM configurations. These types of free running amplifiers is therefore the subject of further
analysis in this chapter. Related to the hysteretic modulator is the phase-shift modulator or
the COM1 (Controlled Oscillation Modulator). It works be enforcing a −180o phase-shift at the
switching frequency and have similar performance as the hysteretic modulator.

The COM is derived from the hysteretic modulator by adding two poles in the loop at the desired
switching frequency and removing the hysteretic window. This is shown in Figure 4.1.

Figure 4.1: COM modulator.

Based on the carrier-slop principle [1] the small-signal gain of the comparator can be found,
as it was the case in Chapter 3. This will allow a performance comparison with the hysteretic
modulator.

4.1 The small-signal comparator gain of a COM

Since the COM loop is effectively a third order system at the switching frequency and above,
the carrier c(t) is approximately an attenuated version of the fundamental of the PWM output
p(t). This can be exploited to derive the slope of the carrier ċ0 by easy means [2]. The gain is
found in the following equation and is derived in Appendix F:

Kcom =
1

2 |Go(j2πfsw)|
(4.1)

1COM is Bang and Olufsen Icepowers name for a phase-shift oscillating amplifier that self-oscillates on the
PWM signal. If the output filter is included it’s covered by the UCD (Universal class D amplifier) patent by
Philips.
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4.1. THE SMALL-SIGNAL COMPARATOR GAIN OF A COM

The open-loop TF for the 1st order COM in Figure 4.1 is:

Go com1st(s) =
1

s
(

s
2πfsw

+ 1
)2 (4.2)

By inserting the open-loop TF (4.2) into (4.1) the equivalent small-signal gain of the COM
comparator becomes:

Kcom1st =
1

2 |Go com1st(2πfsw)|
= 2πfsw (4.3)

The resulting gain of the COM is π/2 times larger than the hysteretic modulator, so better
performance can be expected.

Using Kcom1st (4.3) and (3.7) the NTF for the COM becomes:

NTFcom1(s) =
1

1 + 2πfsw
1

s
�

s
2πfsw

+1
�2

=
1

2πfsw

s
(

s
2πfsw

+ 1
)2

s3

(2πfsw)2
+ s2

2(πfsw)2
+ s

2πfsw
+ 1

(4.4)

The NTFcom1(s) is plotted in figure 4.2 together with a 200 run single tone measurement (Ap-
pendix C) on the switched model 4.1.

Figure 4.2: Measured gain, STF and NTF of COM modulator and calculated NTFcom1(s).

The calculated and the measured gain only differ by 1dB, as a result the calculated and the
measured NTF align. By looking at the level of the NTF, the COM appears to outperform the
hysteretic modulator in Figure 3.5 by approximately 4dB.

As it was done in the previous chapter, the NTF bandwidth of the COM can be found by
analyzing the 0dB crossing of the low frequency asymptote of the NTF:

NTFcom1 lf (s) =
s

2πfsw
⇒ |NTFcom1 lf (j2πfbw)| = 1 =

2πfbw

2πfsw
⇒fcom1 bw = fsw (4.5)

(4.6)
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4.1. THE SMALL-SIGNAL COMPARATOR GAIN OF A COM

The bandwidth of the COM equals the switching frequency. This is slightly higher that the
hysteretic case.
From an overall point of view the COM seams to outperform the hysteretic modulator by a
small amount. But what we don’t know anything about is the distortion mechanisms of the two
modulators. There’s no benefit from having a good NTF to suppress distortion components, if
the modulation is very nonlinear. This problem is however best analyzed by simulation.
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Chapter 5

High order phase shift modulator

In many practical applications a LC-output filter is placed after the output stage of an amplifier
to suppress switching residuals. Such a filter has a second order transfer function which is given
by:

HLC(s) =
1

s2LC + sL
R + 1

(5.1)

with a quality factor and cutoff frequency of:

Q = R
√

C
L (5.2)

f0 = 1
2∗π

√
LC

(5.3)

Typically the cutoff frequency lies in between 30kHz and 100kHz with a quality factor of 1− 3
(with a load of 4−8Ω). If a low cutoff frequency is chosen, high residual attenuation is obtained,
but it also opens the possibility to include the filter in the modulator loop and use it as a noise
shaper, i.e. improve the NTF. This will be the main topic for analysis in this chapter.

5.1 Output filter as a noise shaper

A switching frequency of 400kHz is chosen. The output filter is going to be designed around
C = 1µF , L = 22µH and a load between 4Ω and 1kΩ (no load condition). This equals a cutoff
frequency of 34kHz and a quality factor between 0.85 and 213.
The Q is very high and there are three ways to deal with it inside the loop to avoid instability:

• Add a zobel-network to the output filter and lower the Q: Dissipative and costly solution.

• Detect when there’s no load attached and shut down the amplifier: Complex solution since
it requires load detection.

• Use saturable integrators: Normal opamps does saturate at the supply voltage but diodes
can also be used although they are nonlinear.

The last option is optimal and will be chosen.

The proposed model for inclusion of the output LC-filter in the loop can be seen in Figure 5.1.
The integrator and the output-filter effectively works as a 3rd order system above the LC cutoff
frequency. To compensate for this a double lead-compensator has been placed in the feedback
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5.2. FITTING THE PARAMETERS

Figure 5.1: High order phase-shift modulator.

path. As a special feature the lead-compensator has complex zeros, which allows a steeper phase
slope1.

The open-loop transfer function for the system is:

Go hi(s) =
ω0

s

1
s2LC + sL

R + 1

s2

(2πfzero)2
s

2πfzeroQzero
+ 1(

s
2πfpole

+ 1
)2 (5.4)

5.2 Fitting the parameters

Finding the right parameters for the model in Figure 5.1 is best done by trail and error. The
Matlab script ”comhi.m” in appendix D is used for this purpose. The chosen parameters are:

ω0 = 20k fzero = 100kHz fpole = 450kHz Qzero = 2 (5.5)

The resulting open-loop bode-pole with R = 1k can be seen in Figure 5.2 together with a time
domain simulation.
The amplitude characteristic of the bode-plot cleanly shows that open-loop TF has a 3rdorder
slope between 34kHz and 100kHz, as it was intended.
Because of the high Q of the LC-filter, the phase characteristic crosses −180o at both 34kHz
and at 400kHz. According to nyquist stability criterium, a −180o phase shift does not result
in instability if the gain differ from 1. In [2] and appendix F it’s derived that the equivalent
gain of the comparator adjusts scutch that |KcompGo hi(jωfsw)| equals −6dB. Since the system
chosen to oscillate at the −180o crossing with the highest frequency, the gain of the whole loop
including the comparator is −6dB at 400kHz and much more at 34kHz. Therefore the system
does not become unstable at 34kHz.

The time-domain simulation in Figure 5.2b verifies that the system is stable, even when the
output saturates in the supply rails (+/ − 1V ). However it was necessary to saturate the
integrator and therefore also the carrier amplitude2 at 1mV .

1There are various ways to implement zomplex zeros. A passive (2 resistor, 1 capacitor) LC-filter feed-forward
solution has been reported in [3].

2A typical amplifier implementation operates with supply voltages in excess of 40V and with a larger ω0. The
carrier amplitude in such a system will often be in the order of 100mVp2p to 2Vp2p. With such carrier levels it
becomes possible to build an analog saturable integrator.
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5.2. FITTING THE PARAMETERS

Figure 5.2: a) Open-loop bode-plot of high order phase-shift modulator. b) Time-domain simu-
lation with various amplitude sinusoidals at 10kHz.

At 4Ω the switching frequency nor the transfer characteristic differ much from what is seen in
the figure.

18



5.3. NTF OF THE HIGH ORDER PHASE-SHIFT MODULATOR

5.3 NTF of the high order phase-shift modulator

To verify the performance of the high order phase-shift modulator, we have to evaluate its NTF.

Using (4.1) the gain of the comparator becomes:

Kcom1st =
1

2 |Go hi(2πfsw)|
=

1

2 · 10
−47.4dB

20dB

= 117 (5.6)

By inserting the gain and the open-loop TF into (3.7), the NTF can be found. Because of the
rather large expression, this has been done in Matlab (see Appendix D) and will not be shown
here. The bode-plot of the NTF is shown in Figure 5.3.

Figure 5.3: NTF of the high order phase-shift modulator compared with the simple COM and the
hysteretic amplifier.

The high order phase-shift modulator has a 19dB better NTF down in the audio band than the
simple COM and 23dB better that the hysteretic amplifier. This is achieved only by exploiting
the noise-shaping property of the output-LC filter. Further improvement can be achieved by
adding active poles in the loop. A stable high order COM configuration with a NTF suppression
of 101dB at 1kHz has been reported in [3], by exploiting the LC-filter and adding to active
orders two the loop.
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Chapter 6

Conclusion

The NTF (Noise Transfer Function) of an amplifier it’s the main performance parameter, since
it expresses it’s ability to suppress errors such as noise and distortion. The NTF of two clocked
PWM configurations has been compared with their hysteretic self-oscillating counterpart. By
modelling the PWM comparator as a constant gain, the NTF has been computed and verified
by simulations. The clocked designs have a constant switching frequency, but they are outper-
formed by the hysteretic modulator, in terms of NTF, by 4− 6dB.

Related to the hysteretic modulator is controlled phase-shift modulators. By using the com-
parator linearizing method, it’s shown that self-oscillating phase-shift modulators has a better
NTF than hysteretic modulators in the order of 4dB.

By adding an output LC-filter to a phase-shift modulator and including it in the loop, the filter
can be used to suppress PWM switching residuals as well as performing additional noise shaping.
The last option has been exploited and the NTF has been improved by 19dB compared to the
simple phase-shift modulator.
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Appendix A

Matlab code for NTF of A B and C

This script (’abc.m’) computes the NTF of the three linearized PWM configurations A, B and
C.

1 clear; load abcA; load abcB; load abcC;

2 fc=1; fsw=fc; T=1/8;

3 NTFa =3/(fc*4)*tf([1 0] ,[3/(fc*4) 1]);

4 NTFb =2/(4* fc)*tf(conv ([1 0],[T/2 1]) ,[T/(4*fc) (1/(2* fc)-T/2) 1]);

5 NTFc =1/(4* fsw)*tf([1 0] ,[1]);

6 [ma pa wa]=bode2(NTFa);

7 [mb pb wb]=bode2(NTFb);

8 [mc pc wc]=bode2(NTFc);

9 clf; figure (1);

10 subplot (2,1,1);

11 semilogx(wa./(2*pi) ,20*log10(ma),wb./(2* pi) ,20*log10(mb),’:’,wc./(2* pi) ,20*log10

(mc),’--’,’linewidth ’ ,2); grid on;

12 ylabel(’Magnitude (dB)’); axis ([1e-2 2 -30 5]);

13 subplot (2,1,2);

14 semilogx(wa./(2*pi),pa,wb./(2*pi),pb,’:’,wc./(2*pi),pc,’--’,’linewidth ’ ,2); grid

on;

15 set(gca ,’YTick’ ,[-180 -125 -90 -45 0 45 90 125])

16 xlabel(’Frequency (Hz)’); ylabel(’Phase (deg)’);

17 axis ([1e-2 2 0 95]);

18 legend(’NTF_A(s)’,’NTF_B(s)’,’NTF_C(s)’)

19
20 Ka =2.04; Kb =2.81; Kc =3.98;

21 NTFa2 =1/Ka*tf([1 0] ,[1/Ka 1]); [ma2 pa2 wa2]=bode2(NTFa2);

22 NTFb2 =1/Kb*tf(conv ([1 0],[T/2 1]) ,[T/(2*Kb) (1/(Kb)-T/2) 1]); [mb2 pb2 wb2]=

bode2(NTFb2);

23 NTFc2 =1/Kc*tf([1 0] ,[(1 -0.25*Kc)/Kc 1]); [mc2 pc2 wc2]=bode2(NTFc2);

24
25 figure (2);

26 subplot (1,3,1);

27 semilogx(wa./(2*pi) ,20*log10(ma),mfA ,20* log10(mNTFa),’r--’,wa2 ./(2*pi) ,20* log10(

ma2),’g:’,’linewidth ’ ,2); grid on;

28 xlabel(’Frequency (Hz)’); ylabel(’Magnitude (dB)’); axis ([2*1e-2 2 -30 5]);

legend(’NTF_A(s) Ka=4/3’,’NTF_A mesured ’,’NTF_A(s) Ka=2.04 ’)

29 subplot (1,3,2);

30 semilogx(wb./(2*pi) ,20*log10(mb),mfB ,20* log10(mNTFb),’r--’,wb2 ./(2*pi) ,20* log10(

mb2),’g:’,’linewidth ’ ,2); grid on;

31 xlabel(’Frequency (Hz)’); ylabel(’Magnitude (dB)’); axis ([2*1e-2 2 -30 5]);

legend(’NTF_B(s) Kb=2’,’NTF_B mesured ’,’NTF_B(s) Kb=2.81’)

32 subplot (1,3,3);

33 semilogx(wc./(2*pi) ,20*log10(mc),mfC ,20* log10(mNTFc),’r--’,wc2 ./(2*pi) ,20* log10(

mc2),’g:’,’linewidth ’ ,2); grid on;
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34 xlabel(’Frequency (Hz)’); ylabel(’Magnitude (dB)’); axis ([2*1e-2 2 -30 5]);

legend(’NTF_C(s) Kc=4’,’NTF_C mesured ’,’NTF_C(s) Kc=3.98’)
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Appendix B

Matlab code for mesured NTF of A
B and C

This script (’ana abc.m’) uses the simulink model ”abcmodel.mdl” to measure the NTF of case
A B and C by single tone measurement.

1 %init

2 bw=6; Ain =0.01;

3 sample_freq =6*bw;

4 [AAnum ,AAden]= butter(6,bw*2*pi,’s’);

5 num =[1]; den=conv ([1], conv ([1 2*pi],[1 2*pi]));

6 simtime =2^8;

7 M=0; %Modulation index

8
9 %Init transfer function

10 simu =1; EvalIt =1;

11 f_in=logspace(log10 (0.005) ,log10 (10) ,3);

12
13
14 %Correct f_in to match the FFT blocks

15 freq =0.1; noise =0;

16 opt=simset(’SignalLogging ’,’off’);

17 sim(’abcmodel ’,simtime ,opt);

18 [U,F]=spec(pwm ,1, sample_freq);

19 f_inc=f_in;

20 for i=1: length(f_in)

21 f_inc ([1,2],i)=[F(find(F>f_in(i) ,1));find(F>f_in(i) ,1)];

22 end

23 f_inc=unique(f_inc ’,’rows’)’;

24 %Find the switching frequency and plot it

25 [val ,where]=max(U);

26 f_sw=[F(where);where];

27 line([f_sw (1) f_sw (1)],[-10 10],’LineWidth ’,4,’Color’,’r’);

28 text(f_sw (1)*1.02,0,’F_{sw}’,’FontSize ’ ,14);

29
30
31 %Find the transfer function

32 if simu ==1

33 for noise =0:1

34 clear pwmV carrierV errorV inputV

35 for i=1: length(f_inc (1,:))

36 fprintf(’\nProgress %f%%’ ,50*noise +50*i/length(f_inc (1,:)));

37 freq=f_inc(1,i);

38 sim(’abcmodel ’,simtime ,opt);

39 [fpwm ,F]=spec(pwm ,1, sample_freq);
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40 pwmV(i)=fpwm(f_inc(2,i));

41 [fcarrier ,F]=spec(carrier ,0, sample_freq);

42 carrierV(i)=fcarrier(f_inc(2,i));

43 [finput ,F]=spec(input ,0, sample_freq);

44 inputV(i)=finput(f_inc(2,i));

45 line([f_inc(1,i) f_inc(1,i)],[-10 10],’LineWidth ’,4,’Color’,’r’);

46 text(f_inc(1,i)*1.02,0,’f_{in}’,’FontSize ’ ,14);

47 axis([min(F) max(F) -120 20]);

48 end

49 switch noise

50 case 0

51 gain=pwmV./ carrierV;

52 STF=pwmV./Ain;

53 case 1

54 NTF=pwmV./Ain;

55 end

56 end

57 save run1_abc gain STF NTF f_inc

58 end

59
60
61 if EvalIt ==1

62 figure (3)

63 semilogx(f_inc (1,:) ,20*log10(STF),f_inc (1,:) ,20* log10(NTF),f_inc (1,:) ,20*

log10(gain),’LineWidth ’ ,2)

64 grid on;

65 ylabel(’Amplitude (dB)’);

66 xlabel(’Frequency (Hz)’);

67 axis ([1e-2 bw -40 50])

68 legend(’STF (output/input)’,’NTF (output/noise)’,’Gain (pwm/carrier)’);

69 line([f_sw (1) f_sw (1)],[-10 10],’LineWidth ’,4,’Color’,’r’);

70 text(f_sw (1)*1.02,0,’F_{sw}’,’FontSize ’ ,14);

71 end

72
73 if EvalIt ==3

74 figure (3)

75 semilogx(f_inc (1,:) ./1.2 ,20* log10(gain),’LineWidth ’ ,2)

76 grid on;

77 ylabel(’Amplitude (dB)’);

78 xlabel(’Frequency (Hz)’);

79 axis ([1e-2 bw 30 70])

80 legend(’Gain (pwm/carrier)’);

81 line([f_sw (1) f_sw (1)],[20* log10(gain(ceil(end/2))) -10 20* log10(gain(ceil(

end/2)))+10],’LineWidth ’,4,’Color’,’r’);

82 text(f_sw (1) *1.02 ,20* log10(gain(ceil(end/2))),’F_{sw}’,’FontSize ’ ,14);

83 end

84
85 if EvalIt ==2

86 figure (3)

87 semilogx(f_inc (1,:) ,20*log10(STF),f_inc (1,:) ,20* log10(NTF),f_inc (1,:) ,20*

log10(gain),f,20* log10(STFm),’--’,f,20* log10(NTFm),’--’,’LineWidth ’ ,2)

88 grid on;

89 ylabel(’Amplitude (dB)’);

90 xlabel(’Frequency (Hz)’);

91 axis ([1e-2 bw -40 50])

92 legend(’STF (output/input)’,’NTF (output/noise)’,’Gain (pwm/carrier)’,’STFm

(model)’,’NTF (model’);

93 line([f_sw (1) f_sw (1)],[-10 10],’LineWidth ’,4,’Color’,’r’);

94 text(f_sw (1)*1.02,0,’F_{sw}’,’FontSize ’ ,14);

95 end
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Appendix C

Matlab code for mesured NTF of the
simple COM

This script (’ana com 1.m’) uses the simulink model ”com 1.mdl” to measure the NTF of the
simple com by single tone measurement.

1 %init

2 bw=6; Ain =0.01;

3 sample_freq =6*bw;

4 [AAnum ,AAden]= butter(6,bw*2*pi,’s’);

5 num =[1]; den=conv ([1], conv ([1 2*pi],[1 2*pi]));

6 simtime =2^8;

7 M=0; %Modulation index

8
9 %Init transfer function

10 simu =1; EvalIt =1;

11 f_in=logspace(log10 (0.005) ,log10 (10) ,3);

12
13
14 %Correct f_in to match the FFT blocks

15 freq =0.1; noise =0;

16 opt=simset(’SignalLogging ’,’off’);

17 sim(’abcmodel ’,simtime ,opt);

18 [U,F]=spec(pwm ,1, sample_freq);

19 f_inc=f_in;

20 for i=1: length(f_in)

21 f_inc ([1,2],i)=[F(find(F>f_in(i) ,1));find(F>f_in(i) ,1)];

22 end

23 f_inc=unique(f_inc ’,’rows’)’;

24 %Find the switching frequency and plot it

25 [val ,where]=max(U);

26 f_sw=[F(where);where];

27 line([f_sw (1) f_sw (1)],[-10 10],’LineWidth ’,4,’Color’,’r’);

28 text(f_sw (1)*1.02,0,’F_{sw}’,’FontSize ’ ,14);

29
30
31 %Find the transfer function

32 if simu ==1

33 for noise =0:1

34 clear pwmV carrierV errorV inputV

35 for i=1: length(f_inc (1,:))

36 fprintf(’\nProgress %f%%’ ,50*noise +50*i/length(f_inc (1,:)));

37 freq=f_inc(1,i);

38 sim(’abcmodel ’,simtime ,opt);

39 [fpwm ,F]=spec(pwm ,1, sample_freq);
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40 pwmV(i)=fpwm(f_inc(2,i));

41 [fcarrier ,F]=spec(carrier ,0, sample_freq);

42 carrierV(i)=fcarrier(f_inc(2,i));

43 [finput ,F]=spec(input ,0, sample_freq);

44 inputV(i)=finput(f_inc(2,i));

45 line([f_inc(1,i) f_inc(1,i)],[-10 10],’LineWidth ’,4,’Color’,’r’);

46 text(f_inc(1,i)*1.02,0,’f_{in}’,’FontSize ’ ,14);

47 axis([min(F) max(F) -120 20]);

48 end

49 switch noise

50 case 0

51 gain=pwmV./ carrierV;

52 STF=pwmV./Ain;

53 case 1

54 NTF=pwmV./Ain;

55 end

56 end

57 save run1_abc gain STF NTF f_inc

58 end

59
60
61 if EvalIt ==1

62 figure (3)

63 semilogx(f_inc (1,:) ,20*log10(STF),f_inc (1,:) ,20* log10(NTF),f_inc (1,:) ,20*

log10(gain),’LineWidth ’ ,2)

64 grid on;

65 ylabel(’Amplitude (dB)’);

66 xlabel(’Frequency (Hz)’);

67 axis ([1e-2 bw -40 50])

68 legend(’STF (output/input)’,’NTF (output/noise)’,’Gain (pwm/carrier)’);

69 line([f_sw (1) f_sw (1)],[-10 10],’LineWidth ’,4,’Color’,’r’);

70 text(f_sw (1)*1.02,0,’F_{sw}’,’FontSize ’ ,14);

71 end

72
73 if EvalIt ==3

74 figure (3)

75 semilogx(f_inc (1,:) ./1.2 ,20* log10(gain),’LineWidth ’ ,2)

76 grid on;

77 ylabel(’Amplitude (dB)’);

78 xlabel(’Frequency (Hz)’);

79 axis ([1e-2 bw 30 70])

80 legend(’Gain (pwm/carrier)’);

81 line([f_sw (1) f_sw (1)],[20* log10(gain(ceil(end/2))) -10 20* log10(gain(ceil(

end/2)))+10],’LineWidth ’,4,’Color’,’r’);

82 text(f_sw (1) *1.02 ,20* log10(gain(ceil(end/2))),’F_{sw}’,’FontSize ’ ,14);

83 end

84
85 if EvalIt ==2

86 figure (3)

87 semilogx(f_inc (1,:) ,20*log10(STF),f_inc (1,:) ,20* log10(NTF),f_inc (1,:) ,20*

log10(gain),f,20* log10(STFm),’--’,f,20* log10(NTFm),’--’,’LineWidth ’ ,2)

88 grid on;

89 ylabel(’Amplitude (dB)’);

90 xlabel(’Frequency (Hz)’);

91 axis ([1e-2 bw -40 50])

92 legend(’STF (output/input)’,’NTF (output/noise)’,’Gain (pwm/carrier)’,’STFm

(model)’,’NTF (model’);

93 line([f_sw (1) f_sw (1)],[-10 10],’LineWidth ’,4,’Color’,’r’);

94 text(f_sw (1)*1.02,0,’F_{sw}’,’FontSize ’ ,14);

95 end
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Appendix D

Matlab code for higher order
phase-shift modulator

This scripts (”comhi.m”) computes the open-loop bode-plot for the high order phase-shift mod-
ulator. The model ”hicomp.mdl” is also needed and serves to make a time-plot of the switched
modulator, to verify that the system works in the time domain.

1 clear; clf;

2 %High order com

3 w=2*pi*logspace(log10(1e3),log10(1e6) ,500);

4 f_sw =400*1 e3;

5
6 %The LC filter

7 R=1e3; C=1e-6; L=22*1e-6; %F0=34kHz

8 R=4;

9 num_LC =1; den_LC =[L*C L/R +1]

10 GLC=tf(num_LC ,den_LC);

11
12 %The dual lead compensator

13 f_zero =100*1 e3; Q_zero =2; f_pole =425*1 e3; sat =1*1e-3;

14 num_comp =[1/(2* pi*f_zero)^2 1/(2*pi*f_zero*Q_zero) 1];

15 den_comp =(conv ([1/(2* pi*f_pole) 1] ,[1/(2*pi*f_pole) 1]));

16 Gcomp=tf(num_comp ,den_comp);

17
18 %The integrator

19 Gi=20*1e4*tf(1,[1 0]);

20
21 figure (1); subplot (2,2,[1 3]);

22 bode(GLC*Gcomp*Gi ,w);

23 line([f_sw f_sw],[-200 -160],’LineWidth ’,1,’Color’,’r’);

24 line([min(w/(2*pi)) max(w/(2*pi))],[-180 -180],’LineWidth ’,1,’Color’,’r’);

25 axis ([1e3 1e6 -225 -45])

26
27 %init simulink

28 bw=6* f_sw; sample_freq =6*bw;

29 [AAnum ,AAden ]= butter(6,bw*2*pi,’s’);

30 noise =0; freq=1e4; simtime =1/ freq; M=0;

31 AinV =[0.1 0.5 1]; i=1:2;

32 for i=1: length(AinV)

33 Ain=AinV(i);

34 sim(’hicomp ’);

35 figure (1); subplot (2,2,2); hold on;

36 plot ((1: length(pwm))./ sample_freq ,pwm ,’LineWidth ’ ,2); axis ([0 length(pwm)/

sample_freq -1 1])
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37 hold off; grid on; title(’LC-output p(t)’); xlabel(’Time [s]’); ylabel(’

Amplitude [V]’)

38
39 subplot (2,2,4); hold on;

40 plot ((1: length(carrier))./ sample_freq ,carrier ,’LineWidth ’ ,2); axis ([0 length

(carrier)/sample_freq -sat *1.5 sat *1.5])

41 hold off; grid on;title(’Carrier c(t)’); xlabel(’Time [s]’); ylabel(’

Amplitude [V]’)

42 end

43
44 figure (4)

45 %Hi COM NTF

46 NTFhi=feedback (1 ,117.2* GLC*Gcomp*Gi);

47 [mhi phi whi]=bode2(NTFhi);

48
49 %1st COM

50 f_sw =400*1 e3;

51 num=conv ([1 0],conv ([1/(2* pi*f_sw) 1] ,[1/(2*pi*f_sw) 1]));

52 den =[1/(2* pi*f_sw)^3 1/(2*pi^2* f_sw ^2) 1/(2*pi*f_sw) 1]

53 NTFcom =1/(2* pi*f_sw)*tf(num ,den);

54 [mcom pcom wcom]=bode2(NTFcom);

55
56 %Hyst

57 NTFc =1/(4* f_sw)*tf([1 0] ,[1]);

58 [mc pc wc]=bode2(NTFc);

59
60 clf; figure (3);

61 semilogx(wc./(2*pi) ,20*log10(mc),wcom ./(2*pi) ,20*log10(mcom),’:’,whi ./(2*pi) ,20*

log10(mhi),’--’,’linewidth ’ ,2); grid on;

62 ylabel(’Magnitude (dB)’); %axis ([1e-2 2 -30]);

63 legend(’NTF_{HYST}(s)’,’NTF_{COM\_1^{st}}(s)’,’NTF_{COM\_{3^{rd}}}(s)’)

64
65 STFhi=feedback (117.2* GLC*Gi,Gcomp);
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Appendix E

Modelling of the ideal comparator

Note: This derivation of the small-signal gain for any PWM modulator is directly copied from
the paper by Lars Risbo [1].

Figure E.1: Generic PWM loop

A small-signal model reflects a systems response deviation from a steady state condition (i.e.,
DC bias point) when being perturbed by a small amplitude input. However, for a comparator
operating as a pulse width modulator, we will model perturbations to the periodic steady state
condition, where the system receives a zero input and the comparator hence produces a 50%
duty cycle signal. Conceptually, this can be done as shown in Figure E.2 by operating two
identical systems; one reference system being un-perturbed and the other being perturbed by a
small amplitude input. The small-signal response is then the difference between the perturbed
system and the reference system. The comparator and power stage will initially be modeled
as a high gain G followed by saturation to the supply rails as shown in Figure E.1. The ideal
comparator is approximated by letting G go to infinity. Both comparators receive a periodic
carrier signal c(t) with frequency fsw having two uniformly spaced zero crossings per period.
The perturbed system receives a superimposed small-amplitude perturbation signal y(t).
At each zero-crossing of c(t), the comparator will for a short time ∆t be in its non-saturated
mode acting as a linear gain G:

∆t ≈ 2VDD

|ċ0|G
(E.1)

, where ċ0 is the derivative (slope) of the carrier signal at the zero-crossing. Outside these time
intervals of duration Ät the comparator is saturated and does not respond to the perturbation
signal, i.e., here the gain is zero. The small-signal PWM output ˜p(t) is effectively the product
between y(t) and a pulse train g(t) of frequency 2fsw, where each pulse has duration ∆t and
amplitude G as shown in Figure E.3.
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Figure E.2: Conceptual small-signal model

Figure E.3: Waveforms for the finite-gain comparator
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Each pulse of g(t) has an area of:

A = G∆t ≈ 2V DD

|Ċ0|
(E.2)

I.e., the area is independent of the gain G and the duration of each pulse goes to zero for infinite
G. Consequently, for infinite gain G we can approximate the pulse train g(t) as a periodic
repetition of delta impulses. Consequently, multiplication with g(t) corresponds to a sampling
operation with frequency 2fsw followed by a multiplication by an effective comparator gain K
which is the mean value of g(t):

K = mean[g(t)] = 2fswA = 4VDD
fsw

|ċ0|
(E.3)
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Appendix F

Linearized DC gain of the
comparator and the power stage for
a phase-shift modulator

Note: This derivation of the small-signal gain of the PWM comparator in phase-oscillating mod-
ulation mode, is to a large extent copied directly from the UCD paper [2].

In the following analysis, amplitude is always meant to be peak amplitude.
In class D amplifiers employing a triangle wave or saw tooth oscillator to compare the control
signal to, DC gain of the combined comparator and power stage is the amplitude of the square
wave before the output filter (equals the supply voltage) divided by the amplitude of the triangle
wave:

ADC =
Vsq

Vtri
(F.1)

In the present circuit, the reference waveform is the signal found at the comparator inputs as a
result of the self-oscillation. Of the square wave produced by the power stage, little more than
an attenuated fundamental is left.
When the reference waveform is not a triangle or sawtooth, the modulation becomes nonlinear.
For small signal use, the gain is approximated based on the slope of the waveform. For a
sinusoidal reference waveform of amplitude Vc, small-signal gain is identical to that found with a
triangle wave that has the same slope at the zero crossings (i.e. is tangential). This is a triangle
wave with an amplitude π/2 that of the sine wave.

ADC =
Vsq
π
2 Vc

(F.2)

The fundamental of a square wave with amplitude Vsq has an amplitude of:

Vfund. =
4
π

Vsq (F.3)

The amplitude at the comparator input becomes

Vc =
4
π

Vsq |H(s)| (F.4)

Following from (F.4) and (F.2), DC gain becomes

ADC =
1

2 |H(j2πfsw)|
(F.5)
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A result worth remembering. The linearized DC gain of the comparator and the power stage
in a self-oscillating system with 180-degree oscillation condition equals one half divided by the
gain of the feedback network. If the feedback network has eq. 40dB of loss, the linearized gain
of the comparator is 34dB.
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