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Abstract  

The boundary element – Rayleigh integral method (BERIM) is developed for the 

solution of acoustic problems consisting of a cavity with a single opening. The method is 

a hybrid of the interior boundary element method (BEM) and the Rayleigh integral 

method for the solution of the Helmholtz equation. FORTRAN codes for expressing the 

method for axisymmetric problems and general three-dimensional problems are 

developed. Both methods are applied to the problem of simulating the acoustic field 

produced by horn loudspeakers. The results are compared with measured data and the 

traditional exterior boundary element method. It is shown that the method can have 

significant computational advantages over the traditional BEM for problems consisting 

of an open cavity. 
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1. Introduction 

The mathematical modelling and simulation of the acoustic field surrounding vibrating 

or scattering objects has always been a fundamental objective of acoustic engineers.  

Potentially we have a number of techniques that are available. For example for simple 

separable geometries we can often express analytic solutions. For more complicated 

(and practical) problems there are established numerical techniques such as the finite 

element method, finite difference method and the boundary element method (BEM).  

The modelling of the acoustic field exterior or interior to a surface has received much 

attention. For both the interior and exterior problems, the BEM has the potential 

advantage over domain methods – such as the finite element and finite difference 

method – in that only the surface mesh is required. The BEM is also therefore 

particularly advantageous for exterior problems. 

In both of the interior and exterior cases, the velocity potential (or sound pressure) in 

the domain can be related to the surface velocity and velocity potential through integral 

equations. The application of an integral equation solution method – or boundary 

element method – enables us to compute approximations to the sound pressure in the 

domain. The boundary element method is a well-established technique for interior and 

exterior acoustic problems, typical textbooks include Kirkup [1], Wu [2] and Ali and 

Rajakumar [3].   

The purpose of this paper is to consider a particular class of acoustic problems; the 

determination of the acoustic field from a radiating cavity. Such problems can be viewed 

as exterior problems amenable to the exterior BEM. However, often the number of 

elements required to implement the exterior BEM in such cases is large, since the mesh 
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has to cover the interior and exterior back cover of the cavity at the same time, possibly 

leading to a relatively inefficient computational solution. An alternative method is to 

extend a fictitious boundary over each opening. This results in an exterior and an 

interior acoustic problem, which are coupled by the continuity of the acoustic field 

through the fictitious boundary. Such a method is considered in Seybert et al [4] and 

Polonio et al [5]. However, this method also requires both an interior and exterior mesh 

as well as a further mesh over the openings, and hence the number of elements is 

comparable to the direct application of the BEM and hence this is likely to be of similar 

efficiency.  

The final approach, and the one that is examined in this paper, is to again place a 

fictitious boundary over an opening, and to couple the interior acoustic problem with 

the Rayleigh integral (that represents the exterior acoustic problem). The Rayleigh 

integral is a relatively simple equation that relates the exterior velocity potential to the 

surface velocity of a flat surface lying in an infinite baffle and it appears in many 

acoustics textbooks. Clearly there is not an infinite baffle at the cavity opening, and this 

method can only be used when there is one opening, but a mesh is only now needed for 

the interior and the opening of the cavity, hence there is a potential for efficiency 

savings, which will also be considered in this paper. The adoption of this model has the 

effect of also requiring that the fictitious boundary over the opening is flat. 

A method based on this final approach was presented in Geddes et al [6], in which the 

finite element method is used to model the interior domain. In this paper the BEM is 

used to model the interior domain. The new method is called the boundary element – 

Rayleigh integral method (BERIM). The motivation for the exploration of this method is 

its application to the simulation of the sound field produced by a horn loudspeaker. 



5 

 

A horn loudspeaker is a type of acoustic transducer which presents to the vibrating 

piston a higher acoustic resistance than experienced by a piston in free air. The shape of 

the horn controls the degree of loading and directional characteristics.  

 

 

Figure 1. W8LC Line Array, box and horn element. Highlighted section modelled. 

 

Practical horns do not generally conform to the classical but are formed from geometry 

which prevents simple analysis. In professional sound reinforcement, horns have been 

an essential feature for many years [7]. Amongst its virtues are higher efficiency and a 

control over directional characteristics. The latter has become very important in recent 

years, due to the advent of high power amplifiers and compression drivers built to 

withstand them. It is for this reason that we concentrate on the SPL (sound pressure 

level) and polar response in this paper. The Boundary Element – Rayleigh Integral 

method is fist applied to an axisymmetric loudspeaker using the BERIMA program. For 

the general three-dimensional problem, the method BERIM3 is applied to the horn 

loudspeaker of figure 1 and results are presented for a wide range of sample 

frequencies. 
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2. The Boundary Element – Rayleigh Integral Model 

An illustration of the sort of problems that are considered in this paper in two 

dimensions is shown in figure 2, where the acoustic domain E is exterior to the c-shaped 

surface. Clearly the smaller the opening the more the ‘interior’ part gets closer to a 

closed cavity model.  

 

Figure 2. Illustration of an open cavity. 

 

For a typical acoustic domain, such as air or water, the acoustic field can be modelled by 

the wave equation that can be written as a sequence of Helmholtz problems, each with a 

different wavenumber k: 

                                            

where   
 

 
 

   

 
 where ν is the frequency in Hz, ω is the angular frequency and c is 

the speed of sound,   is the velocity potential, related to the sound pressure p at a point 

p by the formula      iρω(p)φ p), where ρ is the density of the acoustic medium. 

cavity 

exterior acoustic domain E 
surface S 
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If we return to the choice of appropriate simulation techniques, we know that interior 

and exterior acoustic problems can be typically analysed by the finite element method 

(FEM) or boundary element method (BEM). For the interior problem the FEM is a well-

established technique, which requires a mesh of the whole domain, whereas the BEM 

only requires a mesh of the boundary.  For the exterior problem, the FEM is more 

difficult to apply because of the large (or infinite, as modelled) domain, whereas again 

the BEM only requires a boundary mesh.  Hence the BEM is an attractive method of 

solution for typical acoustics problems. There are a number of papers considering the 

application of the BEM to loudspeaker structures [8-12], and particularly a horn 

loudspeaker [13]. 

Illustrated on the two-dimensional domain, applying the exterior BEM to the cavity 

problem would first require a mesh of the boundary, as illustrated in figure 3. 

 

Figure 3. BEM mesh for the open cavity. 

The application of the BERIM method to this problem involves a revision in the model of 

the domain so that it consists of two separate regions; an interior region consisting of 

the cavity and an exterior region beyond a plane at the opening. In the application of the 

BERIM method, a mesh is only required in the cavity and in the opening of the cavity, as 
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illustrated in figure 4. It can be seen that the number of elements required in the BERIM 

method is substantially less than the number of elements required in the BEM mesh in 

figure 3 and there is a much greater potential for reducing the number of elements in 

typical general three-dimensional problems. In order to complete the model we couple 

the interior and exterior fields by simply applying the condition that the acoustic field is 

continuous across the opening. 

 

Figure  4. BEM mesh for the BERIM method applied to the cavity. 

Clearly the choice of the BERIM method effectively alters the nature of the acoustic 

domain, but this must be weighed against the potential benefit of having a smaller 

mesh; potentially resulting in a more efficient method and reducing the effort in 

defining the mesh. For many loudspeakers, the front of the cabinet is a natural finite 

baffle and in such cases the BERIM method is expected to provide a suitable model. 
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3. The Boundary Element – Rayleigh Integral Method 
 

In this section a mathematical derivation of the Boundary Element – Rayleigh Method 

using the typical concepts and notation found in the Boundary Element Method [1]. Let 

S be the surface of the cavity and Π be the opening. The boundary condition is applied 

on the surface of the cavity and the condition is presumed to be most generally in the 

following form: 

)()()()()( ppppp fvba    (pS)          (2), 

although for the horn loudspeaker application in this work only the Neumann condition 

is considered: a(p)=0, b(p)=1 (pS).  

The BERIM method is derived through coupling the interior boundary integral equation 

formulation for points on interior Helmholtz equation for the cavity [1], 

)(}{)(}
2

1
{ pp vLIM SkSk       (pS+ ),    (3)      

and the Rayleigh integral for points on  [14], 

)(}{2)( pp  kLv    (p).           (4). 

In equations (2) and (3), φ represents the velocity potential and v its derivative with 

respect to the normal that is outward to the cavity. The operators are defined as 

follows: 

qk dSGL 
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qp
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where G is the free-space Green’s function for the Helmholtz equation and Γ is used here 

to represent any surface or part of the surface (including Π), I is the identity operator. 
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If we consider equation (3) for points on S and Π separately then we obtain the 

following equations: 

)(}{)(}{)(}{)(}
2

1
{ pppp vLvLMIM kSkkSk       (pS)   (5)  

)(}{)(}{)(}
2

1
{)(}{ pppp vLvLIMM kSkkSk       (p)    (6) 

The computational method is applied by meshing the interior surface of the cavity and 

the opening alone. By approximating φ and v by constants on each element and through 

collocation of the integral equations, (4), (5), and (6) can be written as linear systems of 

equations: 

  ][2 kLv            (7), 

in line with the Rayleigh Integral Method [15], and 

  vLvLMIM SkSSSkSkSSSk ][][][]
2

1
[         (8), 

  vLvLIMM kSSkkSSk ][][]
2

1
[][     (9) 

respectively, in line with the standard interior boundary element method [1]. The 

correspondence between (4-6) and (7-9) should be clear. The operators Lk, Mk and I are 

replaced by the matrices [Lk], [Mk] and [I] and the boundary functions φ and v are 

replaced by vectors of data φ and v.  

In the collocation method the centres of the elements, the collocation points, are the 

representative points on the cavity surface and opening at which the surface functions φ 

and v are observed. If the cavity surface S is divided into n  elements and opening Π is 

divided into m elements then φS is an n-vector, φΠ is a m-vector, [Lk]SΠ is an nxm matrix 

etc. With equations (7-9) we then have n+2m equations with potentially 2n+2m 
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unknowns. The system is completed with the n equations that are provided by the 

discrete form of the boundary condition (1), 

[Da]SS φS+[Db]SS vS = fS       (10) 

where [Da]SS  and [Db]SS are diagonal nxn matrices with the diagonal made up of  the 

values of a(p) and b(p) at the collocation points on S. 

Using equations (7-10) we can form a (2n+2m)x(2n+2m) system of equations that 

returns approximations to the values of φ  and v at the collocation points. For purely 

Neumann or Dirichlet boundary conditions we can simplify (9) and in these cases we 

can write the coupled system as an (n+2m)x(n+2m) system.  

Once the surface functions are determined, results on the cavity D can be found using 

the integral  

)(}{)(}{)( ppp    skSk MvL    (pD),       (11) 

and the Rayleigh integral can be used again for points in the exterior E 

)(}{2)( pp  kLv    (pE)                    (12). 

In all cases the discrete operators are evaluated using the methods and codes H3LC and 

H3ALC, described in Kirkup [15], [1]. 

The Boundary Element – Rayleigh Integral method (BERIM) is implemented in two 

distinct ways, applied to suitable horn loudspeaker test problems and results are given. 

Firstly the method is applied to axisymmetric problems (BERIMA) in the next section 

and secondly the general three-dimensional method (BERIM3) in section 4. 

4. BERIMA: The Axisymmetric Method, Test Problem and Results 

For axisymmetric problems, it is assumed that the cavity, the boundary condition and 

the acoustic field have rotational symmetry. Clearly this represents a particular class of 

problems, but the inherent simplifications allow us to reduce the number of elements 
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significantly, and the method has the important property of allowing us to explore the 

properties of the BERIM at a reduced computational cost. The method is extended to the 

more general acoustic problem in the next section. 

For the axisymmetric case, the surface of the cavity is divided into truncated conical 

elements, the opening is respresented by a set of annular rings, and the acoustic 

properties are represented by a constant on each element, in line with the general 

development of boundary element method [1]. 

4.1 Comparison of BERIMA results with measured data 

The BERIMA routine was tested by applying it to the design of an actual axisymmetric 

horn loudspeaker. One of the authors (Kolbrek) contributed to the design of an 

axisymmetric horn for midrange use, and AEBEMA and BERIMA was used in the design 

process. The horn is calculated according to a method developed by Jean-Michel Le 

Cléac'h. In this method, the wave front areas are calculated according to the general 

family of hyperbolic-exponential horns [17], but the horn profile is corrected to take the 

curving of the wave fronts into account. A more detailed description of the method is 

given in [18] (in French), where also a spreadsheet to calculate the profile can be 

downloaded  [19]. As far as the authors are aware, this horn has not been investigated 

in the professional literature before. As can be seen from the simulations and 

measurements, this horn does not have particularly good directivity control, but the 

acoustical impedance at the entrance (throat) of the horn, is exceptionally smooth.  

The horn used in this comparison has the following parameters: cut-off frequency 

425Hz, throat radius 17.8mm, and parameter T = 0.71. The parameters were chosen 

obtain a good match to the Altec 288 series of compression drivers. 
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As the boundary for the axisymmetric methods are represented as truncated conical 

shells, generating the vertices is very simple. A dedicated pre-processor incorporating a 

horn profile generator was implemented, generating the mesh shown in figure 5. The 

rectangles show the vertices. The line shown to block the large end of the horn is the 

part of the mesh used in the RIM part of the BERIM method. The rule-of-thumb of 6 

elements per wavelength was used in setting the vertex spacing. The normal velocity 

was set to 1m/s at the throat (assumed to be flat), and zero everywhere else. 

 

Figure  5. BERIMA boundary for test horn 

The field points for directivity simulations were placed along the quarter of a circle of 3 

meters radius, covering 0-90 degrees. 91 field points were used to get good resolution. 

For directivity simulations, 15 frequencies logarithmically spaced from 400Hz to 10kHz 

were used. A polar map, showing the directivity response at all frequencies as level 

contours, is shown in figure  6. The measured response of the horn is shown in figure 7. 

In both cases the response is normalized to the on-axis response. The horn was 

measured without a baffle, which affects the results mainly at low frequencies. At higher 
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frequencies, where the horn is somewhat more directive; the differences are less 

marked. 

 

 

 

Figure 6. Simulated directivity response of the test horn using BERIMA. 
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Figure 7. Measured directivity response of the test horn. 

The throat impedance of the horn was also simulated. The knowledge of the throat 

impedance is important if it is desired to calculate the combined response of the horn-

driver combination. The throat impedance will also give information about reflections 

present in the horn. Reflections will give rise to standing waves or resonances in the 

horn, which will show up as ripple in the throat impedance. The throat impedance is 

defined as the complex ratio of pressure to volume velocity. Here it is calculated as the 

average impedance over the elements making up the throat, as 

      
  

    
               

 

 
 
where i is the index of the throat elements    ,    and    being the pressure, velocity and 

surface area of each element respectively. To get a good impression of the throat 
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impedance, rather more than 15 frequencies are required, but no field points are 

needed. 

In this investigation, 150 frequencies, logarithmically spaced from 100Hz to 10kHz 

were used. The throat impedance of the test horn was measured using the single-

microphone of Salava [20] A comparison of the throat impedance simulated by BERIMA 

and the impedance measured on the actual horn is shown in figures 8 (resistance) and 9 

(reactance). The curves have been normalized by multiplying the actual values by 
  

  
, 

where    is the throat area. The deviation is greatest around the cut-off frequency, the 

reason for this is the differences in mouth terminating conditions (2π vs. 4π solid 

angle). Note that the theoretically better terminated horn has more ripple than the horn 

radiating into full-space, indicating somewhat more reflection from the mouth. 

Repeated simulations have shown that this is normal for this horn type, and is believed 

to be caused by differences in the way the waves expand outside the horn. The horn 

contour will, if continued beyond the plane of the baffle, roll back gently, and it appears 

that this will cause less reflection back into the horn. 

Note also the peaks around 6kHz for the measured throat impedance. These peaks 

correspond to the first radial mode of the impedance tube used in the measurements, 

which has an inner diameter of 35.6mm. The peaks around 8-9kHz may be the result of 

the second mode, but may also be a result of angular modes in the tube, as a result of 

non-axisymmetric wave propagation, as the second radial mode would occur at about 

10kHz.  
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Figure 8. Throat resistance, comparison of BERIMA, AEBEMA and measured values. 

 
Figure 9. Throat reactance, comparison of BERIMA, AEBEMA and measured values 
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4.2 Comparison of BERIMA results with those from the AEBEMA boundary 

element code. 

For further validation of BERIMA, and to investigate possible improvements in 

computer run times, the same horn was simulated with AEBEMA [1], using the ordinary 

boundary elements method. The horn was placed in a cylinder to create a complete, 

closed boundary. The mesh size of the cylinder was chosen to be twice the size of mesh 

size in the horn. This had previously been found to have very little effect on the 

calculated results, and was done to reduce computer run times. The distance between 

the horn throat and the back wall is set to be a little larger than the length of one typical 

element, as a compromise between not making the mesh unnecessarily large, and not 

making the structure too thin. The mesh for the AEBEMA code is shown in figure 10. 

Both directivity and throat impedance was simulated at the same frequencies as was 

used for BERIMA. 

 

 
 

Figure 10. AEBEMA boundary for test horn. 



19 

 

 
 
The polar map for the horn simulated using AEBEMA is shown in figure 11. The throat 

impedance is shown in figures 8 and 9, where it is compared to BERIMA and 

measurements. 

 

Figure 11. Simulated directivity response of test horn using AEBEMA. 
 
 

BERIMA was found to be significantly faster than AEBEMA for the test problem 

considered in this subsection. Table 1 compares the programs for the test problem All 

calculations were done on a computer having an Intel Pentium 4, 3.0GHz processor and 

1.0GB RAM. The speed advantage of BERIMA is evident. 

 

 BERIMA AEBEMA 

Number of elements 88 107 

Ratio of max to min element radial 
size 

1.36 3.25 

Directivity calculation time 7m 36s 21m 52s 

Impedance calculation time 33m 15s 2hr 41m, 16s 

 

Table 1: Comparison of BERIMA and AEBEMA 
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5. BERIM3: The General 3D Method, Test Problem and Results 

 

One of the authors (Thompson) applied the general three-dimensional method to a horn 

loudspeaker, similar to the ones illustrated in figure 1 [21]. In order to apply BERIM3 to 

the horn loudspeaker, first the 3D solid model is generated automatically from a set of 

around 10 parameters. The model is then introduced into the popular GID pre/post 

processor [22] where a triangulation of the interior surface and mouth is made and 

subsequently solved. A typical GID post process mesh is shown in figure 12. A velocity of 

1m/s was set at the “throat” (assumed to be flat) and zero everywhere else. In order to 

mitigate the numerical effects of the sudden change in boundary conditions where the 

cavity surface meets the mouth, a small flange was added. A record of each calculation 

can be found in table 1, where number of elements and approximate running time on a 

AMD2200 PC platform are given. 

 
 
 

Figure 12. Typical BERIM3 mesh showing surface SPL at 3kHz 
 

5.1 Comparison of BERIM3 results with measured data 
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The sound pressure is observed on polar paths of 1m radius. The results from BERIM3 

are compared with measured results in figure 13, showing polar plots of the sound 

pressure level (SPL) in the vertical and horizontal polar plane and an illustration of the 

mouth velocity amplitude for 3, 6, 9, 12,and 15kHz.  

 
 

 
 
 

Figure  13. Comparison of computed and measured polar plots and computed SPL at the mouth. 
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5.2 Comparison of BERIM3 results with those from the AEBEM3 boundary 

element code. 

By way of comparison and further validation, the application of BERIM3 is compared 

with the application of the boundary element method (AEBEM3) to the same problem, 

but at 3kHz only. In order to apply the BEM, the mesh in figure 14 is used. The 

horizontal and vertical polar plots of the SPL at 1m is shown in figure 15. A comparison 

of typical computer run times for the BERIM and BEM methods for the 3D problem is 

given in table 2. 

 
 
 

Figure  14. BEM mesh showing sound pressure level at 3kHz. 
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Figure  15. Comparison of BEM results with measured data. 
 
 
 

 
 

Table 2. Comparison of BERIM3 and AEBEM3 computer run times. 
 
 

6. Conclusion 
 
For a structure such as a horn loudspeaker, which consists of a cavity (the horn) 

opening out on to the front of a cabinet, the Boundary Element – Rayleigh Integral 

Method (BERIM) seems most applicable. In the illustrative domain in figure 4, and in the 

axisymmetric test problems in figure 5 and the general test problem in figure 12 it is 

shown that BERIM requires a mesh of the interior surface and opening plane alone, 

whereas the application of the boundary element method (BEM) to the same problem 

requires considerably more elements, as shown in figures 10 and 14. As well as the 
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reduction in the number of elements, two other factors help to reduce the computer run 

times; firstly fewer operators require discretisation in the BERIM, method and when 

calculating the values at the external field points, only the velocity distribution at the 

mouth has to be taken into account, not the entire boundary. 

Hence, in many situations when it can be applied, the BERIM reduces the meshing 

required and typically uses an order of magnitude less computer time than the 

straightforward BEM. The directivity response for the axisymmetric horn shows good 

agreement between BERIM results, measured results and BEM results and the polar 

plots for the general 3D horn show good agreement with measured results in figure 13 

and with BEM results in figure 14.  

For the general 3D case, BERIM3 seems to give better agreement with measured than 

the BEM in the forward field, however, near the baffle the BEM has more agreement. 

The proposed reason for this is that the BEM accurately meshes the baffle whereas 

BERIM assumes and infinite baffle; BERIM3 gives more support to the wider field than 

the true finite baffle. In general the lobes in the sound field are captured. There is only 

significant drift in the horizontal polar at 15kHz: this would probably benefit from a 

further refinement in the mesh.  

In general the Boundary Element – Rayleigh Integral method is a useful additional 

technique for the simulation of the sound field of a horn loudspeaker or other acoustic 

problems consisting of a cavity with one opening, which can return a significant 

reduction in computation time. The codes BERIM3 and BERIMA, introduced in this  

paper, as well as the other codes AEBEM3 and AEBEMA, and the supporting codes are 

available as open source [1]. 
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 BERIMA AEBEMA 

Number of elements 88 107 

Ratio of max to min element radial size 1.36 3.25 

Directivity calculation time 7m 36s 21m 52s 

Impedance calculation time 33m 15s 2hr 41m, 16s 

 

Table 1: Comparison of BERIMA and AEBEMA 
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Table 2. Comparison of BERIM3 and AEBEM3 computer run times. 
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Figures captions 

Figure 1. W8LC Line Array, box and horn element. Highlighted section modelled. 

Figure 2. Illustration of an open cavity. 

Figure 3. BEM mesh for the open cavity. 

Figure 4. BEM mesh for the BERIM method applied to the cavity. 

Figure 5. BERIMA boundary for test horn. 

Figure 6. Simulated directivity response of  the test horn using BERIMA. 

Figure 7. Measured directivity response of the test horn. 

Figure 8. Throat resistance, comparison of BERIMA, AEBEMA and measured values. 
 
Figure 9. Throat reactance, comparison of BERIMA, AEBEMA and measured values. 
 
Figure  10. AEBEMA boundary for test horn. 

Figure  11. Simulated directivity response of test horn using AEBEMA 

Figure 12. Typical BERIM3 mesh showing surface SPL at 3kHz. 

Figure 13. Comparison of computed and measured polar plots and computed SPL at the mouth. 

Figure 14. BEM mesh showing sound pressure level at 3kHz. 

Figure 15. Comparison of BEM results with measured data. 
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