

ANALOG DEVICES, INC.

www.analog.com

SIGMASTUDIO FOR SHARC

FRAMEWORK

KT-2252 (REV 2.0, SEPTEMBER-2014)

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 2 of 61

Table of Contents

1 Introduction .. 7

1.1 Scope .. 7

1.2 Organisation of this Guide .. 7

1.3 Acronyms .. 8

1.4 References .. 8

1.5 Additional Information .. 8

2 Overview .. 9

2.1 Audio IO .. 10

2.2 Connectivity ... 10

2.3 Processing and Control ... 10

3 Framework Parameters ... 11

3.1 Application Sampling Rate .. 11

3.2 Application Block Size ... 12

3.3 Number of processing buffers .. 12

3.4 SPORT Buffer Size .. 12

3.5 Input To Output Rate and Output To Input Rate ratios .. 13

3.6 SPORT Buffer Count (Number of SPORT Buffers) .. 13

3.7 Configuring Buffer Sizes ... 13

3.8 Relationship between Buffer Size and peak MIPS of a Module 15

4 Audio data input and output modes .. 18

4.1 Application Input and Output buffer pointers ... 18

4.2 I2S mode of operation .. 19

4.3 TDM mode of operation for ADSP-214xx SHARC Targets ... 20

4.3.1 CODEC in master mode .. 21

5 PCMx data format .. 23

5.1 Application changes for PCMx data .. 24

5.1.1 Schematic with PCMx type when Application Block Size

(PROCESSING_BLK_SIZE) and Schematic Block Size are different 26

6 ASM Macros for Saving and Restoring System Registers .. 28

7 Symbol XML File ... 29

7.1 XML Elements .. 29

7.1.1 <SS4SH> .. 29

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 3 of 61

7.1.2 <ic> ... 30

7.1.3 <ldr> .. 30

7.1.4 <symbol> .. 31

8 Application preprocessor macros ... 32

9 ADSP-214xx demo Applications with non-VISA mode ... 33

10 Target Framework Interfaces .. 34

10.1 Framework Interface functions .. 34

10.1.1 Target Framework Initialization ... 34

10.1.1.1 InitAudioSystem .. 34

10.1.2 DAI Peripherals .. 34

10.1.2.1 SPORT ... 35

10.1.2.1.1 InitializeSport .. 35

10.1.2.2 PCG ... 35

10.1.2.2.1 setupPCG .. 35

10.1.2.3 SRC ... 36

10.1.2.3.1 InitSRC... 36

10.1.2.4 S/PDIF ... 37

10.1.2.4.1 InitSPDIF .. 37

10.1.2.4.2 CopySPDIFStatusInfoFromRxToTx .. 38

10.1.3 System Peripherals .. 38

10.1.3.1 CODEC .. 38

10.1.3.1.1 InitAudioCodec .. 38

10.1.4 Input-Output .. 39

10.1.4.1 Audio Input Data ... 39

10.1.4.1.1 GetInputDataI2S ... 40

10.1.4.1.2 GetInputDataTDM .. 40

10.1.4.2 Audio Output Data ... 41

10.1.4.2.1 WriteOutputDataI2S ... 41

10.1.4.2.2 WriteOutputDataTDM .. 42

10.1.4.3 SPI Read-Back .. 43

10.1.4.3.1 HandleBackChCustomCmd ... 43

10.2 Framework Enumerations ... 43

10.2.1 SS4SAppRes ... 43

10.2.2 SS4SAppStatus ... 44

11 Default Target Library Configuration Parameters set in the Application 45

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 4 of 61

11.1 adi_ss_comm_init ... 45

11.2 adi_ss_init ... 45

A. Maintaining sync between memories reserved in the Application for SSn and

Schematic IC control form ... 47

A.1 Impact of macro “MEMORY_USAGE_FACTOR_BLK1” .. 49

A.2 Impact of macro “MEMORY_USAGE_FACTOR_BLK2” .. 51

B. Computation of Average and Peak MIPS in the Application.. 53

B.1 Average MIPS ... 53

B.2 Peak MIPS .. 53

C. NaN Handling in the framework ... 55

D. Porting Application to other SHARC variants or other platforms 56

D.1 Platform specific build time macros in the Application ... 57

D.2 Steps to be followed for porting the Application to a different SHARC variant which

uses the EZ-KIT Lite/EZ-Board platform ... 57

D.3 Steps to be followed for porting the Application to a SHARC variant on a custom

platform ... 58

E. Framework performance parameters ... 59

F. S/PDIF Channel Status ... 60

F.1 Default S/PDIF channel status fields set in SigmaStudio for SHARC Application 60

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 5 of 61

List of Figures

Figure 1: SigmaStudio for SHARC framework - System Overview .. 9

Figure 2: CCES Project Properties – Compiler Preprocessor ... 12

Figure 3: Illustration of Application buffering terms ... 14

Figure 4: Input buffer pointers .. 18

Figure 5: Input buffer pointer for Analog\Digital Co-existence (Digital Clock) mode 18

Figure 6: Output buffer pointers ... 19

Figure 7: I2S mode of operation for Analog/Digital Co-existence .. 19

Figure 8: I2S mode of operation for Analog/Digital Co-existence (Digital Clock) 20

Figure 9: Block diagram depicting the TDM master mode of the CODEC 21

Figure 10: PCMx Data format ... 23

Figure 11: Sample Schematic with PCMx input ... 25

Figure 12: Sample Schematic with PCMx output .. 26

Figure 13: PCMx data propagation .. 27

List of Tables

Table 1: Example Application macro combinations for buffer management 15

Table 2: SHARC DAI pin usage for CODEC in master mode .. 22

Table 3: Default configuration parameters set in the Application for adi_ss_comm_init

Target Library API ... 45

Table 4: Default configuration parameters set in the Application for adi_ss_init Target

Library API .. 46

Table 5: Application macros that define the SSn memory sizes ... 47

Table 6: Application macros which influence the SSn state and parameter memory sizes . 49

Table 7: Performance figures for SigmaStudio for SHARC framework 59

Table 8: Default S/PDIF channel status parameters set in the SigmaStudio for SHARC

Application ... 61

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 6 of 61

Copyright, Disclaimer & Trademark Statements

Copyright Information

Copyright (c) 2009-2014 Analog Devices, Inc. All Rights Reserved. This software is proprietary

and confidential to Analog Devices, Inc. and its licensors. This document may not be reproduced in

any form without prior, express written consent from Analog Devices, Inc.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information

furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is

assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third

parties which may result from its use. No license is granted by implication or otherwise under the

patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

Analog Devices, the Analog Devices logo, SigmaStudio, Blackfin, SHARC, TigerSHARC,

CrossCore, VisualDSP, VisualDSP++, EZ-KIT Lite, EZ-Extender and Collaborative are trademarks

and/or registered trademarks “®” of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

Analog Devices’ Trademarks and Service Marks may not be used without the express written

consent of Analog Devices, such consent only to be provided in a separate written agreement

signed by Analog Devices. Subject to the foregoing, such Trademarks and Service Marks must be

reproduced according to ADI’s Trademark Usage guidelines. Any licensee wishing to reproduce

ADI’s Trademarks and Service Marks must obtain and follow these guidelines for the specific

marks at issue.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 7 of 61

1 Introduction
SigmaStudio™ is a development environment from Analog Devices for graphically programming

ADI’s DSPs. SigmaStudio for SHARC includes an extensive set of algorithms to perform audio

processing tasks such as filtering and mixing, as well as basic low-level DSP functions, optimized

to run on the SHARC family of processors. SigmaStudio for SHARC also provides support for

Analog Devices Software Modules such as the Dolby® Digital AC3 Decoder. SHARC Software

Modules can be obtained separately along with their respective SigmaStudio Plug-Ins.

The environment also extends parameter export and filter coefficient generation support for a host

microcontroller. Automation API support is provided to connect with many other tools, such as

Python, .NET application, Matlab®, and LabVIEW. An easy-to-use graphical interface allows users

to create custom filters, compressors and other audio-shaping algorithms to improve or change the

characteristics of the audio. SigmaStudio for SHARC Algorithm Designer is provided to convert

existing Software Modules or other SHARC libraries into SigmaStudio Plug-Ins. The environment

is integrated with CrossCore® Embedded Studio.

1.1 Scope
This document is intended to assist Application or framework design engineers to configure the

Default Application to meet custom SHARC Target needs. The document gives implementation and

configuration details of different components of the SigmaStudio for SHARC Application.

1.2 Organisation of this Guide
Section 1 : This section contains the introduction.

Section 2 : This section gives an overview of the Application.

Section 3 : This section describes the framework parameters.

Section 4 : This section provides information related to audio CODEC.

Section 5 : This section provides information related to PCMx data format.

Section 6 : This section explains the System Register save/restore ASM macros used in Application.

Section 7 : This section gives the details of Symbol XML file.

Section 8 : This section contains details of the Application macros.

Section 9 : This section contains instructions for building the Application in non-VISA mode.

Section 10 : This section provides information on the interfaces which are used in the Target

Framework.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 8 of 61

1.3 Acronyms
ADC Analog to Digital Converter

ADI Analog Devices Inc.

API Application Program Interface

DAC Digital to Analog Converter

DAI Digital Audio Interface

DMS Document Management System

I2S Integrated Interchip Sound

NaN Not-a-Number

PCG Precision Clock Generator

PCM Pulse Code Modulation

S/PDIF Sony/Philips Digital Interconnect Format

SPI Serial Peripheral Interface

SPORT Serial Port

SRC Sample Rate Converter

SRU Signal Routing Unit

TDM Time Division Multiplexing

1.4 References
[1] SigmaStudio_for_SHARC_Users_Guide.pdf

Analog Devices Inc
[2] SigmaStudio_for_SHARC_AlgorithmDesigner.pdf

Analog Devices Inc
[3] SigmaStudio_for_SHARC_ReferenceGuide.pdf

Analog Devices, Inc.
[4] SHARC Audio EZ-Extender Manual,

Analog Devices Inc, Revision 1.1, August 2012
[5] ADSP-214xx SHARC Processor Hardware Reference

Analog Devices Inc, Revision 1.1, April 2013

1.5 Additional Information
For more information on the latest ADI processors, silicon errata, code examples, development

tools, system services and devices drivers, technical support and any other additional information,

please visit our website at www.analog.com/processors.

http://www.analog.com/processors

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 9 of 61

2 Overview
The Application described in this document is developed using the supplied SigmaStudio For

SHARC Target APIs [3] and the supplied IO drivers. This flexibility allows the user to integrate the

SigmaStudio Tuning feature to existing Applications. The sections below explain the configuration

and other details about the Application. A quick-start guide to using the Default Application on the

ADI EZ-KITs is described in [1]. The modified/created Application Loader File is used for booting

the SHARC Target.

The Application Loader File ss_app_shxxx.ldr is loaded from the SigmaStudio Host machine

through SPI. The Application Loader File has a SPI connectivity driver, which can receive the

protocol packet from the SigmaStudio Host. The Application Loader File contains the code for

reading input and playing output audio samples. Additionally, the Application also has code for

setting the EZ-KIT LEDs for status indication.

The Application also contains the code to instantiate an empty placeholder for SSn code, data,

parameters and tables that will be sent by the SigmaStudio Host. To reserve all the above resources

for an SSn instance, the respective APIs are called. Advanced users can write their own Application

to use the SPI connectivity and the SigmaStudio Tuning facility. Refer to Section 7 of [3] for more

details.

The Application framework supports the following features:

 Real-Time Audio Signal Processing and Tuning/Control

Figure 1: SigmaStudio for SHARC framework - System Overview

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 10 of 61

 Supports Analog and Digital Inputs/Outputs

 Default Control through SPI.

 Other controls such as UART are supported through the Application.

 Custom controls are supported through the Application

2.1 Audio IO
The Application framework can support the following audio input/outputs

 Analog audio in

 Digital audio in

 Analog audio out

 Digital audio out

2.2 Connectivity
Only SPI Connectivity is supported currently.

2.3 Processing and Control
The Application framework performs/controls/facilitates the following tasks.

 Booting

 Code downloading

 Signal Processing Algorithms

 Algorithm control

 Data Rate control

 Clocking

 Peripheral configurations

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 11 of 61

3 Framework Parameters
The Application can be rebuilt for different Application Sampling Rates, Application Block Sizes

and SPORT buffer sizes. Refer to Annexure A for the impact of framework parameter changes on

the SSn state and parameter memories.

3.1 Application Sampling Rate
The Application supports 48 kHz, 96 kHz and 192 kHz Application Sampling Rates in TDM mode.

Only 48 kHz Application Sampling Rate is supported in I2S mode. Note that, TDM mode is

enabled in the Default Application for ADSP-214xx SHARC Target and I2S mode is enabled for

ADSP-213xx SHARC Target. To change the mode to I2S in the ADSP-214xx Application, refer to

section 8 .

The default Application Sampling Rate is 48 kHz. To change the Application Sampling Rate to a

different value, other than the default value in TDM mode, follow the instructions below:

1) Using the CrossCore Embedded Studio Examples Browser, filter examples by the

SigmaStudio For SHARC product and select othe SigmaStudio for SHARC Demo Apps for

one of the ADSP-214xx SHARC Targets, and open the project.

2) Open the project properties window. Select CrossCore SHARC C/C++

CompilerPreprocessor. Refer to Figure 2 which shows a snapshot of this for ADSP-21469

processor.

3) Edit the macro APP_SAMPLING_RATE=SAMPLING_RATE_48K in Preprocessor

definitions to the desired Application Sampling Rate of 48 kHz, 96 kHz or 192 kHz using

SAMPLING_RATE_48K, SAMPLING_RATE_96K or SAMPLING_RATE_192K macros

respectively.

For example, to change the Application Sampling Rate to 96 kHz edit the macro as shown

below.

APP_SAMPLING_RATE=SAMPLING_RATE_96K

4) Select Apply and then OK. Clean and rebuild the Application.

Note: The input and output Application Sampling Rates shall always be the same.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 12 of 61

Figure 2: CCES Project Properties – Compiler Preprocessor

3.2 Application Block Size
The Application Block Size can be changed within the Application by changing the macro

PROCESSING_BLK_SIZE in the file app.h. Note that the macro PROCESSING_BLK_SIZE is

analogous to the macro NUM_SAMPLES, used in pre 2.1.0 releases. The Schematic Block Size

must always be lesser than or equal to the PROCESSING_BLK_SIZE.

3.3 Number of processing buffers
The number of the processing buffers in the Application is denoted by the macro

NUMBER_PROCESSING_BUFFERS. Refer to Annexure A for more details.

3.4 SPORT Buffer Size
The SPORT buffer size is the size in samples/channel, at which the SPORT DMA transfers data

packets to the SHARC internal/external memory from the external world or vice versa.

The SPORT buffer size can be changed within the Application by changing the macro

SPORT_BUFFER_SIZE in the file app.h.

This feature gives users the flexibility to control audio I/O interrupt durations in a more granular

manner.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 13 of 61

3.5 Input To Output Rate and Output To Input Rate

ratios
Some processing Modules may support different rates at the input and output. Such Modules

require different amounts of buffering at input and output for optimal utilization of system memory.

The following two macros allow different amounts of buffering at the input and output.

1. INPUT_TO_OUTPUT_RATE – This macro can be used to specify the input to output rate

ratio for the Application. This macro is used to scale up the memory allocation for input

buffering of the data acquired through SPORTS, to account for higher input rate compared

to output. The default value of this macro is 1.

2. OUTPUT_TO_INPUT_RATE - This macro can be used to specify the output to input rate

ratio for the Application. This macro is used to scale up the memory allocation for output

buffering of the data rendered through SPORTS, to account for higher output rate compared

to input. The default value of this macro is 1.

Note that these macros must take integer values and at least one of these macros must be set to 1.

The maximum value for these macros is limited by the available system memory.

3.6 SPORT Buffer Count (Number of SPORT Buffers)
To meet real-time performance, the Application must have more than one SPORT buffer so that

while one or more buffers are being filled, processing can happen on one or more different sets of

buffers.

The number of input SPORT buffers is denoted by macro NUM_INPUT_SPORT_BUFFERS and

the number of output SPORT buffers is denoted by macro NUM_OUTPUT_SPORT_BUFFERS in

app.h. These macros are calculated automatically in the Application as in the expressions below.

NUM_INPUT_SPORT_BUFFERS =

(((NUMBER_PROCESSING_BUFFERS*PROCESSING_BLK_SIZE)/SPORT_BUFFER_SIZE)

* INPUT_TO_OUTPUT_RATE)

NUM_OUTPUT_SPORT_BUFFERS =

(((NUMBER_PROCESSING_BUFFERS*PROCESSING_BLK_SIZE)/SPORT_BUFFER_SIZE)

* OUTPUT_TO_INPUT_RATE)

3.7 Configuring Buffer Sizes
There are some restrictions on choosing values for SPORT_BUFFER_SIZE and

PROCESSING_BLK_SIZE in the Application as listed below.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 14 of 61

1. SPORT_BUFFER_SIZE must be less than or equal to the PROCESSING_BLK_SIZE.

2. The product of SPORT_BUFFER_SIZE and NUM_INPUT_SPORT_BUFFERS must be a

multiple of PROCESSING_BLK_SIZE. Similarly the product of SPORT_BUFFER_SIZE

and NUM_OUTPUT_SPORT_BUFFERS must be a multiple of

PROCESSING_BLK_SIZE. This multiple is defined by the macro

“NUMBER_PROCESSING_BUFFERS”, in the file app.h.

Figure 3 below, illustrates the SPORT_BUFFER_SIZE, NUM_INPUT_SPORT_BUFFERS,

NUM_OUTPUT_SPORT_BUFFERS, PROCESSING_BLK_SIZE and

NUMBER_PROCESSING_BUFFERS for the case when INPUT_TO_OUTPUT_RATE = 1 and

OUTPUT_TO_INPUT_RATE = 1.

Note that when INPUT_TO_OUTPUT_RATE = 1 and OUTPUT_TO_INPUT_RATE = 1,

NUM_INPUT_SPORT_BUFFERS = NUM_OUTPUT_SPORT_BUFFERS.

Let us denote,

SPORT_BUFFER_SIZE as BSI

PROCESSING_BLK_SIZE as BPI

NUMBER_PROCESSING_BUFFERS as NUMBPI

NUM_INPUT_SPORT_BUFFERS as NUMBSI

NUM_OUTPUT_SPORT_BUFFERS as NUMBSO

*Assumed that INPUT_TO_OUTPUT_RATE = OUTPUT_TO_INPUT_RATE = 1

Figure 3: Illustration of Application buffering terms

Based on the average and peak load of the Schematic, the “PROCESSING_BLK_SIZE”,

“SPORT_BUFFER_SIZE” and “NUMBER_PROCESSING_BUFFERS” must be chosen

accordingly. The values for macros INPUT_TO_OUTPUT_RATE and

OUTPUT_TO_INPUT_RATE must be chosen based on the input and output sampling rates.

BPI

BSI

1 2 3 4 5 6 7 8 NUMBSI*

NUMBSO*

1 2 NUMBPI

…

…

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 15 of 61

Increasing the total input buffering (equal to “NUMBER_PROCESSING_BUFFERS *

PROCESSING_BLK_SIZE * INPUT_TO_OUTPUT_RATE”) or total output buffering (equal to

“NUMBER_PROCESSING_BUFFERS * PROCESSING_BLK_SIZE *

OUTPUT_TO_INPUT_RATE”) ensures that the input buffer does not overflow or output buffer

does not underflow while processing blocks of data that consume high MIPS. The table below lists

some combinations for these macros. The table assumes INPUT_TO_OUTPUT_RATE = 1 and

OUTPUT_TO_INPUT_RATE = 1.

PROCESSING_

BLK_SIZE

SPORT_BUFFER

_SIZE

NUMBER_

PROCESSING_

BUFFERS

NUM_INPUT_

SPORT_BUFFERS

(calculated

automatically in

the Application)

NUM_OUTPUT_

SPORT_BUFFERS

(calculated

automatically in

the Application)

64 16 3 12 12

256 16 3 48 48

128 32 4 16 16

 Table 1: Example Application macro combinations for buffer management

3.8 Relationship between Buffer Size and peak

MIPS of a Module
Let:

 BPI = PROCESSING_BLK_SIZE

 BSI = SPORT_BUFFER_SIZE (SPORT buffer size)

 NUMBPI = NUMBER_PROCESSING_BUFFERS

 NUMBSI = NUM_INPUT_SPORT_BUFFERS

 NUMBSO = NUM_OUTPUT_SPORT_BUFFERS

 RATIO = INPUT_TO_OUTPUT_RATE

 RATOI = OUTPUT_TO_INPUT_RATE.

 BMI = Module input buffer size

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 16 of 61

 MIPSMAX= Maximum available MIPS for the chosen SHARC Target.

 MIPSPM = Peak MIPS of the Module or Schematic.

 BUFMin = Minimum buffering required in the Application before data processing.

 BUFTot = Total input buffer required.

Then:

MIPSBUFMin = Max load the system can handle by buffering BUFMin amount of data =

 (BUFMin/BMI)* MIPSMAX

Peak MIPS of Module needs to be less than the max load that can be handled for given BUFMin,

hence

 MIPSPM < MIPSBUFMin

 MIPSPM < (BUFMin/BMI)* MIPSMAX

Hence, minimum buffering required before the data can be processed is,

 BUFMin > (MIPSPM* BMI) / MIPSMAX

Assuming triple buffering, the total input buffer requirement is

 BUFTot = BUFMin*3

Based on the value of BUFTot, fix the values of BPI and BSI. The NUMBPI is calculated as

 NUMBPI = BUFTot /BPI

NUMBSI gets calculated automatically as

 NUMBSI = ((NUMBPI*BPI)/BSI)* RATIO

NUMBSO gets calculated automatically as

 NUMBSO = ((NUMBPI*BPI)/BSI)* RATOI

Example:

Consider an example SHARC ADSP-21469 Module having a peak MIPS of 50 and Module buffer

size of 1536 samples. MIPSMAX for ADSP-21469 SHARC Target is 400 MIPS.

To handle a peak load of 50 MIPS, the minimum buffering required before calling process is

BUFMin >= (50*1536)/400

BUFMin >= 192

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 17 of 61

Let BUFMin = 192

For triple buffering of input,

BUFTot = BUFMin*3 = 192*3 = 576

Let’s fix the value of the BPI to be 64 and BSI to be 16.

NUMBPI = BUFTot /BPI = 576/64 = 9

Let the input rate be 4 times the rate of the output.

i.e. RATIO = 4 and RATOI = 1

NUMBSI = ((NUMBPI*BPI)/BSI)*RATIO = ((9*64)/16)*4 = 144 (gets calculated automatically in the

Application)

NUMBSO = ((NUMBPI*BPI)/BSI)*RATOI = ((9*64)/16)*1 = 36 (gets calculated automatically in the

Application)

Hence the Module requires 144 input SPORT buffers of size 16 samples each and 36 output

SPORT buffers of size 16 samples each. The Application Block Size BPI is fixed to 64 samples in

this case.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 18 of 61

4 Audio data input and output modes

4.1 Application Input and Output buffer pointers
The Application must supply data input and output buffer pointers to the SigmaStudio for SHARC

Target Library through the adi_ss_schematic_process() API. Refer to section 7.3.6 of [3] for more

information on this API. This section explains how the input and output buffer pointers must be

initialized from the Application.

The input buffer pointers for the audio modes namely – Analog-In, Digital-In, Digital-Out alone

and Analog/Digital Co-Existence are shown in Figure 4.

Figure 4: Input buffer pointers

The input buffer pointer for the Analog/Digital Co-existence (Digital Clock) mode is shown in

Figure 5.

Figure 5: Input buffer pointer for Analog\Digital Co-existence (Digital Clock) mode

Input buffer pointers

pBuffer 0 Channel 0 Audio Data (N ADC Samples)

Channel 1 Audio Data (N ADC Samples)

Channel 3 Audio Data (N ADC Samples) pBuffer 3

pBuffer 1

Channel 4 Audio Data (N PCM Samples from S/PDIF) pBuffer 4

Channel 5 Audio Data (N PCM Samples from S/PDIF)

pBuffer 5

Input buffer pointers

pBuffer 0 Channel 0 Audio Data (N ADC Samples)

Channel 1 Audio Data (N ADC Samples)

Channel 3 Audio Data (N ADC Samples) pBuffer 3

pBuffer 1

Compressed bit-stream (Non-Linear PCM from S/PDIF) pBuffer 4

pBuffer 5 Not used

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 19 of 61

The output buffer pointers are shown in Figure 6.

Figure 6: Output buffer pointers

4.2 I2S mode of operation
In I2S mode, a SPORT channel can carry only a single stereo audio channel. The clocking

requirement is for the transmission of a stereo channel only. For transmitting/receiving multiple

pairs of channels, multiple SPORTs are required to be used. Thus in the I2S mode, several SPORTs

are required for data transmission and reception for various channel pairs but at lower clock

requirements.

The block diagram in Figure 7 illustrates the I2S mode of operation with the Input-Output Mode as

“Analog/Digital Co-existence”.

Figure 7: I2S mode of operation for Analog/Digital Co-existence

Output buffer pointers

pBuffer 0 Channel 0 Audio Data (N ADC Samples)

Channel 1 Audio Data (N ADC Samples)

Channel 7 Audio Data (N ADC Samples) pBuffer 7

pBuffer 1

Channel 8 Audio Data (N PCM Samples from S/PDIF) pBuffer 8

Channel 9 Audio Data (N PCM Samples from S/PDIF)

pBuffer 9

S
R
C

ADC SPORTs

S/PDIF

Precision Clock
Generator (PCG)

SPORTs

SHARC
SSn

Process
()

DAC SPORT

SPORT
S
R
C

S/PDIF

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 20 of 61

The block diagram in Figure 8 illustrates the I2S mode of operation with the Input-Output Mode as

“Analog/Digital Co-existence (Digital Clock)”.

Figure 8: I2S mode of operation for Analog/Digital Co-existence (Digital Clock)

4.3 TDM mode of operation for ADSP-214xx

SHARC Targets
The ADSP-214xx SHARC Targets support TDM mode of SPORT operation. In TDM mode, a

SPORT channel can carry up to eight stereo channels. Note that the SPORTS have to be clocked at

a higher rate in TDM mode of operation.

By configuring the SPORTs in TDM mode, the number of SPORTs required for data input and

output can be reduced which in turn reduces the DAI pin count required for the data I/O. Thus,

configuring the SPORTs in TDM mode allows for more input and output channels to be supported

from the Application.

The bit clock and the frame sync clock required for the SPORTs may be derived either from the

audio CODEC on the EZ-KIT or may be internally generated within the SHARC using the PCG.

For TDM mode of operation the CODEC is also required to be configured for TDM mode.

If the CODEC clock and frame syncs are used for configuring the SPORTs, then the CODEC is in

the master mode. That is, the CODEC is the master and the SHARC is the slave. If the clocks for

the SPORTs and CODEC are internally generated within the SHARC using the PCG, then the

SHARC is the master and the CODEC is the slave. The CODEC in master mode is described

below.

SPORT

S/PDIF
Rx

S/PDIF receiver
recovered clock

SPORT

SHARC
SSn

Process()

SPORT

SPORT

ADC

S/PDIF
Tx

DAC

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 21 of 61

4.3.1 CODEC in master mode

With the CODEC as master, the bit clock and frame sync are generated by the audio CODEC on-

board the EZ-KIT. The SRU is configured within the Application such that the bit clock and frame

syncs from the CODEC are routed to the SPORTs.

PCG A is used to divide down the TDM clock from the CODEC. This clock from PCG A is used

for rate conversion of S/PDIF input data (from S/PDIF receiver) from S/PDIF rate to the CODEC

rate using SRC 0. SRC 1 is used for rate conversion of S/PDIF output data (to S/PDIF transmitter)

from CODEC rate back to S/PDIF rate. Note that if S/PDIF input is not plugged-in, the clock from

PCG A is directly used to clock S/PDIF transmitter (Alt PCG CLK and Alt PCG Fs in Figure 9).

Figure 9 below illustrates the block diagram for the TDM mode of operation with the CODEC as

the master.

Figure 9: Block diagram depicting the TDM master mode of the CODEC

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 22 of 61

The DAI pins used on the SHARC are described in the table below.

DAI pin

number

Pin

direction

Functionality

DAI pin 7 Input Bit clock (ABCLK)

DAI pin 8 Input Frame sync (ALRCLK)

DAI pin 5 Input Data from ADC to SPORT 1 channel A (ASDATA)

DAI pin 12 Output Data to DAC from SPORT 2 channel A (DSDATA)

DAI pin 10 Output Data to DAC from SPORT 2 channel B (for 192kHz Application

Sampling Rate only)

DAI pin 18 Input S/PDIF digital input data

DAI pin 1 Output S/PDIF digital output data

Table 2: SHARC DAI pin usage for CODEC in master mode

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 23 of 61

5 PCMx data format
PCMx is a generic data format which contains a header block along with the data block. The header

provides information about the data block. The header information includes the data start offset, the

data size, Application Sampling Rate, PCMx type etc. Thus this format can be used to carry any

kind of data and it is left to the user for data interpretation.

Header Payload

 Payload

P
C

M
x
 K

ey
w

o
rd

P
C

M
x
 T

y
p
e

S
am

p
li

n
g
 r

at
e

P
ay

lo
ad

 S
iz

e

P
ay

lo
ad

 O
ff

se
t

R
es

er
v
ed

 1

R
es

er
v
ed

 2

R
es

er
v
ed

 3

Payload Starts as pointed by

Payload Offset.

Figure 10: PCMx Data format

The PCMx header is listed below:

typedef struct _PCMxHeaderInfo

{

 int nDataType; /* Compulsory PCMx id SS_STREAM_DATATYPE_PCMx */

 int nPCMxType; /* PCMx type */

 int nSamplingRate; /* Sampling rate */

 int nPayloadSize; /* Payload size */

 int nPayloadOffset; /* Offset of the payload from the start */

 tPCMxReserved oPCMxReserved;

} PCMxHeaderInfo;

The fields in the PCMxHeaderInfo structure are explained below:

nDataType: This field holds a compulsory value indicating that the data is of PCMx type. This

value is defined by a macro SS_STREAM_DATATYPE_PCMx.

nPCMxType: This field indicates the type of PCMx data being carried. The user can group different

kinds of PCMx data and assign a type to it. Users can then interpret the different kinds of PCMx

data based on this field.

nSamplingRate: This field indicates the Application Sampling Rate of the data being carried in

PCMx format.

nPayloadSize: This field indicates the size of the data being carried.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 24 of 61

nPayloadOffset: This field indicates the start of the payload data within the PCMx buffer. This field

also includes the size of the PCMx header.

oPCMxReserved: This is an instance of a union of structures which has 3 integers as in the listing

below.

typedef struct _tPCMxDefault

{

 int32_t nReserved1; /* Reserved field 1 */

 int32_t nReserved2; /* Reserved field 2 */

 int32_t nReserved3; /* Reserved field 3 */

}tPCMxDefault;

typedef union tPCMxReserved

{

 tPCMxDefault oPCMxDefault;

}tPCMxReserved;

5.1 Application changes for PCMx data
The Application has to be modified to carry PCMx data. The provided Default Application supports

PCMx input and output. Two Application macros control PCMx input and PCMx output data

support. These macros are explained below:

1. ENABLE_PCMX_IN: This macro enables the Application support for the PCMx input. The

memory sizes of the input buffers must be modified to hold the input PCMx content.

#pragma section("ss_fw_block2_data")

volatile adi_ss_sample_t

Block_In[NUM_INPUT_CHANNELS*PROCESSING_BLK_SIZE_PCMX_IN];

#pragma section("ss_fw_block2_data")

volatile adi_ss_bitstream_t

Block_In_Spdif[NUM_INPUT_SPDIF_CHANNELS*PROCESSING_BLK_SIZE_PCMX_IN];

The Application must also append the PCMx header to the data fetched from the SPORT into the

input buffers before calling the adi_ss_schematic_process() API as shown in the code snippet

below.

pPCMxHeaderInfo = (PCMxHeaderInfo*)&pInBuff[0];

pPCMxHeaderInfo->nDataType = SS_STREAM_DATATYPE_PCMx;

pPCMxHeaderInfo->nPCMxType = SS_STREAM_DATATYPE_PCMx_MULTI_RATE;

pPCMxHeaderInfo->nSamplingRate = pAppInfo->nInputSamplingFreq;

pPCMxHeaderInfo->nPayloadSize = PROCESSING_BLK_SIZE;

pPCMxHeaderInfo->nPayloadOffset = PROCESSING_BLK_SIZE;

A sample Schematic with PCMx input connections is shown in Figure 11.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 25 of 61

Figure 11: Sample Schematic with PCMx input

2. ENABLE_PCMX_OUT: This macro enables the Application support for the PCMx output.

The memory sizes of output buffers must be modified to hold the output PCMx content.

#pragma section("ss_fw_block2_data")

volatile adi_ss_sample_t

Block_Out[NUM_OUTPUT_CHANNELS*PROCESSING_BLK_SIZE_PCMX_OUT];

The Application must ensure that the output data from the output buffers is copied into the SPORT

buffers from the correct offset indicated by the PCMx header. The number of samples to be copied

into the SPORT buffers must also be retrieved from the PCMx header as shown in the code snippet

below.

pPCMxHeaderInfo =

(PCMxHeaderInfo*)&Block_Out[nSlot*nOutChPerSlot*PROCESSING_BLK_SIZE_PCMX_OUT+(nC

h*PROCESSING_BLK_SIZE_PCMX_OUT)];

nPayLoadSize = pPCMxHeaderInfo->nPayloadSize;

/* This will depend on the type of application. */

nPayLoadOffset = pPCMxHeaderInfo->nPayloadOffset;

A sample Schematic with PCMx output connections is shown in Figure 12.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 26 of 61

Figure 12: Sample Schematic with PCMx output

5.1.1 Schematic with PCMx type when Application Block Size

(PROCESSING_BLK_SIZE) and Schematic Block Size are

different

Figure 13 shows PCMx data propagation when Application Block Size and Schematic Block Size

are different using an example case. It assumes the Application Block Size is 64 and the Schematic

Block Size is 16. The Block of samples propagates as follows:

A: The Application buffer with PCMx header as defined in 5 . This has to be implemented by the

framework programmer.

B: SigmaStudio framework feeds samples through the PCMx Input Cell. This is internal to

SigmaStudio and performed by SigmaStudio.

C: PCMx Samples for each call are as follows:

Call 1: PCMx Packet as in A is passed on.

Call 2-4: PCMx Packet as in A is passed on, however the module must not interpret it.

D: Samples as that of C.

E: 16 PCM samples for every call to the SSn framework. The PCMx2PCM module must buffer the

data and output 16 PCM samples at a time for every call.

F: 64 PCM samples from SSn framework.

G: PCMx Samples for each call are as follows:

Call 1: PCMx Packet as in D is passed from SSn framework.

Call 2-4: PCMx Packet as in D is passed on, however the PCMx output module does not

interpret it.

H: 64 PCM samples to the Application.

I: PCMx samples to the Application with PCMx header.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 27 of 61

Figure 13: PCMx data propagation

Note that the modules such as “ModuleX” which accept PCMx input must be aware of the

Application Block Size so that they do not process the incoming data from the second call onwards

to the SSn framework. The Application Block Size can be communicated to the module using the

“Reserved” fields of the PCMx header.

PCMxIn ModuleX PCMx2PCM PCMOut

C D E F A B H

Schematics with Block Size = 16 (example) – Call is repeated 4 times

SSn with Application Block Size = 64 (example)

PCMxOut

G
I

PCMx Connection (Schematic)

PCM Connection (Schematic)

Internal framework Connection

External Application Connection

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 28 of 61

6 ASM Macros for Saving and

Restoring System Registers
Sample code to save and restore the registers is given below. These macros can be used for cases

when the entire context is not saved by the routine or thread calling the library function. The same

sample code is available in the file “<path>\Target\Demo\src\SPORTisr.c”.

int aRegStorage[5][16];

void ISR_ProcessCall(void)

{

asm("%0 = m0;": "=d"(aRegStorage[1][0]) : :);

.

asm("%0 = m15;": "=d"(aRegStorage[1][15]) : :);

asm("%0 = b0;": "=d"(aRegStorage[2][0]) : :);

.

/* No need to save b6 and b7*/

.

asm("%0 = b15;": "=d"(aRegStorage[2][15]) : :);

asm("%0 = l0;": "=d"(aRegStorage[3][0]) : :);

.

/* No need to save l6 and l7*/

.

asm("%0 = l15;": "=d"(aRegStorage[3][15]) : :);

/* Clear L register, critical section */

asm("l0 = 0;");

asm("l15 = 0;");

asm("%0 = i0;": "=d"(aRegStorage[0][0]) : :);

.

/* No need to save i6 and i7 */

.

asm("%0 = i15;": "=d"(aRegStorage[0][15]) : :);

/* Function Call; eSSnReturnB = adi_ss_schematic_process(hSSn, nBlkSize, Block_In, Block_Out,

oProps); */

/* Restore all saved registers*/

asm("m0 = %0;": :"d"(aRegStorage[1][0]):);

.

.

asm("m15 = %0;": :"d"(aRegStorage[1][15]):);

asm("b0 = %0;": :"d"(aRegStorage[2][0]):);

.

.

asm("b15 = %0;": :"d"(aRegStorage[2][15]):);

asm("l0 = %0;": :"d"(aRegStorage[3][0]):);

.

.

asm("l15 = %0;": :"d"(aRegStorage[3][15]):);

asm("i0 = %0;": :"d"(aRegStorage[0][0]):);

.

.

asm("i15 = %0;": :"d"(aRegStorage[0][15]):);

}

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 29 of 61

7 Symbol XML File
The Symbol XML file is used to load the address of buffers and function pointers used in the

SHARC Target Application to SigmaStudio. These buffer and address pointers can be used by the

Plug-Ins to access the functions and buffers that are part of the Application. Refer to section 8 of [2]

for more details on accessing external symbols from the Plug-In. The Symbol XML file can also be

used to select the Loader File to be used for booting the SHARC Target. The following elements are

included in the XML.

 Name and path of Loader File and boot argument.

 Target DSP for the Application

 Symbols and respective address in the SHARC Target Application.

<?xml version="1.0" standalone="yes"?>

<SS4SH name="ss4sh_ic_xml" description="Analog Devices SigmaStudio for SHARC IC Configuration"

version="2.0.0.0">

 <ic name="ADSP-21489">

 <ldr name="ss_app_sh489.ldr" path=".\" arg="2"/>

 <symbol type="extSymbol" extSymbolName="Scale" module="myscale" address="0xbb1a4"

id="none" />

 </ic>

</SS4SH>

7.1 XML Elements

7.1.1 <SS4SH>

The SS4SH is the outermost element of the XML file. This can appear only once in the XML file

and should be exactly as shown in the example above.

The attributes of SS4SH element are:

 name

String indicating the name of the XML file. This should always be “ss4sh_ic_xml”. If the

name is different, SigmaStudio treats this as an invalid XML file.

 description

Description of the xml of type string.

 version
Version of the SigmaStudio for SHARC package in a.b.c.d format.

The contents of the SS4SH element are:

 ic

Refer to section 7.1.2 for details. One SS4SH element can have only one ic element.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 30 of 61

7.1.2 <ic>

The ic element defines a SHARC Target. There can be only one ic element inside an XML.

The attributes of ic element are:

 name

String indicating the SHARC Target processor.

The contents of the ic element are:

 ldr

Refer to section 7.1.3 for details. One ic element can have only one ldr elements. It is not

mandatory to have the ldr element.

 symbol

Refer to section 7.1.4 for details. One module element can have any number of symbol

elements.

7.1.3 <ldr>

The ldr element defines the Loader File to be used for booting the SHARC Target. One ic element

can have only one ldr element.

The attributes of ldr element are:

 name

String indicating the name of the Loader File.

 path

String indicating the folder path of the Loader File. The path can either be an absolute

location or a location relative to the path location of the XML file. Use back-slash ‘\’ to

separate folders in the path.

 arg
Boot option. Following are the options.

o “2”: Analog-In

o “3”: Digital-In

o “4”: Digital-Out alone

o “5”: Analog\Digital Co-existence

o 10: Analog\Digital Co-existence (Digital Clock)

The ldr element cannot have any contents.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 31 of 61

7.1.4 <symbol>

The symbol element defines the symbol in the SHARC Target Application or the Loader File.

There can be any number of symbol elements inside an ic element.

The attributes of symbol element are:

 type
Indicates the type of the symbol. Should always be “extSymbol”.

 extSymbolName

String indicating the name of the symbol.

 module

Indicates the module where the symbol is used. Currently this field is not used.

 address

SHARC Target address of the symbol in hexadecimal.

 id
This field is currently not used.

The symbol element cannot have any contents.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 32 of 61

8 Application preprocessor macros
This section describes the macros available in the Application. The following macros are available,

that can be configured in the Application.

 DO_CYCLE_COUNTS: This macro enables MIPS calculation. This macro is enabled in

the Default Application. To disable this macro, remove it from the compiler preprocessor

options and rebuild the Application.

 I2S_MODE: This macro enables I2S mode of SPORT and CODEC operation. ADSP-214xx

SHARC Targets support TDM mode of operation in which multiple input and output

channels are obtained through single input and output pins of the SHARC Target. By

default, I2S mode is enabled for ADSP-213xx SHARC Targets and TDM mode is enabled

for ADSP-214xx SHARC Targets. TDM mode is not supported for ADSP-213xx SHARC

Targets. To enable I2S mode for ADSP-214xx SHARC Targets, add the macro

“I2S_MODE” in the compiler preprocessor options and rebuild the Application.

 CODEC_MASTER: Defining this macro configures the Application such that the CODEC

is the master and SHARC Target is the slave for the ADSP-214xx SHARC Targets. This

macro must always be defined in both I2S and TDM modes of operation of the CODEC and

SPORT. Define this macro in compiler preprocessor options to enable this feature.

 ENABLE_PCMX_IN: Macro for enabling the PCMx input functionality. By default, this

macro is disabled. Define this macro in compiler preprocessor options to enable this feature.

 ENABLE_PCMX_OUT: Macro for enabling the PCMx output functionality. By default,

this macro is disabled. Define this macro in compiler preprocessor options to enable this

feature.

 CIRC_OUTPUT_BUFFER: This macro enables the circular buffering of the SPORT output

buffers. This macro is enabled by default for ADSP-214xx SHARC Target and can be used

only in TDM mode. Define this macro in compiler preprocessor options to enable this

feature.

 DEFERRED_SPORT_ENABLE: This macro enables the input and output SPORTs at

different instances in time for the output data pre-rolling. By default, this macro is enabled

for ADSP-214xx SHARC Targets. Define this macro in compiler preprocessor options to

enable this feature.

 APP_SAMPLING_RATE: This macro is used to set the desired Application Sampling Rate

of 48 kHz, 96 kHz or 192 kHz using SAMPLING_RATE_48K, SAMPLING_RATE_96K

or SAMPLING_RATE_192K macros respectively. Refer to section 3.1 to change the

Application Sampling Rate to a different value other than the default value in TDM mode

for ADSP-214xx Application.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 33 of 61

9 ADSP-214xx demo Applications

with non-VISA mode
The Default Application for ADSP-214xx SHARC Targets is built for the short word code (SWC)

i.e. VISA mode. The steps below show how to build the Application for the normal word code

(non-VISA mode).

1) Open the ADSP-214xx demo Application with CrossCore Embedded Studio.

2) Select the Manage configurations for the current project -> ReleaseNWC

configuration for the non-VISA release mode or Manage configurations for the

current project -> DebugNWC configuration for non-VISA debug mode.

3) Rebuild the Application and use the newly generated Loader File.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 34 of 61

10 Target Framework Interfaces
This section provides information on the interfaces which are used in the Target Framework.

10.1 Framework Interface functions

10.1.1 Target Framework Initialization

This section describes the interface used to initialize the SigmaStudio for SHARC Target

Framework.

10.1.1.1 InitAudioSystem

Prototype

SS4SAppStatus InitAudioSystem(tAppInfo *pAppInfo)

Description

Initializes peripherals for Audio input and output.

Parameters

Name: pAppInfo

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Return value

An appropriate error code of type E_ADI_SS_APP_STATUS_SUCCESS is returned. For the list

of supported error codes refer to section 10.2 .

10.1.2 DAI Peripherals

This section describes the interfaces used to setup/initialize the DAI peripherals used in the Target

Framework.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 35 of 61

10.1.2.1 SPORT

This section describes the interface used to initialize the sport in I2S or TDM mode of operation.

10.1.2.1.1 InitializeSport

Prototype

void InitializeSport(tAppInfo *pAppInfo)

Description

Initialize the Sports in I2S or TDM mode which is defined by the user in the preprocessor

definitions of the Application.

Parameters

Name: pAppInfo

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Return value

None

10.1.2.2 PCG

This section describes the interface used to configure the PCG based on the master/slave mode of

operation of the SHARC Target.

10.1.2.2.1 setupPCG

Prototype

SS4SAppStatus setupPCG(tAppInfo *pAppInfo,tProcMode eProcMode)

Description

Configures the PCG based on the master/slave mode of operation of the SHARC Target.

Parameters

Name: pAppInfo

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 36 of 61

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Name: eProcMode

Type: tProcMode

Direction: Input

Description: Enumeration for processor master/slave mode of

operation

Return value

An appropriate error code of type E_ADI_SS_APP_STATUS_SUCCESS is returned. For the list

of supported error codes refer to section 10.2 .

10.1.2.3 SRC

This section describes the interface used to initialize the SRC module based on the user settings for

the specified SRC pair.

10.1.2.3.1 InitSRC

Prototype

SS4SAppRes InitSRC(tAppInfo *pAppInfo, volatile unsigned int *pCtrlRegSRC, int nModeSRC, tSRCPair

eEnableSRCPair, tSRC eEnableSRC)

Description

Initializes the SRC module based on user settings for the specified SRC pair.

Parameter

Name: pAppInfo

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Name: pCtrlRegSRC

Type: volatile unsigned int *

Direction: Input

Description: Pointer to SRC Control Register

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 37 of 61

Name: nModeSRC

Type: int

Direction: Input

Description: Settings for SRC mode of operation which is configured

by the user

Name: eEnableSRCPair

Type: tSRCPair

Direction: Input

Description: Enumeration for the SRC pair to be configured

Name: eEnableSRC

Type: tSRC

Direction: Input

Description: Enumeration for enabling the SRC unit of a SRC pair

Return value

An appropriate error code of type APP_RES_FAILURE is returned. For the list of supported error

codes refer to section 10.2 .

10.1.2.4 S/PDIF

This section describes the APIs used to initialize and update the channel status of the S/PDIF

hardware peripheral.

10.1.2.4.1 InitSPDIF

Prototype

SS4SAppStatus InitSPDIF(tSPDIFConfig *pSPDIFConfig);

Description

This function initializes the S/PDIF transmitter and receiver hardware peripherals. It also sets the

S/PDIF channel status bits to the values configured by the user in pSPDIFConfig structure. This

API may be called to reinitialize the channel status bits to a different value.

Parameter

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 38 of 61

Name: pSPDIFConfig

Type: tSPDIFConfig*

Direction: Input

Description: Pointer to the S/PDIF channel status config structure.

Return value

An error code of type SS4SAppStatus.

10.1.2.4.2 CopySPDIFStatusInfoFromRxToTx

Prototype

void CopySPDIFStatusInfoFromRxToTx(void);

Description

This function copies the channel status information obtained from S/PDIF receiver to S/PDIF

transmitter. Note that in Analog/Digital co-existence Digital clock mode, the fields corresponding to

word length, sample word length, non-audio and category code are set to the user configured value

than whatever is received by S/PDIF receiver. Refer to Annexure F for more details on S/PDIF

channel status information.

Parameter

None.

Return value

None.

10.1.3 System Peripherals

10.1.3.1 CODEC

This section describes the interface used to setup the audio codec use in the Target Framework.

10.1.3.1.1 InitAudioCodec

Prototype

void InitAudioCodec(tAD1939Info *pAD1939Info, int nConfigSize, int nCodec, int bAnDigCoex)

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 39 of 61

Description

Function to set up the AD1939 registers via SPI.

Parameters

Name: pAD1939Info

Type: tAD1939Info *

Direction: Input

Description: Pointer to the AD1939 Information structure.

Name: nConfigSize

Type: Int

Direction: Input

Description: Size of the structure in elements

Name: nCodec

Type: Int

Direction: Input

Description: Device select used to Setup the SPI Flag register

Name: bAnDigCoex

Type: Int

Direction: Input

Description: Flag indicating analog digital co-existence

Return value

None

10.1.4 Input-Output

This section describes the interfaces used to get input data and write output data to/from the SPORT

buffers in I2S or TDM mode of operation of the SPORTS.

10.1.4.1 Audio Input Data

This section describes the interfaces used to get input data from the SPORT buffers in I2S or TDM

mode of operation of the SPORTS.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 40 of 61

10.1.4.1.1 GetInputDataI2S

Prototype

void GetInputDataI2S(tAppInfo *pAppInfo,int nNumInputCh,int nNumInputSPDIFCh)

Description

Read input sample from SPORT buffers to input buffers in I2S mode.

Parameters

Name: pAppInfo

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Name: nNumInputCh

Type: Int

Direction: Input

Description: Number of input analog channels

Name: nNumInputSPDIFCh

Type: Int

Direction: Input

Description: Number of input SPDIF channels

Return value

None

10.1.4.1.2 GetInputDataTDM

Prototype

void GetInputDataTDM(tAppInfo *pAppInfo,int nNumInputCh,int nNumInputSPDIFCh)

Description

Read input sample from SPORT buffers to input buffers in TDM mode.

Parameters

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 41 of 61

Name: pAppInfo

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Name: nNumInputCh

Type: Int

Direction: Input

Description: Number of input analog channels

Name: nNumInputSPDIFCh

Type: Int

Direction: Input

Description: Number of input SPDIF channels

Return value

None

10.1.4.2 Audio Output Data

This section describes the interfaces used to write output data to the SPORT buffers in I2S or TDM

mode of operation of SPORTS.

10.1.4.2.1 WriteOutputDataI2S

Prototype

int WriteOutputDataI2S(tAppInfo *pAppInfo,int nNumOutputCh,int nNumOutputSPDIFCh)

Description

Write output data to SPORT buffers in I2S mode.

Parameters

Name: pAppInfo

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 42 of 61

Name: nNumOutputCh

Type: Int

Direction: Input

Description: Number of output analog channels

Name: nNumOutputSPDIFCh

Type: Int

Direction: Input

Description: Number of output SPDIF channels

Return value

Returns “0” if there is no clipping and “1” if any sample is clipped.

10.1.4.2.2 WriteOutputDataTDM

Prototype

int WriteOutputDataTDM(tAppInfo *pAppInfo,int nNumOutputCh,int nNumOutputSPDIFCh)

Description

Write output data to SPORT buffers in TDM mode.

Parameters

Name: pAppInfo

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Name: nNumOutputCh

Type: Int

Direction: Input

Description: Number of output analog channels

Name: nNumOutputSPDIFCh

Type: Int

Direction: Input

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 43 of 61

Description: Number of output SPDIF channels

Return value

Returns “0” if there is no clipping and “1” if any sample is clipped.

10.1.4.3 SPI Read-Back

This interface is used to send the data back to the host through SPI Read-Back. This interface also

checks for custom command received and sets the flags accordingly.

10.1.4.3.1 HandleBackChCustomCmd

Prototype

void HandleBackChCustomCmd(tAppInfo *pAppInfo, ADI_SS_SSNPROPERTIES *pGetProperties)

Description

This function handles any back channel or custom command received from the SigmaStudio Host.

Parameters

Name: pAppInfo

Type: tAppInfo *

Direction: Input

Description: Pointer to the Application Information structure.

Name: pGetProperties

Type: ADI_SS_SSNPROPERTIES

Direction: Input

Description: Pointer to SSn configuration structure

Return value

None

10.2 Framework Enumerations

10.2.1 SS4SAppRes
typedef enum SS4SAppRes

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 44 of 61

{

 APP_RES_FAILURE = E_APP_RES_FAILURE,

 APP_RES_SUCCESS = E_APP_RES_SUCCESS,

 APP_RES_MEM_INSUFFICIENT = E_APP_RES_MEM_INSUFFICIENT,

 APP_RES_MEM_ERR_WRONG_INDEX = E_APP_RES_MEM_ERR_WRONG_INDEX

}SS4SAppRes;

Description

This enumeration represents the general error codes for the SigmaStudio for SHARC Target Default

Application.

10.2.2 SS4SAppStatus
typedef enum SS4SAppStatus

{

 ADI_SS_APP_STATUS_SUCCESS = E_ADI_SS_APP_STATUS_SUCCESS,

 ADI_SS_APP_STATUS_COMM_CREATE_ERR = E_ADI_SS_APP_STATUS_COMM_CREATE_ERR,

 ADI_SS_APP_STATUS_COMM_INIT_ERR = E_ADI_SS_APP_STATUS_COMM_INIT_ERR,

 ADI_SS_APP_STATUS_PCG_ERR = E_ADI_SS_APP_STATUS_PCG_ERR,

 ADI_SS_APP_STATUS_SPDIF_ERR = E_ADI_SS_APP_STATUS_SPDIF_ERR

}SS4SAppStatus;

Description

This enumeration represents the specific error codes for the SigmaStudio for SHARC Target

Default Application.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 45 of 61

11 Default Target Library

Configuration Parameters set in the

Application
This section explains about the default configuration parameters set in the Application for Target

Library API functions.

11.1 adi_ss_comm_init
This section describes the default configuration parameters set in the Application for

adi_ss_comm_init Target Library API. Refer Table 3 for the default values set in the Application.

Communication configuration parameter Default values set in the Application

baudRateRx Currently not used internally

baudRateTx Currently not used internally

nSelectSPI SELECT_SPI0

bCRCBypass 0

bFullPacketCRC 1

(*pfCommCallBack)() app_ss_comm_callback_cmd4

(*pfRegSPIIsrCallBack)(int32_t nPriority,void

(*pfSPIISR)(int32_t))

app_ss_comm_regspiisr_callback

Table 3: Default configuration parameters set in the Application for adi_ss_comm_init Target Library API

11.2 adi_ss_init
This section describes the default configuration parameters set in the Application for adi_ss_init

Target Library API. Refer Table 4 for the default values set in the Application.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 46 of 61

Communication configuration parameter Default values set in the Application

nBlockSize BLOCK_SIZE = 64

nInChannels NUM_INPUT_CHANNELS = 6

nOutChannels NUM_OUTPUT_CHANNELS = 10

bSkipProcessOnCRCError 0

bSkipInitialDownload 0

hSSComm hSSComm = 0

Table 4: Default configuration parameters set in the Application for adi_ss_init Target Library API

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 47 of 61

A. Maintaining sync between

memories reserved in the Application

for SSn and Schematic IC control form
The code, data, and parameter memories for the SSn are reserved in the Application. The following

table lists the Application macros, which define the code, data and parameter memory sizes for the

SSn.

Macro Memory Memory Size

ADI_SS_SIZE_BLOCK_1 L1 code memory (Code) 48-bits or 16-bits depending

on non-VISA or VISA mode

ADI_SS_SIZE_BLOCK_4 L1 state memory (State) 32-bits

ADI_SS_SIZE_BLOCK_5 L1 parameter memory 32-bits

ADI_SS_SIZE_BLOCK_6 L1 extended precision state

memory

48-bits

ADI_SS_SIZE_BLOCK_7 L3 code memory (Code B) 48-bits or 16-bits depending

on non-VISA or VISA mode

ADI_SS_SIZE_BLOCK_8 L1 state memory (State B) in

extended precision memory

block

32-bits

ADI_SS_SIZE_BLOCK_9 L3 state memory (State C) 32-bits

Table 5: Application macros that define the SSn memory sizes

The default SSn memory sizes are described in Annexure A of [1]. The 32-bit L1 state and the

parameter memory sizes for the SSn are dependent on the memory used by the framework state. If

the framework state memory is altered by changing any of the macros mentioned in Table 6, the 32-

bit L1 state and parameter memory sizes for the SSn also get changed automatically. This automatic

change is controlled by the Application macros “MEMORY_USAGE_FACTOR_BLK1” and

“MEMORY_USAGE_FACTOR_BLK2” as shown below.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 48 of 61

/* State Memory */

#ifdef __ADSP21369__

#define ADI_SS_SIZE_BLOCK_4 (54*1024/4-

(MEMORY_USAGE_FACTOR_BLK1+MEMORY_USAGE_FACTOR_BLK2))

#elif defined(__ADSP21364__)

#define ADI_SS_SIZE_BLOCK_4 (90*1024/4-MEMORY_USAGE_FACTOR_BLK1)

#else /* 214xx */

#define ADI_SS_SIZE_BLOCK_4 (142*1024/4-MEMORY_USAGE_FACTOR_BLK1)

#endif

/* Parameter Memory */

#ifdef __ADSP21369__

#define ADI_SS_SIZE_BLOCK_5 (32*1024/4)

#elif defined(__ADSP21364__)

#define ADI_SS_SIZE_BLOCK_5 (60*1024/4-MEMORY_USAGE_FACTOR_BLK2)

#else /* 214xx */

#define ADI_SS_SIZE_BLOCK_5 (99*1024/4-MEMORY_USAGE_FACTOR_BLK2)

#endif

Macro Definition Default value (in

I2S mode)

Default value (in

TDM mode)

NUM_INPUT_CHANNELS Number of analog and

S/PDIF input channels

6 for ADSP-214xx

SHARC Targets.

4 for ADSP-213xx

SHARC Targets.

6 for ADSP-214xx

SHARC Targets.

4 for ADSP-213xx

SHARC Targets.

NUM_OUTPUT_CHANNE

LS

Number of analog and

S/PDIF output channels

10 10

SPORT_BUFFER_SIZE SPORT buffer size 64 64

PROCESSING_BLK_SIZE Application Block Size 64 64

NUMBER_PROCESSING_

BUFFERS

Number of SPORT

buffers in terms of

PROCESSING_BLK_

SIZE

3 3

INPUT_TO_OUTPUT_RAT

E

Input to output sample

rate ratio

1 1

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 49 of 61

OUTPUT_TO_INPUT_RAT

E

Output to input sample

rate ratio

1 1

NUM_INPUT_SPORT_BUF

FERS

Number of input

SPORT buffers

3 3

NUM_OUTPUT_SPORT_B

UFFERS

Number of output

SPORT buffers

3 3

NUM_INPUT_SPDIF_CHA

NNELS

Number of input

S/PDIF channels

2 2

SPORT_TCB_SIZE TCB size of SPORT 4 4

MAX_OUT_SLOTS Maximum number of

output slots

3 3

Table 6: Application macros which influence the SSn state and parameter memory sizes

A.1 Impact of macro

“MEMORY_USAGE_FACTOR_BLK1”
The “MEMORY_USAGE_FACTOR_BLK1” macro is dependent on the size of the

“tSportBufferInfo” structure as given below.

#define MEMORY_USAGE_FACTOR_BLK1 (sizeof(tSportBuffInfo)-DEFAULT_SIZE_BLK1)

The “tSportBufferInfo” structure is given below.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 50 of 61

struct tSportBufferInfo

{

unsigned int

aSportInBuff[NUM_INPUT_CHANNELS*SPORT_BUFFER_SIZE*NUM_INPUT_SPORT_BUFFERS];

unsigned int

aSportOutBuff[NUM_OUTPUT_CHANNELS*SPORT_BUFFER_SIZE*NUM_OUTPUT_SPORT_BUFFERS];

int

aSportTCBIn[(NUM_INPUT_CHANNELS>>1)*NUM_INPUT_SPORT_BUFFERS*SPORT_TCB_SIZE];

int

aSportTCBOut[(NUM_OUTPUT_CHANNELS>>1)*NUM_OUTPUT_SPORT_BUFFERS*SPORT_TCB_SIZE];

unsigned int *pInBuf[NUM_INPUT_CHANNELS>>1][NUM_INPUT_SPORT_BUFFERS];

unsigned int *pOutBuf[NUM_OUTPUT_CHANNELS>>1][NUM_OUTPUT_SPORT_BUFFERS];

int *pTCBIn[NUM_INPUT_CHANNELS>>1][NUM_INPUT_SPORT_BUFFERS];

int *pTCBOut[NUM_OUTPUT_CHANNELS>>1][NUM_OUTPUT_SPORT_BUFFERS];

/* Offsets for circular output buffering */

int aOutSportBuffOffset[MAX_OUT_SLOTS];

};

The size of “tSportBufferInfo” structure, based on the default values of the macros it uses as

described in Table 6, is defined by the macro “DEFAULT_SIZE_BLK1” and is equal to 3651

words for the ADSP-214xx SHARC Target. Hence, if any of the macros listed in Table 6 changes,

the size of “tSportBufferInfo” structure changes, causing the macro

“MEMORY_USAGE_FACTOR_BLK1” to change. The value of this macro reduces or increases

the size of SSn state memory defined by “ADI_SS_SIZE_BLOCK_4”.

MEMORY_USAGE_FACTOR_BLK1 =

NUM_INPUT_CHANNELS*SPORT_BUFFER_SIZE*NUM_INPUT_SPORT_BUFFERS+

NUM_OUTPUT_CHANNELS*SPORT_BUFFER_SIZE*NUM_OUTPUT_SPORT_BUFFERS+

(NUM_INPUT_CHANNELS>>1)*NUM_INPUT_SPORT_BUFFERS*SPORT_TCB_SIZE+

(NUM_OUTPUT_CHANNELS>>1)*NUM_OUTPUT_SPORT_BUFFERS*SPORT_TCB_SIZE+

NUM_INPUT_CHANNELS*NUM_INPUT_SPORT_BUFFERS+

NUM_OUTPUT_CHANNELS*NUM_OUTPUT_SPORT_BUFFERS+

MAX_OUT_SLOTS-

DEFAULT_SIZE_BLK1

Consider an example where the NUMBER_PROCESSING_BUFFERS is changed from its default

value to a value equal to 6 for an ADSP-214xx SHARC Target. Let us assume

INPUT_TO_OUTPUT_RATE = 1 and OUTPUT_TO_INPUT_RATE = 1. Then,

NUM_INPUT_SPORT_BUFFERS = (6*64/16)*1 = 24

NUM_OUTPUT_SPORT_BUFFERS = (6*64/16)*1 = 24

MEMORY_USAGE_FACTOR_BLK1 = 6*16*24+10*16*24+(6/2)*24*4+(10/2)*24*4+6*24+

 10*24+3-3651

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 51 of 61

 = 7299-3651

 = 3648

Hence the SSn state memory now shall be:

ADI_SS_SIZE_BLOCK_4 = (142*1024/4-MEMORY_USAGE_FACTOR_BLK1)

 = 36352-3648

 = 32704 words

This value must be entered in the “32 Bit State” tab of Schematic IC control form, in bytes

(32704*4). This value in words can also be obtained from the map file by searching for the variable

“_adi_ss_mem4”.

A.2 Impact of macro

“MEMORY_USAGE_FACTOR_BLK2”
 “MEMORY_USAGE_FACTOR_BLK2” macro is dependent on Application Block Size and input

and output number of channels as given below.

#define MEMORY_USAGE_FACTOR_BLK2

(NUM_OUTPUT_CHANNELS+NUM_INPUT_CHANNELS+NUM_INPUT_SPDIF_CHANNELS)*(PROCESSING_BL

K_SIZE-64)

A change in any of these parameters causes macro “MEMORY_USAGE_FACTOR_BLK2” to

change, which in turn reduces or increases the SSn parameter memory size defined by the macro

“ADI_SS_SIZE_BLOCK_5”.

MEMORY_USAGE_FACTOR_BLK2 = NUM_OUTPUT_CHANNELS +

NUM_INPUT_CHANNELS + NUM_INPUT_SPDIF_CHANNELS) *

(PROCESSING_BLK_SIZE-64)

Consider an example where the PROCESSING_BLK_SIZE is changed to 128 from its default

value of 64 for an ADSP-214xx SHARC Target, then

MEMORY_USAGE_FACTOR_BLK2 = (10+6+2)*(128-64)

 = 1152

Hence the SSn parameter memory now shall be:

ADI_SS_SIZE_BLOCK_5 = (99*1024/4-1152)

 = 24192 words

This value in bytes (24192 *4) must be entered in the “Parameter” tab of Schematic IC control

form. This value in words can also be obtained from the map file by searching for the variable

“_adi_ss_mem5”.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 52 of 61

Thus, if the Schematic uses Plug-Ins and if there is any change in macros defined in Table 6, the

user has to calculate the values of SSn state and parameter memories defined by macros

“ADI_SS_SIZE_BLOCK_4” and “ADI_SS_SIZE_BLOCK_5” and populate the sizes in the IC

Control Window accordingly.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 53 of 61

B. Computation of Average and Peak

MIPS in the Application
The average and peak MIPS of a Schematic are computed for every call to the SigmaStudio for

SHARC process API (adi_ss_schematic_process()). The adi_ss_schematic_process() API is described

in section 7.3.6 of [3].

The MIPS measurement period for average and peak MIPS measurement is set to 5 seconds within

the Application. The average and peak MIPS are reset after a duration of every MIPS measurement

period. To change the MIPS measurement period within the Application to a different value, set the

value of the macro “SS_APP_MIPS_MEASURE_PERIOD” in file app.h to the desired duration.

Sections B.1 and B.2 below describe the computation of average and peak MIPS of a Schematic.

B.1 Average MIPS
The average MIPS is computed based on the Average cycles per sample over the MIPS

measurement period.

The average MIPS is computed as given below.

Average MIPS of the Schematic MIPSAvg = (Average cycles per sample * Application Sampling

Rate) / 1000000

Where, Average cycles per sample is the average cycles consumed to process one sample over the

MIPS measurement period = (Total cycles / Total samples processed per channel).

The Schematic average MIPS must not exceed the maximum MIPS possible for the chosen SHARC

Target.

B.2 Peak MIPS
The peak MIPS is computed based on absolute maximum cycle count consumed for each call to the

SigmaStudio process API over the MIPS measurement period.

The peak MIPS is computed as given below.

Peak MIPS of the Schematic MIPSPeak =

 (Maximum cycles * Application Sampling Rate) / (BPI * 1000000)

Where, BPI = PROCESSING_BLK_SIZE

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 54 of 61

The value of peak MIPS may be higher than the maximum MIPS supported by the SHARC Target

since the process() API of a Plug-In may be called only for some of the frames, depending on the

Module input buffering size (BMI).

The peak MIPS is related to Module peak MIPS (MIPSPeakMod), BMI and BPI as in the equation

given below

MIPSPeak = MIPSPeakMod*(BMI/BPI)

For example, consider a Module with the following values

BMI = 512

BPI = 48

MIPSPeakMod = 76

Then, MIPSPeak = 76 * (512/48) = 810.

The peak MIPS provides useful insight into the buffering requirements of the Application. The

number of processing buffers (NUMBER_PROCESSING_BUFFERS) is directly proportional to the

peak MIPS.

MIPSPeak α NUMBER_PROCESSING_BUFFERS

Moreover, the Default Application provides peak MIPS over a MIPS measurement period of 5s,

which is a long enough duration to ascertain the true peak MIPS of a Schematic. Hence it is

possible to arrive at optimal buffering requirements for input and output by knowing the value of

the peak MIPS of a Schematic. Typically, if NUMBER_PROCESSING_BUFFERS is 3, then the

absolute peak MIPS can go up to 800 MIPS.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 55 of 61

C. NaN Handling in the framework
Under unusual circumstances, when the Schematic produces NaN output during processing, the

NaN values are to be removed from the state memory. The Application searches for NaN values in

the output buffer using the function IsNanInf(). If found, clear the entire state buffer by calling the

adi_ss_clearState() API [3]. The details of function IsNanInf() is as follows:

Prototype

int IsNanInf (float *pInput, int nInBufSize);

Description
Check if NaN found in the output samples.

Parameters

Name: pInput

Type: float *

Direction: Input

Description: Pointer to the sample array.

Name: nInBufSize

Type: Int

Direction: Input

Description: Size of the sample array.

Return value

IsNanInf()returns 1 if NaN is detected in the output buffer else it returns 0.

When NaN is detected, the Application clears the state memory by calling adi_ss_clearState() API.

Once the above API is called, the next call to adi_ss_schematic_process()re-initializes all the Plug-

Ins.

The Default Application implements the above operation in CheckNaNInf(). If there are multiple

output buffers, the NaN detection has to be repeated for all the output buffers. Upon detecting NaN

in any of the output buffers, the state memory has to be cleared.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 56 of 61

D. Porting Application to other SHARC

variants or other platforms
The SigmaStudio for SHARC package contains Default Applications for the following variants of

the SHARC Target.

 ADSP-21364 SHARC Target using ADSP-21364 EZ-KIT Lite platform.

 ADSP-21369 SHARC Target using ADSP-21369 EZ-KIT Lite platform.

 ADSP-21469 SHARC Target using ADSP-21469 EZ-Board platform.

 ADSP-21479 SHARC Target using ADSP-21479 EZ-Board platform.

 ADSP-21489 SHARC Target using ADSP-21489 EZ-Board platform.

The following points must be noted while porting the Application for a different SHARC variant.

1. Processor specific aspects:

a. Memory: The L1 memory available may vary across different SHARC variants. The

memory for the SSn code, data and parameters must be allocated depending on the

memory requirements of the Schematic and the available L1 memory for the chosen

variant.

b. System initialization: The maximum core and peripheral clock speeds supported by

different variants are not the same. Also some variants support DDR/SDRAM.

System initialization such as PLL and DDR/SDRAM initializations must be

performed in accordance with the chosen variant.

2. Platform specific aspects: Platform in this context refers to the entire hardware environment

other than the SHARC Target. The Default Application provided with the package is for the

EZ-KIT Lite/EZ-Board platforms as mentioned above. The following aspects must be

considered while moving to a platform other than the EZ-KIT Lite/EZ-Board.

a. CODEC: The EZ-KIT Lite/EZ-Board has an onboard CODEC which is programmed

from the SigmaStudio for SHARC Application. If a different CODEC is to be used,

then, it must be programmed accordingly by modifying the Application.

b. LED/push button: The EZ-KIT Lite/EZ-Board have LEDs and push buttons which

are mapped to SHARC Target DAI/DPI pins through switches/jumpers. The

switch/jumper settings for the Default Application are explained in detail in section

5.2 of [1]. These parts of the Application code have to be reviewed when moving to

a platform other than EZ-KIT Lite/EZ-Board.

c. SRU routing: The SRU routing for the SPORTS/SPI and other peripherals have to be

reconsidered while moving to a platform other than EZ-KIT Lite/EZ-Board.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 57 of 61

D.1 Platform specific build time macros in the

Application
The Default Application Loader Files provided within the package are built with a platform specific

build time macro. The platform specific build time macros are listed below:

1. __ADSP21364_EZKIT__ - This macro must be defined for building a Loader File for

ADSP-21364 SHARC Target on ADSP-21364 EZ-KIT Lite platform.

2. __ADSP21369_EZKIT__ - This macro must be defined for building a Loader File for

ADSP-21369 SHARC Target on ADSP-21369 EZ-KIT Lite platform.

3. __ADSP21469_EZKIT__ - This macro must be defined for building a Loader File for

ADSP-21469 SHARC Target on ADSP-21469 EZ-Board platform.

4. __ADSP21479_EZKIT__ - This macro must be defined for building a Loader File for

ADSP-21479 SHARC Target on ADSP-21479 EZ-Board platform.

5. __ADSP21489_EZKIT__ - This macro must be defined for building a Loader File for

ADSP-21489 SHARC Target on ADSP-21489 EZ-Board platform.

D.2 Steps to be followed for porting the

Application to a different SHARC variant which

uses the EZ-KIT Lite/EZ-Board platform
Follow the steps below for porting the Application to a different SHARC variant which uses the

EZ-KIT Lite/EZ-Board platform.

1. Identify the SHARC Target which closely matches the variant chosen, from the list of the

SHARC Targets supported by the SigmaStudio for SHARC Application described in section

D.

2. Open the Application for the identified SHARC Target in CrossCore Embedded Studio.

3. Change the processor type to match the variant chosen. This can be done by clicking the

“PropertiesC/C++ BuildSettings” and choosing the processor in the “Processor

Settings” tab.

4. If the L1 memory available on the chosen variant is identical to that of the identified

SHARC Target in step 1, change the “Architecture” to the chosen variant in the LDF file. If

available L1 memory is different, or if the variant differs to the identified SHARC Target in

step 1 in supporting L3 memory, then generate a new LDF file and map the input sections

within the Application to different output sections of the LDF.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 58 of 61

5. Rebuild the Application and follow the instructions in the #error statements displayed while

building the Application.

D.3 Steps to be followed for porting the

Application to a SHARC variant on a custom

platform
When porting the Application to a custom platform, please follow the steps mentioned below.

1. If the processor is one among the SHARC Targets supported by the SigmaStudio for

SHARC DefaultApplication, as described in section D, then,

a. Open the Default Application in CrossCore Embedded Studio.

b. From the “PropertiesC/C++ BuildSettingsCrossCore SHARC C/C++

CompilerPreprocessor” tab, undefine the platform specific preprocessor macro

listed in section D.1.

c. Rebuild the Application and follow the instructions in the #error statements

displayed while building the Application. It is recommended to visit all sections of

code, which use the platform specific macros listed in section D.1 and make

necessary modifications for the custom platform.

2. If the processor is a variant of the SHARC Targets supported by the SigmaStudio for

SHARC Default Application as described in section D, then, follow the instructions outlined

in section D.2 first before following the instructions in step 1 above.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 59 of 61

E. Framework performance

parameters
The framework MIPS and memory requirements are tabulated below.

Processor
Code RAM

(bytes)

Data RAM

(bytes)
Average MIPS

ADSP-21469 28712 19128 12.46

ADSP-21479 28484 19128 12.14

ADSP-21489 28486 19128 12.48

ADSP-21364 29436 16484 11.39

ADSP-21369 32910 16560 11.51

Table 7: Performance figures for SigmaStudio for SHARC framework

Note:

1. The above measurements are obtained with CrossCore Embedded Studio tool chain v1.1.0

and with the Default Application Loader Files.

2. The Average MIPS of the framework is measured with Analog\Digital Co-existence as the

Input-Output Mode for all the processors.

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 60 of 61

F. S/PDIF Channel Status
The channel status fields provide information related to the audio data that is carried over the

S/PDIF interface. Only Consumer format (i.e., first 40 bits) of the S/PDIF channel status fields are

supported in this release of SigmaStudio for SHARC.

In I2S mode of SPORT’s operation, if the Input-Output Mode is set to Digital-Out alone, the

SHARC S/PDIF Transmitter channel status fields are the user set values which are configured in

SetSPDIFChStatusFields() function of SigmaStudio for SHARC Application. For other Input-

Output Modes, the received S/PDIF channel status fields from the SHARC S/PDIF receiver are

copied to the S/PDIF channels status fields of SHARC S/PDIF transmitter.

In TDM mode of SPORT’s operation, the received S/PDIF channel status fields from the SHARC

S/PDIF receiver are copied to the S/PDIF channels status fields of SHARC S/PDIF transmitter, if

the S/PDIF signal is plugged-in into the SHARC Target. If the S/PDIF signal is unplugged from

SHARC Target then, the SHARC S/PDIF Transmitter channel status fields are the user set values

which are configured in SetSPDIFChStatusFields() function of SigmaStudio for SHARC

Application.

Note that, the received S/PDIF channel status fields from the SHARC S/PDIF receiver are copied to

the S/PDIF channels status fields of SHARC S/PDIF transmitter if the Input-Output Mode is

Analog/Digital Co-existence (Digital Clock) irrespective of I2S or TDM mode of SPORT’s

operation.

F.1 Default S/PDIF channel status fields set in

SigmaStudio for SHARC Application
The default S/PDIF channel status fields which are set in SetSPDIFChStatusFields() function of

SigmaStudio for SHARC Application are given in the Table 8.

SPDIF Channel Status fields Default values

Mode SPDIF_FORMAT_CONSUMER

Audio Mode SPDIF_LINEAR_PCM_SAMPLES

Copyright SPDIF_NO_COPYRIGHT_ASSERTED

Emphasis SPDIF_2CH_NO_PRE_EMPHASIS

Channel Mode SPDIF_CHANNEL_STATUS_MODE0

Category Code SPDIF_CATEGORY_CODE_GENERAL

Source Number SPDIF_SOURCE_NUMBER_NOT_INDICATED

Channel Number SPDIF_CHANNEL_NUMBER_NOT_INDICATED

Analog Devices, Inc.

SigmaStudio For SHARC Framework

KT-2252 2.0 Proprietary and Confidential Page : 61 of 61

Sample Frequency SAMPLING_RATE_48K

Clock Accuracy SPDIF_CLOCK_ACCURACY_LEVEL_2

Word Length SPDIF_MAX_WORD_LENGTH_24_BITS

Sample Word Length SPDIF_SAMPLE_WORD_LENGTH_24_BITS

Original Sampling Frequency SPDIF_ORIGINAL_SAMPLING_FREQ_NOT_INDICATED

Table 8: Default S/PDIF channel status parameters set in the SigmaStudio for SHARC Application

