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1. No DC blocking (AC coupling) capacitor taken into account

The RIAA correction network of https://www.diyaudio.com/community/threads/tube-mc-phono-
stage-riaa-calculator-formula-help.401437/post-7405500 but without its DC blocking capacitor is 
shown in Figure 1.

Figure 1: Unusual RIAA correction network. I have numbered the resistors unusually 
and introduce R3 = R3A + R3B to keep the equations simple. 

Time constants corresponding to the required RIAA correction poles and zero:

τp 1=3.18 ms=0.00318 s

τz=318μs=0.000318s

τ p2=75μs=0.000075s

The network has two zeros, so one too many. At s=−
1

R2C 1

, the impedance
1

sC1

of C1 cancels

R2, causing a zero transfer. (The fact that this value of s doesn't correspond to any stationary sine 

wave doesn't change that.) For similar reasons, there is a zero at s=−
1

R3 B C2

The two poles of the network are much harder to find. As the poles of the input voltage to input 
current transfer are the exact same as the poles of the input voltage to anything else transfer, one can
analyse the input admittance (reciprocal of the input impedance) to find the poles.

I haven't actually solved the poles, but rather calculated the characteristic polynomial. It is



s2
(R1 R3+R1 R2+R2 R3)C1C2+s (R1C1+R1C2+R2C1+R3C 2)+1 where R3=R3 A+ R3 B

To get the correct RIAA correction, the characteristic polynomial must be

(s τp 1+1)(s τp 2+1)=s2
τ p 1 τp 2+s (τ p 1+ τp 2)+1

To keep the equations simple, I introduce a=τp 1 τ p2 and b=τp 1+τ p 2 , so that the desired 

characteristic polynomial becomes a s2
+b s+1

As there is one zero too many, there are two ways to solve this: either make R2 or R3B equal to zero.

When we choose to make R2 = 0, equating the coefficients of the characteristic polynomial to there 
desired values and rearranging terms leads to

R3=

b±√b2−4a
C1+C2

C 1

2 C2

R1=
a

R3C1C2

R3 B=
τz

C2

R3 A=R3−R3 B

When we choose to make R3B = 0, I find these equations for the rest:

R2=
τ z

C1

R1=

b−2 τz

C2

±√( b−2 τz

C2
)

2

−4 (1+
C1

C2
) a+τz(τ z−b)

C1C2

2(1+
C1

C2
)

R3=
b−τz−R1(C1+C2)

C2

, which is also the value for R3A when R3B = 0.

The trick is to choose values for C1 and C2 that lead to realistic values for the resistors. There may 
be a bit more freedom to use standard capacitor values than with a more conventional RIAA 
correction network.

I have checked one numerical example with a pole-zero extraction program, which showed that the 
values were correct. Those values were:

R1 = 119183.428858293 ohm

R2 = 14454.5454545455 ohm



C1 = 22 nF

R3A = 23982.2825587722 ohm

R3B = 0 ohm

C2 = 2.2 nF

2. AC coupling capacitor included

The filter network is normally driven from an amplifier stage that has a certain output resistance and
quite possibly an AC coupling (DC blocking) capacitor. It is easy to correct for output resistance 
when there is no AC coupling: take the Thévenin equivalent of the source and you see that its output
resistance is in series with the input resistor of the filter. Just subtract the output resistance of the 
source from the calculated R1, use the result as the value of the filter input resistor and Bob's your 
uncle.

Things get rather more complicated when there is an AC coupling capacitor of which the reactance 
is too large to be neglected, or when the output of the amplifying stage has considerable reactance 
for some other reason, for example because it is a triode stage with cathode decoupling and the 
cathode decoupling capacitor is not very large (outside the scope of this document). The circuit with
AC coupling is shown in Figure 2.

Figure 2: Passive RIAA correction with AC coupling. Again, R3 = R3A + R3B.

The zeros are still exactly where they used to be, but the poles shift. Calculating the characteristic 
equation is still straightforward, although the number of terms gets a lot larger. The result I found is:



When the characteristic polynomial is written as a3 s3
+a2 s2

+a1 s+1 , then

a3=R1 R3 R4 C0C1C2+R1 R2 R4C0 C1 C2+R2 R3 R4 C0 C1C2+R0 R1 R3 C0 C1 C2

+R0 R1 R2C0 C1 C2+R0 R2 R3C0C1 C2+R0 R3 R4 C0 C1C2+R0 R2 R4 C0C1C2

a2=R1 R3 C1 C2+R1 R2C1C2+R2 R3C 1C2+R3 R4C1C2+R2 R4 C1 C2+R1 R4 C0 C1

+R1 R4 C 0C2+R2 R4 C0 C1+R3 R4 C0C2+R0 R1C0C1+R0 R1C0C2+R0 R2C0C1

+R0 R3C0 C2+R0 R4 C0C1+R0 R4 C0 C2

a1=R0C0+R1C1+R1C2+R2C1+R3C2+R4 C0+ R4 C1+R4C2

One could now assume the required pole positions to be known: two of them are the required RIAA 
correction poles, and one is the extra subsonic pole due to the AC coupling, for which one would 
have to pick a value. The desired values of a3, a2 and a1 can then be calculated. After choosing 
convenient values for C0, C1 and C2, realising that R0 is the known output resistance of the first 
stage, and choosing between R2 = 0 or R2 = τz/C1, there would be three remaining unknowns: R1, R3 
and R4.

It should in principle be possible to solve the resulting system of three equations with three 
unknowns, but it looks like this would be rather unwieldy. I have therefore tried to find a suitable 
approximation instead.

3. AC coupling capacitor approximately included

The equations get much simpler without R4, that is, dividing everything by R4 and taking the limit 
for R4 → ∞. The extra pole then ends up at 0 and can then be factored out of the characteristic 
polynomial, reducing it to second order. The resistors R0 and R1 end up effectively in series, and can
be replaced by one resistor.

Also dividing by C0 + C1 + C2 to get the result in the form a s2
+b s+1 , like in chapter 1, one has 

to calculate a and b such that

lim
R 4→∞

a3 s3
+a2 s2

+a1 s+1
R4 s (C0+C1+C2)

=as2
+bs+1

holds for all s. Renaming R0 + R1 to R01, the result is:

a=
C0 C1 C2

C0+C1+C2
( R01 R3+R01 R2+R2 R3 )

b=
(C 0+C1)C2

C0+C1+C 2

R3+
(C0+C2)C1

C0+C1+C2

R2+
(C1+C2)C0

C0+C1+C2

R01

The required a and b follow from the required RIAA correction, like in chapter 1. One can again 



choose between R2 = 0 or R2 = τz/C1, and pick convenient values for the capacitances. The remaining
unknowns are then R01 and R3. Solving these results in

R01=
b(C 0+C1+C2)−(C0+C2)C1 R2−(C0+C1)C2 R3

C0(C1+C2)

and

R3=

b(C 0+C1+C2)−2R2C1C2±√ (b(C0+C1+C2)−2R2C 1C2 )
2
−4 C2(C 0+C1)(a (C0+C1+C2)

C1+C2

C1C 2

+R2
2 C1(C 0+C2)−b R2(C0+C1+C2))

2C2(C0+C1)

In practice, R4 needs to have a finite value to bias the next stage. Comparing the admittances of the 
two circuits in Figure 3,

Y 1=
1
R4

+
sC0

s R0 C0+1
=

s(R0+R4)C0+1
s R0 C0 R4+R4

and

Y 2=
sC5

s R5C5+1
=

s R4 C5

s R5 C5 R4+R4

The denominators are equal for all s when R5C5=R0C0 and the asymptotes for s→∞ are equal 

when R5=
R0 R4

R0+R4

. Hence, C5=
R0+R4

R4

C0 . The only remaining difference is the location of 

the zero of the admittance, either at s=0 or at s=−
1

(R0+R4)C0

.



Figure 3: AC coupling and a simplified circuit

Hence, the approximation can be improved by replacing C0 in the earlier equations with C5 and R0 
with R5. Therefore, R01 will be renamed to R51, the sum of R5 and R1. See also Figure 4.



Figure 4: Simplified RIAA correction with an AC coupling capacitor. R51 is the sum of R5

and R1.

3.1. Resulting method for calculating the values

Calculate the output resistance R0 of the driving stage, see Figure 2.

Calculate a=τp 1 τ p2 and b=τp 1+τ p2 , like in chapter 1.

Choose convenient values for C0, C1 and C2, see Figure 2. If negative or complex values for the 
resistors are later calculated, the choice of capacitances may have to be revisited.

Choose the value for the bias resistor R4.

Make a choice between R2=
τ z

C1

or R2 = 0.

Calculate C5=
R0+R4

R4

C0

Calculate R5=
R0 R4

R0+R4

, the parallel value of the output resistance of the first stage and the bias 

resistor R4.

Calculate

R3=

b(C1+C2+C5)−2R2C1C2±√ (b (C1+C 2+C5)−2 R2C1C2 )
2
−4C2(C1+C5)(a(C1+C2+C5)

C1+C2

C1 C2

+R2
2C1(C2+C5)−b R2(C1+C2+C5))

2C2(C1+C5)

Calculate



R51=
b(C1+C2+C5)−(C2+C5)C1 R2−(C1+C5)C2 R3

C 5(C 1+C2)

Calculate

R1=R51−R5

If you chose R2=
τ z

C1

, then R3A = R3 and R3B = 0.

If you chose  R2 = 0, then R3B=
τz

C2

and R3 A=R3−R3 B

3.2. Example checked with a pole-zero extraction program

Using

R0 = 25 kΩ 

C0 = 220 nF

C1 = 22 nF

C2 = 2.2 nF

R4 = 470 kΩ

the calculations result in this as the only option without negative resistances:

R1 = 109171.187490245 Ω

R2 = 14454.5454545455 Ω

R3A = 23894.8717329408 Ω

R3B = 0 Ω

The extracted pole and zero locations are:

Poles:

-8.332 rad/s

-313.815 rad/s

-13333 rad/s

Zeros:

-3145 rad/s

-5.24 frad/s (that is, zero with a numerical error)

The lowest RIAA correction pole is at -313.815 rad/s, meaning its time constant is about 0.207 % 
too large.



4. AC coupling included, with the resistor to ground (or a DC bias 
voltage) at the end

There may be practical reasons for wanting the DC bias resistor at the end of the network, rather 
than at the beginning. For example, because one has a PCB with space for such a resistor at the end 
of the network, or to reduce the number of possible failures that could lead to an incorrect DC 
voltage at the output. For simplicity, I will assume that R3B = 0. We then end up with the lower 
circuit of Figure 5.

Figure 5: Passive RIAA with the DC bias resistor right after the AC coupling (upper schematic) or 
at the end (lower schematic)

Calculating the characteristic polynomial of this circuit again leads to a third-order equation with 
lots of terms; I gave up calculating it halfway. Unlike in chapter 3, I also haven't found a 
satisfactory approximation to reduce it to a simpler second-order system and end up with standard-



value capacitors and only awkward values for the resistors. I have only found an iterative 
approximate solution for that, one that is based on transforming the circuit into something that looks
more like the circuit in the upper part of Figure 5 (which is obviously the circuit of the previous 
chapters).

When you look at the input admittance of the upper part of Figure 5 and choose R1 = 0, the 
subcircuit consisting of R3, R4 and C2 can be replaced with a terminal equivalent that looks like R3x, 
C2x and R6x in the lower part. This is illustrated in Figure 6.

Figure 6: Two subcircuits that can be dimensioned to have equal impedances

When you calculate the impedances of both networks in Figure 6, it turns out that they are equal 
when

R3x=
R3 R4

R3+R4

R6 x=R4−R3 x

C2 x=
R3+R4

R6 x

C2

Hence, when you manage to dimension the network in the upper part of Figure 5 properly under the
constraint R1 = 0, then you can transform it to correct values for the network in the lower part of
Figure 5. The capacitance of C2x in the lower part of Figure 5 may get an awkward value, though, 
which can be solved by tweaking the chosen C2.

You can only choose R1 = 0 in the upper part of Figure 5 when you use a somewhat different 
procedure than in chapter 3 to dimension R0 and the rest of the network. In particular, R0 is now an 
unknown that needs to be solved rather than the known output impedance of the driving stage. 
Physically, R0 can now be seen as the series connection of the known output impedance of the 
driving stage and a series resistor that gets whatever value is needed. To simplify the calculations, 

we will further assume that
R0+R4

R4

is chosen to be some fixed value.



4.1. Iterative and approximate design procedure

The procedure is now as follows:

Calculate a=τp1 τp2 and b=τp1+τ p2 , like in chapter 1.

Choose convenient values for C0, C1 and C2, see the upper part of  Figure 5. If negative or complex 
values for the resistors are later calculated, the choice of capacitances may have to be revisited.

Choose a value for α=
R0+R4

R4

, normally this will be a value somewhere between 1 and 1.5.

Calculate R2=
τ z

C1

.

Calculate C5=αC0

Calculate

R3=

b(C1+C2+C5)−2R2C1C2±√ (b(C1+C2+C5)−2R2 C1 C2)
2
−4C 2(C1+C 5)(a(C1+C2+C5)

C1+C2

C1C2

+R2
2C1(C2+C5)−b R2(C1+C 2+C5))

2C2(C1+C5)

Calculate

R5=
b(C1+C2+C 5)−(C2+C5)C1 R2−(C1+C5)C2 R3

C5(C1+C2)

(In chapter 3, this used to be the equation for R51, but when R1 = 0, R5 = R51.)

Now calculate

R0=αR5

R4=
R0

α−1

and at last

R3 x=
R3 R4

R3+R4

R6 x=R4−R3x

C2 x=
R3+R4

R6 x

C2

If the value of C2x is inconvenient, tweak C2 a bit and do the whole calculation again.

In the lower network of Figure 5, R0x and R1x are effectively in series and together act as R0. That is,

Calculate the output impedance of the driving stage, this is now called R0x. 

Finally, calculate R1x=R0−R0 x



4.2. Example checked with a pole-zero extraction program

When

R0x = 38461.5384615385 Ω

choosing

C0 = 100 nF

C1 = 22 nF

C2 = 872.5 pF (value tweaked to get a nice C2x)

α = 1.1662 (value tweaked to get a nice R6x)

the calculations result in this as the only option without negative resistances:

R1x = 139715.07245752 Ω

R2 = 14454.5454545455 Ω

R3x = 70674.1409656935 Ω

R6x = 1001387.29657377 Ω

C2x = 1.000001449 nF

The extracted pole and zero locations are:

Poles:

-6.821 rad/s

-308.296 rad/s

-13333 rad/s

Zeros:

-3145 rad/s

+16.526 frad/s (that is, zero with a numerical error)

The lowest RIAA correction pole is at -308.296 rad/s, meaning its time constant is about 2.001 % 
too large. This is worse than in chapter 3. Trying again with C0 = 220 nF to increase the ratio 
between C0 and the other capacitances shows that this reduces the error to just over 1 %, still worse 
than chapter 3.
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