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Method for measuring acoustic radiation fields 
Gabriel Weinreich and Eric B. Arnold 
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(Received 13 March 1980; accepted for publication 11 May 1980) 

An acoustic field which varies sinusoidally in time is completely determined by the complex values of its 
pressure on two concentric spheres. We have developed an experimental procedure which carries out 
such a measurement. If the source of sound is located inside the inner sphere, we experimentally obtain 
an expansion in spherical waves whose outgoing and incoming (that is, reflected) components are 
independently determined. This paper describes both the apparatus and the underlying theory, and 
presents illustrative results on the wave reflected from the wall of an anechoic chamber. 

PACS numbers: 43.85.Dj 

INTRODUCTION 

In connection with the study of violin dynamics, it 
became interesting to examine the acoustic field sur- 
rounding the instrument. At least two reasons made 
it so. First, different patterns of body vibration differ 
radically in their efficacy as radiators; specifically, 
a pattern whose wavelength in the violin is smaller than 
its wavelength in air will radiate very little, yet its 
amplitude can be such as to mask an underlying long- 
wavelength pattern which radiates considerably more. 
Second, the presence of an air cavity and f holes means 
that radiation is not only by wood motion but also by 
air motion, which is not directly observable. 

Our work on violin radiation is in progress and will 
be reported separately. It seems, however, that the 
method of field measurement which we have developed 
has considerably wider applicability. This paper de- 
scribes the method, along with some illustrative appli- 
cations showing the type of results that it is capable of 
producing. 

I. THEORY 

A. Parametrization of the field 

Obviously, the acoustic field has an infinite number 
of degrees of freedom, so that it is important to use a 
parametrization that takes advantage of our knowledge 
of field dynamics rather than simply trying to measure 
it everywhere. We take the acohstic pressure as the 
primary field quantity and represent it as an expansion 
in spherical waves, in which case its most general form 
is 

p(r, O, ok) - Z[ aL uhL (kr) + bL uh•(kr)] YL •(0, ok). (1) 

Here p(r,O,cp) is the acoustic pressure, YLM(O, q b) a 
spherical harmonic, and hL(kr) the spherical Hankel 
function of the first kind, defined by 

hL(x) = (- x) L (d /x dx) L (e i"/ix) . (2) 

This function describes an outgoing spherical wave, and 
its complex conjugate an incoming one. Knowledge of 
the field then becomes equivalent to knowledge of the 
expansion coefficients aLu and bL • of the outgoing 
and incoming waves. 

The expansion (1) is applicable in any region lying 

between two concentric spheres such that all sources 
and scatterers are either inside the inner sphere or 
outside the outer sphere. In a region where there are 
no sources or scatterers, the inner sphere can be 
eliminated; the coefficients aLu and bL• are then not 
independent of each other, but must be equal. This 
is so because the Hankel function is singular at the 
origin, but its real part, which is the spherical Bessel 
function jL(kr), is not. Physically, the equality of out- 
going and incoming waves means that, with no source 
or scatterer inside a sphere, the outgoing waves are 
simply the incoming waves leaving again in the oppo- 
site direction. Experimentally, it is then sufficient to 
measure only one coefficient, or a known linear com- 
bination of them, for each L,M; alternatively, mea- 
suring both provides' a test of the measurement method. 

Another situation in which there are not two independent 
coefficients for given L ,M is the one in which a source 
is located in free space or, equivalently, in a perfect 
anechoic chamber. In that case bL •--0 for all L,M. 
Indeed, the most usual procedure of anechoic chamber 
measurements has been to build the best chamber pos- 
sible and then to ignore whatever residual reflections 
exist. Again, a test of such an assumption is provided 
by our method if all coefficients are measured. 

B. The measurement spheres 

If the value of the acoustic field p(R, O, ok) is known at 
all points on the surface of a sphere of known radius 
R, an expansion of this function in spherical harmonics 
yields the values of aL•hL (kR)+bL•h•(kR) for each 
L,M. Repeating the measurements on another sphere, 
we obtain a second linear combination of aL • and 
bL •, allowing the coefficients themselves to be corn-' 
puted. Thus the entire acoustic field is determined 
if its values on two concentric spheres are known. It 
is this fundamental fact which forms the basis of our 

method. 

The spheres on which the field is measured should 
not be confused with those that limit the range of con- 
vergence of the expansion (1), and whose radii are 
determined by the location of sources and scatterers; 
the measurement spheres• can be anywhere within the 
region of convergence. Of course, numerical errors 
involved in solving for the coefficients will increase 
if the two are very close together. Ideally, their sep- 
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aration should be in the vicinity of a quarter wavelength, 
but this quantity is not critical. 

It cannot be overemphasized that this type of an- 
alysis assumes that phases, as well as amplitudes, of 
the field are measured. I•ta on amplitudes (or, equiv- 
alently, sound-pressure levels) alone are insufficient 
for a complete dynamical analysis of the field. 

C. Convergence of expansion 

At large distances, the function hL(kr) approaches 
exp(ik•'-iL•r/2)/ik•', so that all L values behave the 
same except for characteristic phase shifts. For small 
values of k•, on the other hand, ]•L(•) becomes 
(2L - 1) I !/i(k•') •*•. This divergent behavior, custom- 
arily described as the "near field," sets in when the 
argument •r becomes smaller than L. Hence, the 
near field extends further and further out for high L; 
in fact at any •, no matter how large, near field be- 
havior will be encountered if sufficiently large L values 
are included. 

As far as the angular dependence is concerned, the 
rms values of normalized spherical harmonics are, by 
construction, independent of L. Of course, their os- 
cillations become more and more rapid with increasing 
L, so that an experimental microphone measurement 
whose spatial resolution is finite will average very high 
L contributions to zero. This does not happen, how- 
ever, until L becomes at least as large as the ratio of 
sphere radius to microphone size, a number much 
larger than the values of L dealt with in this work. 

We thus see that convergence of the expansion must 
depend on the coefficients a• and b• falling off at 
high L. Now if the field is due to a source of approxi- 
mate extent d located at the origin, it may be assumed 
that, as long as the spherical harmonic expansion of 
the motion of the source surface has coefficients which 

do not increase for high L, the radiated wave will not 
contain appreciable contributions for L greater than 
kd. The reason is precisely that for larger L values the 
Hankel function at the source is much larger than its 
asymptotic value, so that the contribution to the far 
field will be small. On the other hand, if the source 
is not at the origin, its "size" must be viewed as the 
radius of the smallest sphere centered at the origin 
which yet contains it. For example, a localized source 
at a distance R from the origin will have appreciable 
partial wave contributions up to about L = kR. In the 
extreme case of a plane wave (which can be viewed as 
due to a source infinitely far away), there is no upper 
cutoff on L values. 

Experimentally , the presence of random errors in the 
measurement of amplitudes and phases of the micro- 
phone signals will appear as "white noise" in the 
spherical harmonic expansion, that is, it will be char- 
acterized by an essentially uniform contribution to all 
partial waves. If we are interested in the far field, this 
noise will play the same role as it does in any other 
physical measurement. However, if we wish to ex- 
trapolate the field inwards toward the source, a rather 
serious problem arises: a given amplitude of wave at 

the position of the microphone will make a bigger and 
bigger contribution to the field at smaller radii as L 
increases, due to the behavior of the Hankel functions 
previously discussed. Thus a small but finite amount 
of high-/. noise can cause catastrophic divergences at 
small radii. (This is simply the converse of the fact 
that high-L source motions near the origin do not ra- 
diate much--it is difficult to determine high-/. motions 
near the origin from measurements far away.) 

What this means is that, at small radius (or, strictly 
speaking, at any finite radius), the expansion (1) must 
be viewed as semiconvergent rather than convergent, 
to be cut off at an L value at which the agreement with 
reality begins to become worse rather than better. 
What this value is can be estimated if we know the errors 
of measurement and the radii of the measurement 

spheres; in effect, this consideration places a limit on 
the resolution with which the source motion at small 

radius can be determined. 

II. APPARATUS AND PROCEDURE 

A. Mechanical boom system 

As explained in Sec. IB, a complete determination of 
the acoustic field is effected by measuring the acoustic 
pressure on two concentric spheres. In order to ac- 
complish this, we designed and built a special boom 
system which simultaneously moves two microphones 
so that each one maintains a constant distance from 

the coordinate center, and the values of the spherical 
angles (8, •) are always the same for both. This sys- 
tem must be able to locate the microphones with pre- 
cision and not scatter an appreciable amount of sound. 
Since the first condition requires rigidity and the sec- 
ond small size, they are to some degree contradictory. 
The arrangement we have used is shown in Fig. 1. The 
primary boom, made of «-in. brass tubing, is pivoted 
at the bottom so that it can rotate about a vertical 

"primary" axis. Attached to it is a horizontal tube 
whose axis intersects the primary one. Running through 
this tube is the shaft of the secondary boom, at the end 
of which are located two Knowles BT1759 microphones, 
mounted so as to be radially displaced from each other. 
The weight of the system is supported by two thin iron 
wires attached to a ball bearing collar which turns on a 
shaft mounted to the ceiling of the room. Motion of the 
primary or secondary boom causes each microphone to 
sweep out, respectively, a "parallel of latitude" or a 
"meridian of longitude." Thus, the combination of the 
two motions allows the microphones to be placed any- 
where on their respective spheres. The radii of the two 
measurement spheres are 58.1 and ?2.6 cm. 

The shafts are driven by small electric motors and 
worm-and-gear systems. Mounted on each final worm 
sha/t is a Lucite disk, painted so as to have alternate 
opaque and transparent sectors and equipped with a pair 
of LED-phototransistor combinations. As the disk 
rotates, the square wave that comes out of the photo- 
transistors operates a digital counting system whose 
state at any moment defines the position of the respective 
boom. The system counts up or down depending on 
which of the two phototransistors first sees the passing 
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takes approximately 40 min. 

ß 
. 

. 

FIG. 1. Mechanical boom system. O--center of coordinate 
system: M1, M2--microphones; A--motor and drive for polar 
angie 0; B--motor and drive for azimuthal angie 

sector edge; in this way, the position of the boom is 
correctly defined even though the motion reverses. The 
gearing is such that the 360-deg range of qb is sub- 
divided into 768 counts, and the 180-deg range of 0 into 
400. The angular coordinates of the two microphones 
are, of course, always equal. 

The whole system is lined up by a systematic pro- 
cedure involving plumb lines, levels, and a theodolite. 
The final errors in locating the microphones appear to 
be no larger than about 5 mm on the sphere, and less 
than that radially. 

The procedure of data taking has been to set 0 at a 
fixed value, sweep through a complete circle in qb, then 
advance the value of • and repeat the process. We use 
25 values of •, ranging from 3.6 deg to 176.4 deg in 
steps of 7.2 deg. The • sweep is begun about 30 deg 
before the nominal zero of qb, allowing mechanical 
start-up transients to die away before significant data 
is taken. Similarly, qb is allowed to run about 30 deg 
past the nominal end of its range, and the next circle of 
latitude is (after readjusting •) swept in the reverse 
direction. 

We take approximately one minute to sweep a circle 
of latitude. Including the above-mentioned overshoots 
and the time for setting the • values, a complete run 

Our interpretation of the data is, of course, valid 
only to the extent that the boom is acoustically trans- 
parent, so that the field does not change as the boom 
moves. To check the accuracy of this assumption, we 
used the fact that a given microphone location can be 
reproduced by changing the sign of • and adding 180 ø to 
•b. The boom configuration is, however, different in 
the twO) cases, so that the scattering, 'if any, should be 
different. 

Figure 2 shows data obtained in this manner. Here 
0 is plus or minus 90ø; that is, the microphones are on 
the equator. The abscissa is either qb (for the solid 
line), or qb + 180 ø (for the dashed line); hence, apart 
from boom scattering, the two curves should be identi- 
cal. It is seen that this identity is not complete, and 
some boom scattering is occurring. 

At least two methods could be used to decrease errors 

from this cause. The most obvious one is to redesign 
the boom structure out of thinner members, which can 
certainly be done. Since, however, every boom will 
cause some scattering, it is interesting also to ask 
whether the effect could be calculated so as to correct 

for it when the data are processed. Although we have 
not done it, some progress in that direction is possible 
if one first computes "zero-order" wave coefficients 
ignoring boom scattering, then uses the resulting "zero- 
order" field to calculate a wave scattered by the boom 
into each microphone. This method should be quite 
effective if the scattering is localized, arising, for 
example, from the housing of the • motor (which we 
believe to be the major scatterer now). As long as a 
scatterer is small compared to a wavelength, its scat- 

[ I : ' I I 
3õ0 o 

FIG. 2. Comparison of data taken in two boom configurations 
that correspond to identical microphone positions. What is 
plotted is the quadrature component of the inner-microphone 
signal as the microphone sweeps out the equator of the corre- 
sponding sphere, as a function of the azimuthal angle ("1ongi- 
9ade"). The other three channels show comparable behavior. 
l•epetition of the sweep using the same boom configuration 
would show deviations which are typically less than the thick- 
ness of these lines; hence, the discrepancy visible here is at- 
tributed to boom scattering. The ordinate is linear, with the 
maxima equal roughly to one-half of the full-scale value of the 
A/D conyerbar. 
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tering should, in lowest order, consist only of a com- 
bination of s wave and p wave. It would be relatively 
easy to measure the corresponding scattering lengths 
empirically, and use them to compute a first-order 
correction to the zero-order field at the microphones 
and, finally, a first-order correction to the coefficients. 
Such a procedure should reduce errors due to boom 
scattering by an order of magnitude. 

B. Audio system 

Figure 3 is a block diagram of the electronics, to be 
discussed in this and the following sections. 

The oscillator used for driving the sound source 
must have the following characteristics: 

(1) Its frequency must be very stable, since com- 
putation of the field depends on an accurate knowledge 
of the wavelength, 

(2) It must have low harmonic content, since our 
analyzer circuit is sensitive to some harmonics (see 
below), 

(3) It must provide both sine and cosine outputs to be 
used as references for the analyzer. 

We use a specially designed oscillator which, in 
addition to the above features, has control inputs that 
allow it to be phase-locked to an external source while 
maintaining very low harmonic content. This makes it 
possible to drive a violin at a frequency which is locked 
to one of its string resonances, a feature which is not 
of direct relevance to the general method except insofar 
as it allows a convenient separation of the frequency 
stability and low distortion functions. 

Amplitude and phase information is obtained from the 
microphone signals by an analyzer circuit which sep- 
arates each of the two amplified microphone signals 
into sine and cosine components. This is done by pro- 
ducing square waves from the sine and cosine oscil- 
lator signals and using these to switch the gain of 
amplifiers between + 1 and -1. The time-average 

outputs of these amplifiers are then proportional to the 
sine and cosine components of the original sinusoidal 
input. The switching is done carefully to insure a 50% 
duty cycle, and the positive and negative gains are 
accurately matched. When this is done the signal an- 
alyzers are insensitive to even-harmonic components in 
the input signal; odd-harmonic components do contri- 
bute in inverse proportion to their orders, however, 
and thus must be minimized in the input signal if pos- 
sible. The signal analyzer outputs are filtered by 
second-order, critically damped low-pass filters with 
10-Hz corner frequencies which effectively average 
over many cycles of the signal analyzer outputs. 

The sensitivities of the two microphones, as well as 
the gains in the associated amplification and analyzing 
channels, were intercalibrated by repeating some typical 
runs after physically interchanging the two microphones. 

The four filtered outputs of the signal analyzer, which 
are slowly varying dc voltages, are routed next to four 
analog sample/hold amplifiers, based on the Analog 
Devices model AD582 integrated circuit, and controlled 
by logic circuits which cause the HOLD mode to be en- 
tered when an externally generated FREEZE signal is 
received (see next section). The logic circuits then 
insure that the HOLD mode is maintained as long as is 
necessary to digitize all four sampled signals and store 
the resulting digital values in temporary storage reg- 
isters. Following this, the sample/hold circuits return 
to the SAMPLE mode, in which they quickly acquire the 
current values of the signal analyzer outputs and follow 
them until the next FREEZE signal occurs. If a FREEZE 
signal occurs while the previously held values are still 
being digitized, an inhibiting signal is produced which 
prevents it from propagating to other parts of the logic 
circuitry which depend on it to perform other functions 
simultaneously with the sampling of the signal analyzer 
outputs. When the digitizing has been completed, this 
inhibiting signal is removed after a short delay (to 
permit the sample/hold circuits to settle to new values) 
and the FREEZE signal propagates in its normal manner 

OSCILLATOR 

I 

SIN 

FREEZE 

POS I T I ON 

SENSORS 

' } ,1.•LPF] I I I SZHI-L.14..!I• ' , H MI•i• 
SIGNAL ANALYZER I I : OIGITIZER 

I I UPXl;10•IN COUNTER 
I POS I T I ON COUNTERS 

CHANNEL SELECT 

[ I 
SCANNI•IG 
CONTROL 

I SC^NNEm I 

CASSETTE 

RECORDER 

FIG. 3. Block diagram of 
the electronics. 

power amplifier; S--sound 
source; M1, M2--micro- 
phones; MA--microphone 
preamplifiers; LPF--low- 
pass filters; S/H--sample/ 
hold amplifiers; MUX-- 
multiplexer; ADC--analog/ 
digital converter; M/R-- 
memory registers; UART-- 
ASCII serial code generator; 
FSK--modulator. 
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to cause the newly acquired analog values to be held 
again. 

The four sample/hold outputs are multiplexed by a 
tree of Analog Devices model A D7512 SPDT analog 
switches. The multiplexed output goes directly to the 
analog input of the A/D (analog-to-digital) converter, 
which is an Analog Devices model AD7550 integrated 
circuit. This is a fairly slow, 13-bit device that uses 
a conversion technique that minimizes many potential 
errors without requiring component trimming adjust- 
ments. A very stable reference voltage is provided by 
a National Semiconductor type LM3999Z integrated 
circuit, a device that has a built-in heater and tem- 
perature regulator which lower the dependence of the 
reference voltage on the ambient temperature by an 
order of magnitude over the best temperature-com- 
pensated Zener reference diodes, and at much lower cost. 
It produces a reference voltage of about 7 V, which 
gives the A/D converter full-scale values of about 3.28 
V, or about 0.8 mV/LSB (least significant bit) for the 
resolution of the digitizer. Test measurements made 
by introducing sine and cosine signals from the sine 
wave oscillator into the signal analyzer inputs give 
sample standard deviations of 0.54 to 1.1 LSB, so the 
system is capable of making measurements significant 
down to the LSB. The A/D converter can operate at a 
maximum rate of about 25 conversions per second, but 
at somewhat reduced accuracy. A compromise between 
speed and accuracy resulted in a conversion rate of 
about 10 per second, at which the standard deviations 
noted above were obtained. This rate is fairly practical 
when considered as part of the remaining data trans- 
mission system, which is described below. If only the 
digitized values of the analog signals are transmitted, 
then the speed of data collection is limited by the A/D 
converter, but when more data (such as the position of 
the microphone boom) is transmitted, this is no longer 
the case. The amount of additional data transmitted 
for the sound-field measurements puts this system 
near its optimal operating point, with the A/D con- 
verter busy essentially all of the time, but with other 
data being transmitted while the converter is producing 
its four digitized outputs. 

C. Data recording system 

During the •b sweep, which takes place continuously, 
the counters give the instantaneous position of the 
microphones, and the four analyzer outputs give the 
values of the real and imaginary parts of the two micro- 
phone signals. Strictly speaking, the analyzer outputs 
must be regarded as being delayed by approximately 
0.03 s due to the filter time constants. However, at the 
sweep speed we use, the microphones never move more 
than a millimeter or two during this period, causing 
only a negligible error. 

The data recording is supervised by a data line 
scanner circuit, whose cycle consists of the following 
steps: 

(1) AFREEZE signal is sent to the counters and an- 
alyzers, causing the counters to save their states in 

storage registers, and the analyzers to save their out- 
puts in the four sample-and-hold amplifiers. The 
counters themselves continue to count, of course, since 
the motion of the boom is not stopped. 

(2) The same FREEZE signal causes the contents of 
the sample-and-hold amplifiers to be digitized and the 
digital results saved. 

(3) The line scanner interrogates the six data reg- 
isters in turn, receiving from each register thirteen 
bits of data and one additional bit which is either an 
overflow bit from the A/D converter or a directional 
bit from the counters indicating the sense of boom 
motion. Each set of 14 bits is concatenated with four 
bits identifying the data register from which it was 
received, and the resulting 18 bits are coded serially 
at 300 baud as a "syllable'; of three ASCII characters 
each in the range 040-137 octal. 

(4) The sequence of six "syllables" has appended to 
it a (CARRIAGE RETURN )-(LINE FEED)-(NULL) sequence 
which terminates a line of data and simultaneously 
releases the FREEZE signal so that the circuits can 
acquire the next data value. 

(5) The serial ASCII is converted to a standard FSK- 
modulated audio signal and recorded on an ordinary 
audio casette recorder, after which the cycle begins 
anew. 

The whole cycle could in principle be done in 0.7 s 
(21 characters at 300 baud), but in fact takes about 1 s 
because the line scanner must wait for the A/D con- 
verter to complete its task. At this rate, each circle 
of latitude comprises 50 to 60 points of data. On the 
equator, this density in •b is consistent with the spacing 
that we are using in e; at higher latitudes, we obtain 
more points than necessary. 

The temperature of the air was measured both before 
and after each run and the average value used in the 
data reduction (the change was seldom more than 0.2 
øC). 

The complete casette tape from a run was, at a later 
time, read into the central computer of the University 
of Michigan Computing Center via a 300-baud dial-up 
link, and stored as a disk file for later analysis. The 
reading-in process was occasionally unsuccessful be- 
cause, playing from an audio casette, there is no way 
to stop and start the data transmission in response to 
XON and XOFF signals from the computer. As a result, 
data could be lost if, during a busy time-sharing 
period, the computer input buffer overflowed before 
it was emptied. This did not happen often and, when 
it did, we were made clearly aware of it by appropriate 
error messages; in such a case, the transmission 
process was repeated. We are now converting to a 
floppy-disk system which not only can be better con- 
trolled, but is also capable of transmitting to the com- 
puter at a higher data rate, so that a 40-min run will 
not require another 40 min to be read in. The original 
system had the considerable advantage of low cost, 
however; it was put together, mostly as homemade 
circuitry, for approximately $300. 
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D. Computer processing 

The data collected in the manner described in the 

preceding section is, for each microphone, expanded 
in spherical harmonics up to L = 9. If F(0, qb) is the 
complex amplitude of the microphone signal (which is 
proportional to the complex acoustic pressure), the 
coefficient Czs of this expansion is obtained from the 
original data, F(O, qb), by 

C•;•= (PL•(O)G(M;O)sinOdO , 

where 

(3) 

C(M;O)=(2,r) q/2 exp(-iMqb)F(O,qb)dcp . (4) 

Here (PL•t(0) is a normalized associated Legendre func- 
tion. The computing procedure is straightforward: 
since the data file runs through a complete circle in 
• at constant values of 0, we first compute the functions 
G(M; O) on each circle. This is done by direct numer- 
ical integration, assigning an increment d• to each 
point by examining the preceding and following values 
of the independent variable. In this way, 19 values of 
G(M; 0), with M ranging from -9 to +9, are found for 
each 0. At the end of every • sweep the program com- 
putes contributions to the 100 integrals C• using 
appropriate values of the functions G(M; 0). 

Having obtained the spherical harmonic expansion of 
the acoustic field on each sphere, it is a simple matter 
(knowing the radii, the frequency, and the speed of 
sound) to obtain the coefficients of the incoming and 
outgoing waves. After that, the field at any location in 
the region of convergence can be computed, either as 
an acoustic pressure or as any desired component of 
velocity. We have found it extremely useful to plot 
the results with the use of a Hewlett-Packard 7221A 

digital plotter. Some examples are given in the dis- 
cussion of the next two sections. 

III. ILLUSTRATIVE RESULTS 

away, it is easily shown that its expansion will match 
that of a plane wave for L values up to about kR. 

With the boom system assembled and lined up in the 
center of the anechoic chamber, we placed a loudspeaker 
in one of the corners of the room, at a distance of 2.77 
m from the center of the spheres defined by the mea- 
suring system. Choosing a frequency of 733.5 Hz (be- 
cause of the accidental availability of a crystal-con- 
trolled source at that frequency), we find that the 
resulting wave should be essentially plane up to L -35 
or so. Since our analysis never went beyond L -9, the. 
approximation to a plane wave should be excellent. 

Having taken a complete run under these circum- 
stances, we first computed the coefficients of outgoing 
and incoming waves. The amplitudes of the two waves 
were then separately resynthesized at large radii, 
omitting the factors exp(ñikr)/ikr which characterize 
the radial dependence of the far field. The results are 
shown as polar plots in Fig. 4. The plane of the dia- 
grams is vertical and is oriented so as to include the 
loudspeaker, the dotted lines showing the direction in 
which it is located. 

For an ideal plane wave, the outgoing wave should 

A. A plane wave 

As stated above, whenever there is no source or 
scatterer inside the measuring spheres, the coef- 
ficients of the outgoing and incoming waves must be 
equal so as to add up to the nonsingular Bessel func- 
tion. Preliminary tests, with the apparatus in an 
ordinary laboratory with considerable wall reflections, 
showed that condition to be rather well satisfied. It 

seemed interesting, however, to repeat the experiment 
in an anechoic chamber, where we could deal with a 
wave which not only originates outside the measuring 
spheres, but whose nature is fairly well known. In 
particular, a plane wave propagating in the direction 
•', •b' has the expansion 

4• •..i•j•(kr)Y•(O ', cp')Y•(O, qb) , (5) 
I.,M 

showing that arbitrarily high L values will be rep- 
resented in it. If the wave is not exactly plane, but 
originates from a localized source some distance R 

FIG. 4. Separation of an almost-plane wave into outgoing (top) 
and incoming (bottom) parts. The absolute value of the re- 
constructed asymptotic amplitude at large distances is plotted 
in a polar graph in a vertical plane, oriented so as to contain 
the source (whose direction is indicated by the dotted lines). 
The summation of spherical harmonics is carried up to L = 9. 
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appear as a delta function in the direction of propa- 
gation, and the incoming wave as a delta function in the 
opposite direction. Insofar as the wave is more com- 
plicated than merely plane, the pattern can change, but 
the incoming and outgoing waves must remain inversion 
images of each other as long as there are no sources or 
scatterers inside the measuring spheres. It is seen 
that the results are in excellent agreement with this 
expectation. The finite width of the lobes is consistent 
with the fact that we expand only up to L = 9. 

B. Anechoic chamber reflections 

As one of the applications of our method, we examined 
the wave reflected from the wall of our anechoic cham- 

ber. This chamber is part of the University of Michigan 
Phonetics Laboratory, and its construction has been 
described elsewhere? For the present purpose, it is 
important to note that the structure of the walls is dif- 
ferent from the wedge arrangement commonly used. 
As a money-saving feature, the chamber was built 
instead with accordion-like walls made by lacing a 
fiberglass blanket in and out between a grid of metal 
bars approximat'ely 2 ft apart. The rods are vertical . 
on the walls but, of course, horizontal on the ceiling 
and floor, and the depth of the accordion is approxi- 
mately equal to its spacing. 

In order to interpret the incoming wave in terms of 
the properties of the chamber, it is convenient to have 
the outgoing wave as simple as possible, preferably 
isotropic. We produced sound at a frequency of 733.5 
Hz by a pair of inexpensive 2¬-in. speakers mounted 
at the ends of a 3-in.-long tube of the same diameter, 
and wired so that the outward motions of the two cones 

are in phase. This pseudoisotropic source was mounted 

: 

REAL PART. POSI'TIVE 
REAL PART. NEGATIVE 
IMAGINARY PART. POSITIVE 

................... IMAGINARY PART. NEGATIVE 

FIG. 5. Outgoing wave from a double-loudspeaker source at the 
center of the measurement spheres, plotted as a reconstructed 
asymptotic amplitude at large distances. The plane of the 
(polar) plot is horizontal. The phase is shown by plotting the 
real and imaginary parts separately, and usingdifferent 
dashed-line fonts to distinguish positive and negative values. 

at the center of the spheres defined by the microphone 
motion, and a run was taken. 

Figure 5 shows the result for the outgoing wave, 
plotted in a horizontal plane as the amplitude which 
would obtain asymptotically at large distances from 
the source [after taking out the factor exp(ikr)/ikr]. 
In this case the phase is indicated by drawing the real 
and imaginary parts of the amplitude separately, and 
further distinguishing positive from negative values by 
the choice of dashing fonts. It is seen that the pattern, 
while not exactly isotropic, is at least devoid of any 
fine structure that would make the interpretation of the 
reflected wave difficult. The imaginary part of the 
amplitude, which is positive in the forward direction 
and negative in the backward one, is due to imprecise 
centering of the source relative to the coordinate sys- 
tem of the microphones and the fact that the responses 
of the two speakers at this frequency are not completely 
identical. 

The reflected wave is shown in Fig. 6, on a scale 
which is magnified by a factor of ten (that is, 20 dB) 
relative to Fig. 5. The pattern is easily explained as 
due to diffraction of the sound from the periodic accord- 
ion-shaped walls. In fact, the numbered lines in the 
figure indicate the directions of the zero-, first-, and 
second-order peaks to be expected from geometrical 
considerations of wavelength and accordion spacing. 
It is also interesting to note that the size of the lobes 
is consistent with the fact that the wall, viewed as a 
grating, is "blazed" for second orde• at this frequency; 
that is, the accordion angles are such that specular 
reflection occurs at approximately the second-order 
angie. 

2 

REAL PART, POSITIVE 
REAL PART, NEGATIVE 
IMAGINARY PART, POSITIVE 

................... IMAGINARY PART. NEGATIVE 

FIG. 6. Incoming wave obtained from the same run as Fig. 5, 
and due to reflection of the outgoing wave from the wall of the 
anechoic chamber. The scale represents a magnification of a 
factor of ten, or 20 dB, relative to Fig. 5. The numbered 
segments on the circumference of the graph indicate the loca- 
tion of diffraction maxima of corresponding order, as computed 
directly from the geometry of the accordion-shaped walls. 
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IV. CONCLUSIONS 

The method described in this paper allows an an- 
alysis of acoustic fields at a level of detail not here- 

tofore available. Considerable improvements, both 
in the mechanical boom structure and in the data pro- 
cessing, are still possible. In connection with the 
latter, a fast system which digitizes the microphone 
waveforms themselves could be combined with a broad- 

band source and Fast Fourier Transform procedures 
to obtain data at many frequencies simultaneously. 

Although our main interest was in violin acoustics, 
it appears that the domain of applicability of the method 
is much wider. 
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