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Abstract 
This paper is a brief review of our work on the Planck quantized version of 
general relativity theory. It demonstrates several straightforward methods to 
rewrite the same equations that we have already presented in other papers. 
We also explore a relatively new general relativity-inspired field equation 
based on the original Newtonian mass, which is very different from today’s 
kilogram mass. Additionally, we examine two other field equations based on 
collision space-time, where both energy and matter can be described simply 
as space and time. We are thereby fulfilling Einstein’s dream of a theory where 
energy and mass are not needed, or are just aspects of space and time. If this 
is extended beyond the 4-dimensional space-time formalism of general rela-
tivity theory to a 6-dimensional framework with 3 space dimensions and 3 
time dimensions, this ultimately reveals that they are two sides of the same 
coin. In reality, it is a three-dimensional space-time theory, where space and 
time are just two sides of the same coin. 
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1. Multiple Ways to Write Haugs’ Planck Quantized General  
Relativity Theory 

Max Planck [1] [2] introduced what today is known as the Planck units already 

in 1899. He came up with what he called natural units: length: 3p
Gl
c

=
 , time: 

5p
Gt
c

=
 , mass: p

cm
G

=
 , and temperature: 

51
p

b

cT
k G

=
 . The Planck 

energy is simply the Planck temperature multiplied by the Boltzman constant 
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( bk ) which gives: 
5

p
cE
G

=
 . These are today known as the Planck units. The 

Planck length is assumed to play an important role in quantum gravity; see, for 
example, [3] [4] [5] [6]. 

Einstein [7] already suggested the next step in gravity in 1916: 

Because of the intra-atomic movement of electrons, the atom must radiate 
not only electromagnetic but also gravitational energy, if only in minute 
amounts. Since, in reality, this cannot be the case in nature, then it appears 
that the quantum theory must modify not only Maxwell’s electrodynamics 
but also the new theory of gravitation. —A. Einstein 

In 1918, Eddington [8] proposed that quantum gravity had to be linked to the 
Planck length. String theory and Loop Quantum Gravity (LQG) are today the 
best-known attempts to develop quantum gravity. In our view, they are failed 
attempts, even though much interesting mathematics and concepts emerged 
from string theory. Over the last few years, we have developed a very simple and, 
we believe, powerful quantum gravity theory. In this paper, we will briefly out-
line multiple ways to formulate this new quantum gravity theory. We ask the 
readers to look up [9] [10] [11] for in more depth about our theory. This paper is 
mostly about how what we already have presented easily can be re-written by 
using several different Planck units, because in depth understanding of the theory 
the papers just mentioned is a good start. 

In 2014, Haug outlined a theory where he proposed that matter consists of an 
indivisible length, which he later demonstrated had to be the Planck length. Ad-
ditionally, he suggested that matter also has a wavelength known as the Comp-
ton wavelength, thus incorporating wave-particle duality, albeit with a signifi-
cantly different interpretation compared to standard theory [12]. In 2016, Haug 
[13] introduced a Planck quantized version of Einstein’s field equation in gener-
al relativity by simply assuming that all masses consisted of Planck masses, es-
sentially regarding the Planck mass as the ultimate particle. Additionally, Haug 
assumed that the so-called Newtonian gravitational constant, which Newton never 
invented nor used (see [10] [14]), could be expressed in composite form simply 

by solving the Planck length formula for G, yielding 
2 3
pl c

G =


 see [15], thus 

making it possible to express Einstein’s [7] field equation in the following form: 

4
1 8
2

GR Rg T
cµν µν µν
π

− =
 

 
281

2
pl

R Rg T
cµν µν µν− =
π



 (1) 

Additionally, Haug [16] [17] [18] [19] later demonstrated that one can find 
the Planck length independently of any knowledge of G and ħ and even c for any 
kilogram mass, ranging from the smallest to the largest, including cosmological 
objects and even the Hubble sphere [20] [21]. This means one can avoid the cir-
cular argument presented by Cohen [22] in 1987 and that has been repeated at 
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least until 2016 [23], which stated that one needs to know G to find the Planck 
units, so there is no reason to express G in terms of Planck units as it would lead 
back to G. However, Haug has solved this circular problem for any mass in the 
papers mentioned above. It is also important to note that Newton never invented 
nor used G in his theory, nor did Cavendish [24] do so, as discussed by for ex-
ample Clotfelter and Sean [25] [26]. Furthermore, Haug [17] has claimed that 
any kilogram mass can be expressed simply by solving the Compton [27]  

wavelength formula: 
h

mc
λ = , which gives: 

 
1 1hM
c cλ λ

= =


 (2) 

where λ  is the reduced Compton wavelength and 
2
h
π

=  is the reduced 

Planck constant also known as the Dirac constant. This naturally does not mean 
composite masses have a single Compton wavelength. Rather, it simply means that 

the Compton wavelength derived from a composite mass, found by 
h

mc
λ = ,  

must be equal to the aggregate of the physical Compton wavelengths of all ele-
mentary particles (and photons) making up the composite mass, as discussed in 
[11]. 

This means the Schwarzschild metric can be written on the form: 

 

1
2 2 2 2 2 2

2 2
2 2d 1 d 1 d dGM GMs c t r r
c r rc

−
   = − − + − + Ω   
     

 
1

2 2 2 2 2 22 2
d 1 d 1 d dp p p p

M M

l l l l
s c t r r

r rλ λ

−
   

= − − + − + Ω   
   

       (3) 

The important point to understand here is that the term p

M

l
λ

 represents the 

reduced Compton frequency per Planck time: p
p

M M

lcf t
λ λ

= = , which  

represents the quantization of matter and gravity. This is discussed in more de-
tail in Haug’s papers on the topic, particularly in [9]. Here, we will briefly men-
tion that we could also naturally express the same idea using Planck time and  

Compton time instead. This yields 
2 5
pt c

G =


, and Einstein’s field equation can 

be rewritten as: 

4
1 8
2

GR Rg T
cµν µν µν
π

− =
 

 
281

2
pct

R Rg Tµν µν µν− =
π



 (4) 

and 

 2 2
1 1 1

c c

h hM
c t c t cλ

= = =
  (5) 
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where ct c
λ

=  is the Compton time, and ct c
λ

=  is the reduced Compton time, 

which give a Schwarzschild metric of the form: 
1

2 2 2 2 2 2
2 2

2 2d 1 d 1 d dGM GMs c t r r
c r rc

−
   = − − + − + Ω   
     

  

1
2 2 2 2 2 22 2

d 1 d 1 d dp p p p

c c

ct t ct t
s c t r r

r t r t

−
   

= − − + − + Ω   
     

 
1

2 2 2 2 2 22 2
d 1 d 1 d dp p p p

c c

l t l t
s c t r r

r t r t

−
   

= − − + − + Ω   
   

 (6) 

This is simply a choice we have made to express the quantization in the 
Schwarzschild metric in terms of Planck time instead of Planck length. The term  

p p

c M

t l
t λ
=  and is still representing the reduced Compton frequency per Planck  

time, which is the quantization in matter and gravity. Recent research indicates 
also that matter ticks at the Compton frequency, see [28] [29]. 

Alternatively, we could have expressed it in terms of Planck mass, which 

would yield 2
p

cG
m

=
 , with Einstein’s field equation as: 

4
1 8
2

GR Rg T
cµν µν µν
π

− =
 

 2 3

1 8
2 p

R Rg T
m cµν µν µν
π

− =
  (7) 

and Schwarzschild metric can now be written as: 
1

2 2 2 2 2 2
2 2

2 2d 1 d 1 d dGM GMs c t r r
c r rc

−
   = − − + − + Ω   
     

   
1

2 2 2 2 2 22 2
d 1 d 1 d dp p

p p

l lM Ms c t r r
r m r m

−
   

= − − + − + Ω      
   

 (8) 

where 
p

M
m

 both represent the number of Planck masses in the gravitational 

mass and the reduced Compton frequency per Planck time, this was basically 

what Haug [13] did already in 2016 where he called 
p

M
m

 for N. However back 

then we had not linked this yet to the reduced Compton frequency per Planck 
time, which is essential to understand gravity at its deepest level. 

We could also have done it through Planck energy this would give 
5

2
p

cG
E

=
  

and Einstein’s field equation as: 

4
1 8
2

GR Rg T
cµν µν µν
π

− =
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 2

1 8
2 p

cR Rg T
Eµν µν µν− =
π  (9) 

and Schwarzschild metric can now be written as: 
1

2 2 2 2 2 2
2 2

2 2d 1 d 1 d dGM GMs c t r r
c r rc

−
   = − − + − + Ω   
     

 
1

2 2 2 2 2 22 2
d 1 d 1 d dp p

p p

l lE Es c t r r
r E r E

−
   

= − − + − + Ω      
   

 (10) 

where 
p

E
E

 represents both the number of Planck masses (in rest-mass energy 

form) in the gravitational mass and the reduced Compton frequency per Planck 
time. 

The theory can be fully integrated with quantum mechanics, but only after 
making slight modifications to quantum mechanics as described in [11]. 

Table 1 summarizes different approaches to incorporating the Planck scale 
into Einstein’s field equations. The last two entries in the table pertain to Eins-
tein-inspired field equations using the original Newton mass (the second to last 
entry) and the recently introduced collision-time mass and collision-length 
energy (the last entry). We will cover these two field equations first in sections 2 
and 3. 

 
Table 1. Different ways one can express Einstein’s field equation related to Planck units. 

Form: Einstein’s field equation: Corresponding G: 

Standard form: 4

1 8
2

GR Rg T
cµν µν µν
π

− =
 

G 

Planck length: 
281

2
plR Rg T

cµν µν µν

π
− =

  

2 3
pl c

G =
  

Planck time: 
281

2
pct

R Rg Tµν µν µν

π
− =

  

2 5
pt c

G =
  

Planck mass: 2 3

1 8
2 p

R Rg T
m cµν µν µν
π

− =


 
2
p

cG
m

=


 

Planck energy: 2

1 8
2 p

cR Rg T
Eµν µν µν
π

− =


 

5

2
p

cG
E

=


 

Planck force: 
1 8
2 p

R Rg T
Fµν µν µν
π

− =
 

4

p

cG
F

=
 

Form: 
Einstein’s inspired field 

equations: 
Corresponding G: 

Newton mass or energy: 
2

n nE M c= : 4

1 8
2

R Rg N
cµν µν µν
π

− =
 

No need even if S.I. 
units. 

Collision space-time: E Mc= : 
1 8
2

R Rg Eµν µν µν− = π
 

No need even if S.I. 
units. 
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Table 2 summarizes how to express the Schwarzschild metric in various 
Planck-quantized forms; they are all essentially the same. 

As demonstrated by Haug the reduced Compton frequency per Planck time 

which is equal to p p
p

M c p p p

l tc M E gf t
t m E aλ λ

= = = = = =  can be found indepen-

dent on knowing G, see [30], and even for the critical mass in the Friedmann 
universe [21]. 

In a similar way, one can re-write other metrics derived from general relativi-
ty, such as the Reissner-Nordström [31] [32], Kerr [33], Kerr-Newman [34] [35], 
and Haug-Spavieri [36] metrics. This means one is incorporating both the 
Planck scale and quantization through the reduced Compton frequency per 
Planck time in these metrics. 

Table 3 summarizes how to express the extremal solution of the Reissner- 
Nordström metric and the Haug-Spavieri minimal solution of general relativity; 
they are essentially the same. However, the standard form of writing it does not 
uncover the quantization of gravity, while the alternative ways of writing this 
metric do so. 

The extremal solution of the Reissner-Nordström [31] [32] metric, as well as 
the minimal solution of the Haug-Spavieri metric, is given by: 

12 2 2 2
2 2 2 2 2 2

2 4 2 2 4 2
2 2d 1 d 1 d dGM G M GM G Ms c t r r
c r c r rc c r

−
   

= − − + + − + + Ω   
     

 
Table 2. Different ways one can write the Schwarzschild metric. 

Form: Schwarzschild metric: 

Standard form: 
1

2 2 2 2 2 2
2 2

2 2d 1 d 1 d dGM GMs c t r r
c r rc

−
   = − − + − + Ω   
     

Planck mass quantized: 
1

2 2 2 2 2 2
2 2

2 2
d 1 d 1 d dp p p pGn m Gn m
s c t r r

c r rc

−
   

= − − + − + Ω   
     

Planck length quantized: 
1

2 2 2 2 2 22 2
d 1 d 1 d dp p p p

M M

l l l l
s c t r r

r rλ λ

−
   

= − − + − + Ω   
     

Planck time quantized: 
1

2 2 2 2 2 22 2
d 1 d 1 d dp p p p

c c

l t l t
s c t r r

r t r t

−
   

= − − + − + Ω   
     

Planck mass quantized: 
1

2 2 2 2 2 22 2
d 1 d 1 d dp p

p p

l lM Ms c t r r
r m r m

−
   

= − − + − + Ω      
     

Planck energy quantized: 
1

2 2 2 2 2 22 2
d 1 d 1 d dp p

p p

l lE Es c t r r
r E r E

−
   

= − − + − + Ω      
     

Planck acceleration 
quantized: 

1

2 2 2 2 2 22 2
d 1 d 1 d dp p

p p

l lg gs c t r r
r a r a

−
   

= − − + − + Ω      
     
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Table 3. Different ways to express the extremal solution of the Reissner-Nordström metric and the Haug-Spavieri minimal solution 
of general relativity; they are all essentially the same. However, the standard form of writing it does not uncover the quantization 
of gravity, while the alternative ways of writing this metric do so. 

Form: Extremal solution Reissner-Nordström metric or Haug-Spavieri minimal solution: 

Standard form: 
12 2 2 2

2 2 2 2 2 2
2 4 2 2 4 2

2 2d 1 d 1 d dGM G M GM G Ms c t r r
c r c r rc c r

−
   

= − − + + − + + Ω   
     

Quantized form: 
12 2

2 2 2 2 2 2 2 2
2 2 4 2 2 4

2 2
d 1 d 1 d dp p p p p p

p p

Gn m m Gn m mG Gs n G c t n G r r
c r r c rc r c

−
   

= − − + + − + + Ω      
     

Quantized form: 
12 2

2 2 2 2 2 2 2 2
2 2 4 2 2 4

2 2
d 1 d 1 d dp p p p p p

p p

Gn m q Gn m qG Gs n k c t n k r r
c r r c rc r c

−
   

= − − + + − + + Ω      
     

Planck length quantized: 
12 2 2 2

2 2 2 2 2 2
2 22 2

2 2
d 1 d 1 d dp p p p p p p p

M M M M

l l l l l l l l
s c t r r

r r r rλ λ λ λ

−
   

= − − + + − + + Ω      
     

Planck time quantized: 
12 2 2 2

2 2 2 2 2 2
2 2 2 2

2 2
d 1 d 1 d dp p p p p p p p

c c c c

l t l t l t l t
s c t r r

r t r t r t r t

−
   

= − − + + − + + Ω      
     

Planck mass quantized: 
12 22 2

2 2 2 2 2 2
2 2 2 2

2 2
d 1 d 1 d dp p p p

p p p p

l l l lM M M Ms c t r r
r m r m r m r m

−
   

= − − + + − + + Ω      
     

Planck energy quantized: 
12 22 2

2 2 2 2 2 2
2 2 2 2

2 2
d 1 d 1 d dp p p p

p p p p

l l l lE E E Es c t r r
r E r E r E r E

−
   

= − − + + − + + Ω      
     

Planck acceleration quantized: 
12 22 2

2 2 2 2 2 2
2 2 2 2

2 2
d 1 d 1 d dp p p p

p p p p

l l l lg g g gs c t r r
r a r a r a r a

−
   

= − − + + − + + Ω      
     

 

 
12 2 2 2

2 2 2 2 2 2
2 2 2 2

2 2
d 1 d 1 d dp p p p p p p p

M MM M

l l l l l l l l
s c t r r

r rr rλ λλ λ

−
   

= − − + + − + + Ω      
   

 (11) 

The Schwarzschild metric is a weak field approximation of this. In our view, 
the extremal solution is the most important and perhaps even the only practi-
cally valid spherical solution from Einstein’s field equation. In the Reissner- 
Nordström metric, one has: 

 
12 2

2 2 2 2 2 2
2 2 2 2

2 2d 1 d 1 d dq qr rGM GMs c t r r
c r r rc r

−
   

= − − + + − + + Ω      
   

 (12) 

where 
2

2 2 4
qr qq Gk

r r c
= , the 4

G
c

 is just to convert the electromagnetic Joule energy 

into collision length (see also Section 3). Thus, 
2

2
qr

r
 is essentially the electrostat-

ic Coulomb force converted to what is relevant for gravity by the factor 4

G
c

. In 

the extremal case of the Reissner-Nordström metric, it is well known that we 
have: 
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2 2

2 2 4 2 4
qr qq G M Gk G

r r c r c
= =

 

 
2

2 2

qq Mk G
r r

=  (13) 

This means that gravity and electromagnetism are unified in the extremal so-
lution of the Reissner-Nordström metric. The electrostatic force is normally 
considered extremely much higher than the gravitational force. The electrostatic 
force between a proton and an electron relative to the gravitational force be-
tween a proton and a electron is given by: 

 

2

2
39

2

2.26 10C

P e

ekF r
M mF G

r

= ≈ ×  (14) 

In other words, the electrostatic force appears to be extremely much stronger 
than the gravitational force. However, in the special case of the Coulomb force 
between two Planck charges, this is identical to the gravitational force between 
two Planck mass particles (micro black holes), as we have: 

 

2

2

2

2

1

p

C

p

q
kF r

F m
G

r

= ≈  (15) 

Based on this, we see that it is possible to write the Reissner-Nordström me-

tric element: 
2

2
qr

r
 as: 

 
2

2 2
2 2 4 2 4 2 4

q p p p p
p p

r q q m mqq G G Gk n k n G
r r c r c r c

= = =  (16) 

where p
p

M

l
n

λ
=  is the reduced Compton frequency of the mass M per Planck 

time. This means the extremal solution (see [37]) can be written as: 
12 2 2 2

2 2 2 2 2 2
2 4 2 2 4 2

2 2d 1 d 1 d dGM G M GM G Ms c t r r
c r c r rc c r

−
   

= − − + + − + + Ω   
     

     

2 2 2
2 2 2

2 4 2

12
2 2 2 2

2 2 4

2
d 1 d

2
1 d d

p p p p

p p p
p

Gn m G n m
s c t

c r c r

Gn m m Gn G r r
rc r c

−

 
= − − +  

 

 
+ − + + Ω  
   

     

2
2 2 2 2

2 2 4

12
2 2 2 2

2 2 4

2
d 1 d

2
1 d d

p p p
p

p p p
p

Gn m q Gs n k c t
c r r c

Gn m q Gn k r r
rc r c

−

 
= − − +  

 

 
+ − + + Ω  
 

 (17) 
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This means that gravity is quantized, and the electrostatic force is also quan-
tized. The quantization arises from the reduced Compton frequency per Planck 

time p
p

M

l
n

λ
= . Furthermore, both the gravitational force and the electrostatic  

force are incorporated; they are one and the same force at the Planck scale. Haug 
has suggested that gravity and all matter are related to a Planck mass particle 
coming in and out of existence at the reduced Compton frequency. This gives 
the correct mass for all observed particles, for example the mass of the electron is 
then; 

 319.11 10 kgp
e p

e

l
m m

λ
−= ≈ ×  (18) 

Thus, for a macroscopic mass, there are clearly many such Planck mass par-
ticles coming in and out of existence per Planck time window. The particle itself 
only exists for the Planck time and can be seen as a photon-photon collision, 
even inside matter. The relevant Planck mass particle has properties equal to a 
Planck mass micro black hole, as described by the extremal solutions of the 
Reissner-Nordström metric. It has a radius equal to the Planck length, Planck 
charge, zero Hawking radiation within the Planck time window (see [38] [39]), 
and remarkably zero entropy within the Planck time window. Edery and Con-
stantineau [40] have demonstrated that extremal black holes have zero entropy 
and are time-independent throughout spacetime. If a Planck mass particle (mi-
cro black hole) has a lifetime equal to the Planck time and a radius equal to the 
Planck length, this means there is zero entropy in a time interval equal to the 
Planck time and a space interval equal to the reduced Compton wavelength of 
the Planck mass extremal black hole, which is the Planck length. In other words, 
there is zero entropy in what we can call Planck space-time. This fulfills another 
dream Einstein had, namely that one could derive a particle from gravity itself. 
Einstein and Rosen [41] actually came up with the mathematics for what today is 
known as wormholes not to predict wormholes, but to predict particles from 
general relativity theory, or as they themselves said in their paper: “a particle be-
ing represented by a ‘bridge’ connecting these sheets”, the Einstein-Rosen bridge. 

At the deepest level the extremal solution is simply: 
12 2 2 2

2 2 2 2 2 2
2 2 2 2

2 2
d 1 d 1 d dp p p p p p p p

M MM M

l l l l l l l l
s c t r r

r rr rλ λλ λ

−
   

= − − + + − + + Ω      
   

 (19) 

So, compared to the Schwarzschild metric at the quantum level, it has the fol-

lowing term in addition: 
2 2

2 2
p p

M

l l
r λ

. 

2. The Newton Mass General Relativity Type Inspired Field 
Equation 

Most physicists today are not aware that Newton never introduced the so-called 
Newton’s gravity constant G, nor did he try to do so or have any interest in 

https://doi.org/10.4236/jamp.2024.126136


E. G. Haug 
 

 

DOI: 10.4236/jamp.2024.126136 2290 Journal of Applied Mathematics and Physics 
 

doing so, see [10] [14]. In 1686, in Principia, Newton stated his gravitational 
force formula in words corresponding to the following formula: 

 2
n nM m

F
r

=  (20) 

where we purposely use different notation for the Newton mass Mn and mn 
compared to the modern kilogram mass. Newton was clear that mass was the 
quantity of matter. However, the dimensions of the Newton mass were [L3∙T−2], 
that is, length cubed divided by time squared. Cavendish [24] also never meas-
ured nor tried to measure the gravitational constant; what he did was measure 
the density of the Earth relative to the known density of a known substance such 
as lead. However, multiple researchers, including Feynman, have mistakenly 
mentioned that Cavendish measured the gravitational constant, see [25] [26]. 
Maxwell [42] used the original Newton formula as late as early 1873, where he,  

for example, used the following formula for the gravitational acceleration: 2
nM

r
 

(rather than today’s well known formula 2

GMg
r

= ) and pointed out that the  

mass in Newton’s theory indeed had the dimensions [L3∙T−2]. For small, handle-
able masses on Earth, pounds were used in Great Britain and kilograms in 
France, but for astronomical-sized objects, the Newton mass was used. The same 
mass definition for both small and astronomical masses was preferable. One 
could have decided to go for the Newton mass, but instead, the kilogram mass 
was chosen. 

To use kilograms or pounds is just a matter of choice; they are both arbitrary 
human-decided units of matter that gravity does not care about. On the other 
hand, switching from the Newton mass definitions to kilograms or pounds has 
major implications; it not only changes the unit but also the dimensions of mass. 
Anyway, it was decided to go for the kilogram, even though the Newton mass 
could have been incorporated for small masses as well. After incorporating kilo-
gram mass in the Newton formula, the original Newton formula could no longer 
be used to predict gravitational phenomena. The kilogram mass was somehow 
not sufficient, so a gravitational constant had to be introduced to fix it. This was 
done somewhat ad hoc for the first time in 1873 by Cornu and Baillie [43], who 
used the symbol f for the gravitational constant. First in 1894, Boys [44] sug-
gested using the symbol G that we use today. Einstein used the symbol k for the 
gravitational constant in most of his general relativity papers. Naturally, it is just 
a matter of taste and what has become standard for which symbol for the gravi-
tational constant one uses. It is important to note that the Newton formula was 
used successfully for several hundred years without any gravitational constant. 
Thüring [45] pointed out in 1961 that the gravitational constant was introduced 
ad hoc and had no physical counterpart. Recent research demonstrates that it 
was simply needed to fix an incomplete mass definition, the kilogram, so it could 
still work to predict gravitational phenomena. 
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The Newton mass at a deeper level is given by: 

 2 p
n p

l
M c l

λ
=  (21) 

Furthermore, we have that: 

 2 p
n p

l
M GM c l

λ
= =  (22) 

This means Newton’s original gravitational force formula is equal to: 

 2
2 2 2

n nM m GMGm MmF G
r r r

= = =  (23) 

Many will think this must be wrong. However, this formula can be used just 
like the modern 1873 modified Newton formula we use today. If one uses the 
original Newton formula, for example, to derive things such as escape velocity, 
one must use the masses Mn and mn everywhere. The modern 1873 way of writ-
ing the Newton formula mixes two different masses without being aware of it. 
We have: 

 2 2
nM mMmF G

r r
= =  (24) 

That is a formula where one uses the Newton mass for the large mass and the 
kilogram mass definition for the small mass. This can be done because in all 
formulas derived to predict something observable, one is always using GM or 
GM + Gm and never GMm, see Table 4. 

The G is needed to remove the Planck constant and get the Planck length into 
the mass. To make a long story short, our methods can be used to turn almost 
any gravity theory into a proper quantum gravity theory. If we decide to define 
mass as Newton originally did and additionally define Newtonian energy as 

2
n nE M c=  (energy will then have dimensions [L5∙T−4], then we can write an 

Einstein general relativistic-inspired field equation using the Newton energy as: 

 4

1 8
2

R Rg N
cµν µν µν
π

− =  (25) 

This new field equation was recently suggested by Haug [46] [47]. The gravi-
tational constant is now omitted, but the energy in the energy tensor Nµν  must 
be related to the energy and mass as we just defined it. This leads to the follow-
ing Schwarzschild-type solution: 

1
2 2 2 2 2 2

2 2

2 2d 1 d 1 d dn nM Ms c t r r
c r rc

−
   = − − + − + Ω   
     

 
1

2 2 2 2 2 22 2
d 1 d 1 d dp p p p

M M

l l l l
s c t r r

r rλ λ

−
   

= − − + − + Ω   
   

 (26) 

This is identical to the quantized version of the Schwarzschild metric we de-
rived from Einstein’s field equation. However, here we never had to use G at all. 
It is not that we have set 1G =  as we still can work with S.I. units; it is simply  
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Table 4. A series of gravitational predictions given by general relativity theory and Newton 
in the standard form with GM and when using the original Newtonian mass Mn, as well 
as at the deeper quantum level. Note that there is no Planck constant at the deeper quan-
tum level, nor any gravitational constant. 

Prediction Formula: 

Gravity acceleration 
2

2 2 2
p pn

M

c l lMGMg
r r r λ

= = =
 

Orbital velocity p pn
o

M

l lMGMv c
r r r λ

= = =
 

Orbital time 
2 2 2

n p p

M

r r rT
GM M l l

cr r r λ

π π π
= = =  

Velocity ball Newton cradle 2 22 2 2 pn
out p

M

lMGM cv H H Hl
r r r λ

= = =
 

Frequency Newton spring 
1 1

2 2 2
p pn

M

l lMGM cf
r x r x r x λ

= = =
π π π

 

Gravitational red shift 
2 2

11 1

2 2
2 2 2

222 11 1
1 1 1

2 2 21 1 1

p pn

M

n p p

M

l lMGM
rr c r c

z
GM M l l
r c r c r

λ

λ

−− −
= − = − = −

− − −
 

Time dilation 2 2

2221 1 1 p pn
R f f f

M

l lMGMT T T T
rc rc r λ

= − = − = −
 

Gravitational deflection 2 2

44 4 p pn

M

l lMGM
c r c r r

θ
λ

= = =
 

Advance of perihelion ( ) ( ) ( )2 2 2 2 2

666
1 1 1

p pn

M

l lMGM
a e c a e c a e

σ
λ

πππ
= = =

− − −
 

Schwarzschild radius 2 2

22 2 pn
s p

M

lMGMr l
c c λ

= = =
 

 
that we do not need G. Some might say we have incorporated G into Mn since 

nM GM= . However, there is more to it than this. One needs less information to 
find Mn and GM than to find G and M and then multiply them together. This is 
actually why the GPS system of the National Mapping Agency of the USA does 
not rely on G and M, but instead directly on nGM M= , or as stated in their 
own words [48]: 

“The central term in the Earth’s gravitational field (GM) is known with 
much greater accuracy than either “G”, the universal gravitational constant, 
or “M”, the mass of the Earth.” (pages 3-3 WGS 84 third version) 

It would not be wrong to claim that the National Mapping Agency, in their 
GPS system, relies on this new Einstein-inspired field equation using the original 
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Newton mass and corresponding energy rather than the kilogram mass and a 
gravitational constant, even without their knowledge of doing so. That is we now 
have a deeper explanation why they get better precession in this way, see [47] for 
in detail discussion on this important point. 

However, it is important to understand that this new field equation gives all 
the same predictions as Einstein’s original field equation, with the only excep-
tion being that one does not need to rely on finding G and M. This can actually 
lead to higher precision in most predictions, as demonstrated in the paper we 
just referred to. 

3. Using Collision-Time as Mass and Collision-Length as  
Energy 

Here, we will outline how one can develop a general relativity theory where eve-
rything is simply length and time. This was one of Einstein’s dreams that he was 
not able to fulfill in his lifetime. There is actually no need for mass or energy, as 
mass will be a special form of time, which we have previously coined collision- 
time, and energy will be a special type of length we have coined collision-length. 
Since time and length are closely connected, we will call this the collision space- 
time theory (CST). In this paper, we will create a general relativistic version of it 
and demonstrate that it gives exactly the same predictions as general relativity 
theory. However, it offers the advantage of higher precision in many predictions, 
similar to the Newton mass-energy inspired general relativity field equation de-
scribed in the section above. 

By multiplying the kilogram mass by 3

G
c

 or alternatively by 
2
pl


, it trans-

forms from kilogram mass to time, or more precisely what we call collision-time 
mass: 

 3
p

p

lGM M t
c λ

= =  (27) 

where again pl
λ

 is the reduced Compton frequency per Planck time. We call  

the mass in Equation (26) collision-time since the reduced Compton frequency 
per Planck time represents the number of Planck mass events in the gravitational 
mass of interest within the Planck time and the output dimensions is simply 
time. At the end of each reduced Compton time interval, there is a photon- 
photon collision giving rise to a Planck mass particle lasting the Planck time. 
Derivations show that this particle has the mathematical properties of an ex-
tremal Reissner-Nordström Planck mass black hole, which remarkably has zero 
black hole entropy and zero Hawking radiation inside the Planck time window. 
It is a single microstate and the building block of all masses. 

Similarly, if we multiply the Joule energy E by 4

G
c

, we get what we have pre-

viously coined collision-length energy: 
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 4
p

p

lGE E l
c λ

= =  (28) 

This means we also have E Mc= , which is fully consistent with 2E Mc=  as 

one just have multiplied each side with a constant, namely by: 
2

4
plG
cc

=


. The  

case is that we actually do not need the kilogram definition for mass, nor do we 
need the Joule, nor the Planck constant, to describe quantized energy or quan-
tized gravity. This is more than simply changes of units. It is also changes of di-
mensions. Going from kilogram to pound is a simple change of units, to go from 
kilogram to collision-time and from Joule energy to collision-length is change in 
dimensions and units. One cannot do gravity with kilogram mass without first 
turning it either original Newton mass or collision-time mass, this involves mul-
tiplying it with a constant. 

To go in depth of collision space-time theory we ask readers to study our pa-
pers [49] [50]. If one only adopts the collision-time mass definition and colli-
sion-length energy definition, then one is simply left with collision space-time. 
Einstein supposedly had a dream of linking energy and mass to simply space- 
time; this is what we have now done. If we then try to formulate an Einstein 
general relativistic inspired field equation based solely on incorporating the col-
lision-time mass and collision-length energy, we end up with [46]: 

 1 8
2

R Rg Eµν µν µν= π−  (29) 

where the energy tensor: Eµν  is now linked to collision-length energy. Einstein, 

with his field equation 4

1 8
2

GR Rg T
cµν µν µνπ− = , is doing this indirectly. The 

part of the Einstein constant 4

G
c

 is indeed used to convert the Joule energy  

Tensor: Eµν  to a length, and this length is the same as the collision-length de-
fined above. However, by doing it directly instead of indirectly, we get rid of the 
gravitational constant G from the very start. This leads to the following Schwarz-
schild metric solution: 

 

1
2 2 2 2 2 22 2d 1 d 1 d dMc Mcs c t r r

r r

−
   

= − − + − + Ω   
     

             

1
2 2 2 2 2 22 2d 1 d 1 d dE Es c t r r

r r

−
   

= − − + − + Ω   
     

      
1

2 2 2 2 2 22 2
d 1 d 1 d dp p p p

M M

l l l l
s c t r r

r rλ λ

−
   

= − − + − + Ω   
   

 (30) 

So, at the deepest level, it is the same as the quantized version of general rela-
tivity theory. It is a type of general relativity theory. 

We must personally say we do not think 4-dimensional space-time-three space 
and one time dimension-is the ultimate answer to reality. 
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We actually believe three space dimensions plus three time dimensions 
represents the depth of reality. However, this is mostly out of the scope of this 
paper. Haug’s [50] six-dimensional collision space-time theory where mass and 
energy are vectors, leads to the following quantum-gravity field equation: 

c=E M  
 p pl ct∇⋅ = ∇ ⋅E M  (31) 

That is, collision-time and collision-length, which correspond to energy and 
mass, are two sides of the same coin. So the six dimensions are, in reality, three 
space-time dimensions with two different perspectives: one viewed through time 
(three time dimensions) and the other through space (length) (three space di-
mensions). 

This collision-space-time field equation looks very different from Einstein’s 
field equation but leads to surprisingly similar results to the extremal solution of 
the Reissner-Nordström metric and the Haug-Spavieri minimal solution. There-
fore, the collision-space-time 6D field equation gives the following metric when 
solved for a spherical symmetric object: 

                             

2 2 2 2
2 2 2 2 2 2 2 2

2 4 2 2 4 2
2 20 1 d d 1 d dGM G M GM G Mc t c t r r
c r c r rc c r

   
= − − + − Ω + − + + Ω   

     

                             

2 2
2 2 2 2 2 2 2 2

2 2
2 20 1 d d 1 d dE E E Ec t c t r r
r rr r

   
= − − + − Ω + − + + Ω   

     
2 2 2 2

2 2 2 2 2 2 2 2
2 2 2 2

2 2
0 1 d d 1 d dp p p p p p p p

M MM M

l l l l l l l l
c t c t r r

r rr rλ λλ λ

   
= − − + − Ω + − + + Ω      

   
(32) 

The space-time interval 2d 0s =  on the left hand side of the equation is in 
this theory always flat and equal to zero. That is, space-time does not curve, but 
space and time still curve. Space and time curve exactly the same and offset each 
other, so to speak. The space-time interval is the space interval minus the time 
interval, and we can see they cancel each other out perfectly in the metric above. 
If one studies it carefully, one will see that the time-component in the metric 
above is identical to that in the extremal solution of the Reissner-Nordström  

metric: 
2 2

2 2
2 4 2

21 dGM G M c t
c r c r

 
− + 

 
, while the space interval is not equal to that of 

the extremal solution of the Reissner-Nordström metric: 
12 2

2 4 2

21 GM G M
rc c r

−
 
− + 

 
, 

as it is equal to: 
2 2

2 4 2

21 GM G M
rc c r

 
− + 

 
. 

And the corresponding weak field approximation metric is given by: 

2 2 2 2 2 2 2 2
2 2

2 20 1 d d 1 d dGM GMc t c t r r
c r rc

   = − − − Ω + − + Ω   
     

         

2 2 2 2 2 2 2 22 20 1 d d 1 d dMc Mcc t c t r r
r r

   
= − − − Ω + − + Ω   

     
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2 2 2 2 2 2 2 22 20 1 d d 1 d dE Ec t c t r r
r r

   
= − − − Ω + − + Ω   

     

 2 2 2 2 2 2 2 22 2
0 1 d d 1 d dp p p p

M M

l l l l
c t c t r r

r rλ λ
   

= − − − Ω + − + Ω   
   

 (33) 

The time-component is basically identical to the Schwarzschild metric, but the 

space component is not as in the Schwarzschild metric: 
1

2

21 GM
rc

−
 − 
 

, but 

2

21 GM
rc

 − 
 

. 

This means that pure collision-space-time leads to flat space-time, but it still 
predicts all the same phenomena observed from the Schwarzschild metric. The 
reason for this is that only the time-component has been used to predict gravita-
tional phenomena that have actually been observed, including gravitational time 
dilation, redshift, light bending, and orbital velocity. 

There is no singularity at the event horizon 2

GMr E
c

= = , in pure 6-dimensional  

collision-space-time, and in practice, there is no center singularity either. The 
smallest center that can be observed is a Planck mass black hole, which in the full 
metric leads to a black hole particle where the electrostatic and gravitational 
forces exactly offset each other, preventing the collapse of matter into a center 
singularity. These Planck mass black holes also have zero entropy and zero Hawk-
ing radiation in the Planck time interval. After the Planck time the two photons 
colliding leave each other. 

4. Summary 

Table 5 provides a comparison summary of standard general relativity theory, 
the new general relativistic quantum gravity, and Collision Space-Time (CST) 
theory. CST-GRT-4D is based on field equation (29), and CST-6D is based on 
the metric (31) that can be derived from the 6D collision space-time field Equa-
tion (30). 

Gravity is much easier to quantize than previously assumed. The key to this 
major breakthrough has been understanding that the gravitational constant is 

just a composite constant that can be expressed as 
2 3
pl c

G =


 and that any kilo-

gram mass can be expressed as 
1M
cλ

=


, further that the Planck length and  

Planck time can be found totally independent on any knowledge off G and ħ, as 
has been demonstrated in recent years. When multiplied together, the Planck 
constant and anything related to the kilogram cancel out, leaving us with  

2 p
p

l
GM c t

λ
= , where the last part pl

λ
 is the reduced Compton frequency per  

Planck time. Unifying gravity with quantum mechanics requires an in-depth 
discussion of the de Broglie [51] wavelength versus the Compton wavelength, as  
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Table 5. Comparing standard general relativity theory (GRT) with the recently proposed quantum gravity theories. 

Incorporated: Standard GRT Quantized GRT Newton mass GRT CST-GRT-4D CST-6D 

Quantization: No Yes Yes Yes Yes 

Compton frequency: No Yes Yes Yes Yes 

Planck scale: No Yes Yes Yes Yes 

Particle from gravity: “Yes” Yes Yes Yes Yes 

Particle as black hole: Yes Yes Yes Yes Yes 

Mass-energy from space-time: No No Yes Yes Yes 

Mass is time: No No No Yes Yes 

Energy is length: No No No Yes Yes 

Curved space: Yes Yes Yes Yes Yes 

Curved time: Yes Yes Yes Yes Yes 

Curved space-time: Yes Yes Yes Yes No 

Conservation of space-time: No No No No Yes 

Deepest level identical to GRT: Yes Yes Yes Yes No 

Unification: Standard GRT Quantized GRT Newton Mass GRT CST-GRT-4D CST 6D 

Gravity + electromagnetism: “No” Yes Yes Yes Yes 

Gravity + modified QM: No Yes Yes Yes Yes 

Metrics: Standard GRT Quantized GRT Newton Mass GRT CST-GRT-4D CST 6D 

Schwarzschild type metric: Yes Yes Yes Yes “Yes” 

Extremal metric: Yes Yes Yes Yes “Yes” 

 
well as the Heisenberg [52] uncertainty principle, something that we [11] have 
recently done. Please refer to this paper to understand how it unifies with quan-
tum mechanics. 

5. Conclusions 

We have demonstrated other trivial ways to re-write and express Haug’s Planck 
quantized version of general relativity theory. Even more forms can be derived 
based on the composite forms of G given in [15], but ultimately, they all con-
verge to Haug’s initial expression, which is based on the Planck length and the 
reduced Compton wavelength. This approach incorporates both wave-particle 
duality in matter and demonstrates that the true quantization in matter is 
represented by the reduced Compton frequency, corresponding to the number 
of Planck mass events per Planck time in the gravitational mass off interest. 

We have in addition demonstrated a general relativistic field equation can be 

expressed from the original Newton mass concept: 4

1 8
2

R Rg N
cµν µν µν
π

− = . This  

does not require the gravity constant G even when working with S.I. units. It al-
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so gives higher precision than standard general relativity theory and is indirectly 
already in use by the GPS system without the GPS researchers understanding 
fully the reason from a deeper perspective. Relying on GM is more precise than 
first finding G and then M. In reality, they are using the original forgotten Newton  

mass and indirectly the new field equation: 4

1 8
2

R Rg N
cµν µν µν
π

− = . 

In addition, we have shown a general relativistic inspired field equation can be 
formed based on the recent collision-space-time mass concept, which gives: 

1 8
2

R Rg Eµν µν µν= π− . Here mass is linked simply to time and energy to length  

and thereby fulfills Einstein’s dream of that one could have a theory only about 
space and time where mass and energy are simply not needed in addition. This 
also does not require any gravity constant G even when working with S.I. units. 
Except for precision in predictions, these two new field equations are from a 
deeper perspective identical to general relativity theory. 

Collision space-time can also be formulated in a 6-dimensional theory with 
three space and three time dimensions that are two sides of the same coin. In this 
theory, one gets flat space-time and, importantly, conservation of space-time. This 
quantum gravity theory still remarkably gives the same predictions for pheno-
mena that have been observed as the Schwarzschild metric time component in 
weak gravitational fields and the external solution of Reissner-Nordström in 
strong gravitational fields. Its predictions therefore seem to fit all observations, 
such as gravitational time dilation, gravitational redshift, light bending, orbital 
velocity, microlensing, etc. However, it has the great advantage that space-time 
is conserved. In standard theory, space-time starts as infinitely curved at the 
predicted Big Bang and then ends up almost flat in the predicted cold death of 
the universe. How can it be that energy is conserved while space-time is not? 
This seems inconsistent. Collision space-time theory in 6 dimensions seems to 
totally avoid this paradox, as both space-time and mass-energy are conserved in 
this theory. However, we still have gravitational time dilation and gravitational 
length contraction. The space-time interval is, however, always conserved. 

Our method to create quantum gravity theories is simple and general and can 
be used to quantize a series of gravity theories as well as link them to the Planck 
scale. This is accomplished by understanding the gravity constant is simply a 
composite constant. The so-called Newton gravity constant was never invented, 
nor tried to be invented by Newton, but was ad hoc introduced in 1873 to fix the 
kilogram mass after replacing the original Newton mass also in gravitational 
theory in 1873. It is only when one understands the gravity constant is a compo-
site constant and that the true matter wavelength is the Compton wavelength 
and not the de Broglie wavelength that one is able to quantize gravity and unify 
it with quantum mechanics, as we have outlined in a series of papers in recent 
years. We have good reasons to think our theory will outcompete both string 
theory and loop quantum gravity theory. 
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