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Abstract

We examine how intermodulation distortion of small two-tone signals is
affected by adding degenerative feedback to three types of elementary am-
plifier circuits (single-ended, push-pull pair, and differential pair), each im-
plemented with three types of active device (FET, BJT and vacuum triode).
Although high precision numerical methods are employed in our analysis,
the active devices are modeled with rather simple models. We have not
investigated the consequences of more elaborate models.

Though negative feedback usually improves the distortion characteristics
of an amplifier, we find that in some cases it makes the distortion “messier.”
For instance, a common-source FET amplifier without feedback has a distor-
tion spectrum displaying exactly four spurious spectral lines; adding feedback
introduces tier upon tier of high-order intermodulation products spanning
the full bandwidth of the amplifier (as suggested by Crowhurst in 1957). In
a class-B complementary-pair FET amplifier, feedback mysteriously boosts
specific high-order distortion products.

The distortions we are dealing with are small, but we speculate that they
may be psychoacoustically significant.

This work also casts light on the relative virtues of the three types of
active devices and the three circuit types. For instance, a FET pair run in
class-A produces zero distortion even without feedback.



Some experienced listeners report favorably on the sound quality of non-
feedback amplifiers. This is surprising, because such amplifiers have much
more nonlinear distortion than amplifiers that use negative feedback. Indeed,
the appropriate use of negative feedback improves almost all of the theoretical
and measurable parameters of an amplifier. Of course, the listeners may be
mistaken. Alternatively, some subtle consequent of negative feedback may
be responsible for the difference in perception. Here we investigate one such
possibility.

Of the various proposals attempting to explain how these perceptual dif-
ferences might arise, most have suggested bad design errors in the application
of feedback. For example, “transient intermodulation distortion” occurs in
amplifiers with inadequate slew rate;! but real-world transients have rise
times that are easy to accommodate with modern circuits.?

Another suggestion is that feedback amplifiers are more sensitive to radio-
frequency interference. The idea is that the output impedance of a feedback
amplifier may be very low at audio frequencies, but rises as the frequency
increases. This is because feedback amplifiers must be compensated to ensure
stability, and the most common compensation scheme introduces a principal
pole at low frequencies that lowers the loop gain as the frequency increases,
so that the output impedance rises. If the impedance is high enough, strong
radio-frequency fields, as occur in our environment, can come in through
the output and wreak havoc by rectification, shifting the bias conditions of
the amplifier. This is certainly possible, but a well-shielded amplifier with
appropriate filters need not have this problem.

Yet another idea is that the clipping behavior of feedback amplifiers is dif-
ferent from that of non-feedback amplifiers: clipping is sharper and recovery
from clipping may be problematic. This also is true, but it does not explain
the perceptual differences that may remain even in the case that the ampli-
fiers are not driven to clipping: listeners report differences in the low-level
details and the sound of the “room,” the recording venue. One of us (JB) has

ITransient intermodulation distortion occurs when the amplifier cannot slew fast
enough to follow the transient. During such a transient, the amplifier is pinned to the
slew trajectory and cannot follow variations in the input. Apparently this effect was
known as early as Roddam in 1952 [8], but it only became widely known in audio circles
with the work of Otala [7].

2Boyk [2] has made a survey of wideband spectra from real musical sources. Although
some of these show significant energy above 20 kHz they put limits on the rate of change
of the sound pressure level in most ordinary music waveforms.



observed that the introduction of feedback into one particular (microphone
pre-) amplifier seems to “separate” the very high frequencies from the rest
of the range, as though a badly-integrated super-tweeter had been added to
the monitor system. This yields an unnatural sound that seems correlated
with but disconnected from the program material.

We investigate the possibility that the difference in sound quality is not
an accident of the particular design but is an inherent characteristic of neg-
ative feedback. The idea is not new with us. In 1957, Norman Crowhurst [4]
observed that since the intrinsic nonlinearity of an amplifier must produce
harmonic and intermodulation products from the components of the program
material, feedback will combine these products with the program to produce
further distortion products. Since many of the products in each “genera-
tion” are higher or lower in frequency than the signals that produce them,
the effect will be to create products extending over the full bandwidth of the
amplifier. Although the total amount of this distortion is very small-—much
smaller than the lower-order distortion produced by the same amplifier with-
out feedback—Crowhurst observed, “The logical result of this process would
be a sort of program-modulated, high-frequency ‘noise’ component, giving
the reproduction a ‘roughness’.” We speculate that this “noise,” constantly
changing as it is (because it is correlated with the program material), may
interfere with the listeners’ perceptions of low-level detail. Such speculation
is not new with us either. As far back as 1950, Shorter [9] was worried
about the perceptual effect of high-order distortion products; and the idea
has been periodically revisited by many authors, including, most recently,
Daniel H. Cheever [3], who developed a new measurement strategy which
attempts to quantify the effect of this kind of distortion on perception.

In what follows, we examine the responses of nine elementary circuits
to two-tone inputs, comparing in each case the behavior without feedback
to that with feedback (in some cases more than one amount of feedback).
Three of the nine basic circuits are simple stages using a single FET, BJT
or vacuum triode; another three use pairs of these devices in complementary
(FET, BJT) or push-pull (triode) configurations; and the final three are
differential-input circuits. Each circuit is studied at a signal level which best
reveals the behavior of interest.

As usual in such work, the real subject of our study is the behavior of
certain mathematical equations and relations. When we ascribe the behavior
to circuits, we are assuming that the active devices are modeled perfectly by
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Figure 1: A feedback amplifier

the stated “laws” (square for FETs, three-halves for triodes, exponential for
BJTs); that complementary pairs are perfectly symmetrical; that the tubes
used in push-pull are identical; and that transformers are perfect. Though
none of these is true, the results may yet be useful.

Our analysis is stateless; that is, we assume no frequency-dependent el-
ements. Real amplifiers have such elements, but we can see the essential
behavior without considering them.

The core of this paper is the numerically-derived spectra that we obtain
for a variety of amplifiers, each being considered both with and without
feedback. We begin, however, with a formal derivation of analytic estimates
for the lowest order spectral lines, which we can use to check the validity of
the numerical work; and a bit of circuit analysis. The reader may wish to
skip this preliminary analysis and proceed to the discussion of the spectra
that begins on page 10 under “Our spectra,” touching down at figure 2 on
the way:.

Feedback in a nonlinear system

In figure 1 the amplifier is modeled by a function f that is in general non-
linear. The feedback path is assumed to be a linear path that multiplies by
a constant b. Thus, the equation relating the output y to the input z is

y=flz—"by). (1)

If f were linear, say f(e) = Ae we could solve for y to get the familiar Black’s

formula,
Ax

Y=1 1 (2)




If A is very large then y ~ x/b, allowing us to reliably make amplifiers with
gain 1/b using amplifiers with large, but uncontrolled gain. However, the
distortion we are interested in is due to the nonlinearity of f.

Assume that f may be expressed as a power series

y = Are+ Aye® + Age® + - - (3)

with no offset term, so if e = 0 then y = 0. To account for the feedback we
can substitute (x — by) for e to obtain

y = Ai(z — by) + Ay(z — by)* + As(x — by)* + - - -. (4)

In general, we can solve for y, producing a power series that represents the
entire transfer function of the feedback amplifier. This series

Y= a7 + agx® + azr® + - - (5)
can be obtained by taking derivatives of equation (4):
dy Al
- < = 6
T | T T+ AW (6)
1 d2y Ag
¥ < R (AT (7)
1d AzA; — 2A2)b
az = ——g = ( 831 52) (8)
6dx3|,_, (1+ Aib)

We see that a; is the gain we would expect if the amplifier were linear, and the
higher-order terms are the distortion. If we make the input a sinusoid x(t) =
C cos wt, expand powers using the multiple angle formulas,® and collect like
terms, we get a Fourier series showing the harmonic components. Considering
only the first three terms of equation (5) we get:

3 1 1
y = (C’al + ZCgag) coswt + §C2a2 cos 2wt + ZC3CL3 cos 3wt. 9)

Thus, for small signals (C' small) the relative size of the second harmonic and
third harmonic distortion terms are:

1 Qo 1 Ag

HD, ~ -C2=-—_ "2 1
2 200,1 Al(l +Alb) ( O)
— 1 93 o 1 (AgAl — QAS)()
Dy ~ ¢ ar 4 A;(1+ Ajb)? (11)

3_3

3For example, (cos @)? = 1 + 1 cos2a and (cos @) 1

cos o + % cos 3av.
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Figure 2: Amplifier a has no feedback; amplifier b has source feedback.

If we make the input the sum of two sinusoids of different frequencies,
we can compute the intermodulation products as well. However this kind
of algebra is not usually easy to understand past the first few terms. Since
we are interested in the high-order terms, we will not pursue the algebraic
approach, but will use it only to check the lowest terms of the numerical
results, and to help us understand how the distortion terms are generated.

A tale of two FET amplifiers

The two FET circuits in figure 2 are identical except that amplifier a has no
feedback while amplifier b has source feedback created by non-zero Rg. In the
analysis below, we find that the amplifier without feedback introduces only
second harmonics and first-order sums and differences of signal components;
and that while adding feedback lowers these distortion products a bit, it
also produces all orders of harmonic and intermodulation products in tiers
stepping down in level but extending to the full bandwidth of the amplifier.

We will operate the Field-Effect Transistor (FET) in the saturated region,
where it exhibits simple square-law nonlinearity: a good approximation for
its drain current is

_ k
ip = 5(1)@5 — VT)2, (12)



where vgg is the gate-to-source voltage and where k& and Vi are parameters
of the FET. The FET is in saturation so long as Vi < vgs < Vr+wvpg, where
vpg is the drain-to-source voltage.

Analysis: the no-feedback case

To simulate the circuit we need the output voltage as a function of the input
voltage. The output voltage is

vour = Vpp — Riip, (13)

so we need the drain current ip. For amplifier a, vgs = v; + Viap, SO
substituting this into equation (12) and then plugging the resulting current
into equation (13) we obtain an expression for the output voltage in terms
of the input voltage:

k
vour = Vpp — §(Um + Vg — VT)zRD (14)

Equation (14) is all we really need to obtain a numerical spectrum for any
given input signal, as described on pagelO. But first, to see what we should
expect, we do some analysis along the lines of equations (1-11), but now
specific to these FET amplifiers.

We can rewrite equation (14) as

2
Vout = VouT — VoUuT = Vi + G20, (15)

a simple quadratic, where

k
Vour = Vpbp — §(VBB — Vr)’Ry (16)
a; = —/{T(VBB — VT)RL (17)
1
Ay = —§RL/{:. (18)

The incremental gain of amplifier a is thus

Ovour

8’(]2‘”

= —/{T(VBB — VT)RL = a3 (19)

Vin=0

This helps us choose circuit values to obtain a given gain.

7



Because this amplifier exhibits a simple quadratic law equation (15), its
distortion products can only be second harmonics and sums and differences
of the Fourier components.* In this simple case it is easy to work out the
spectrum symbolically. (We will use this result on page 11 to check our
numerical simulation.)

We define the excess gate bias Vg = Vg — Vi, and the corresponding
drain bias current Ip = 2kV2. Then the total drain current can be rewritten

2
as

2
U; V;
p=Ip|1+2=+ (] |. 20
ip D<+VB+<VB)> (20)

If we drive this amplifier with a sinusoid

Vin = A coswt (21)

we obtain
ip = Ip(by + by coswt + by cos 2wt) (22)

where
1 AN\?
bp = =11 — 23
0 5 ( + (VB) ) (23)
A

by = 2— 24
1 i (24)

- L (Vi) (25)

This Fourier series has only three terms. Comparing the magnitude of the
second harmonic component to the magnitude of the fundamental we obtain
by A

HDQI—

= 2
by 4Vp (26)

We could work out the sizes of the Fourier components for the two-tone
stimulus, getting terms for the sum and difference as well as the two second
harmonics, but for more complicated circuits this would be much harder.

4Remember that squares of weighted sums of sinusoids can be expressed as weighted
sums of sinusoids with angles that are sums and differences of the given angles.



The feedback case

Amplifier b is a bit more complicated. As before, we need an expression for
voyr in terms of v;,. The output voltage is

vour = Vpp — Riip, (27)

so we need the drain current 7p. But to compute the drain current we must
solve a quadratic equation:

k k
53@@% — (kRsvg + 1)ip + 51% =0, (28)

where vg = v;, + Ve — Vr. We pick the correct root so that as Rg — 0 the
circuit approximates the behavior of amplifier a. This gives

1 1 V2 1
D= - - —. 29
P~ Rg (UG * Rsk:) RavRR V¢t 2Rk (29)

Substituting into equation (27) we obtain

R 2
vour = Vop — ﬁ [\/1 ¥ 2kvgRe — 1] , (30)

2
S

which is what we need for the simulation.
The incremental gain is

vin=0 RS \/1 + 2R5 (VBB — VT) k

which goes to —Rpk(Vpp —Vr) as Rs — 0, as required by the condition that
circuit a is a special case of circuit b (Rg = 0).

If we expanded equation (30) as a power series we would see that the
square-root term expands into all powers of the incremental input voltage
Vin. S0 by contrast with the simple amplifier a the feedback amplifier b
produces not just second harmonics but all orders of harmonics; not just
simple sums and differences, but all orders of intermodulation products. This
illustrates the idea behind the claim that the feedback amplifier produces a
more complex spectrum than the simple amplifier. However, to learn more
we have to be quantitative.

Ovour

8’(]2‘”




Our spectra

Using numerical simulation, we compared the behavior of these amplifier
topologies when stimulated by a two-tone signal. As for all examples in this
paper, the two tones were at frequencies 3 and 5. Because the simulations
are done with no frequency-dependent elements the units of the frequencies
do not matter; all that matters is their ratio. The frequencies were chosen
to be relatively prime (they are both actually prime) so as to show the max-
imum number of independent components. Perhaps it would be better to
use incommensurate frequencies, such as 3 and 3¢, where ¢ = (1 + v/5)/2,
the golden ratio; but we chose integer frequencies and an integer timespan
so that the spectra would come out as clean lines, without spectral leakage
or skirts due to the window function. The small errors introduced by choos-
ing integers rather than incommensurate numbers are not significant in our
results.

All of the spectra in this paper were developed using numerical-analysis
procedures written by one of the authors (GJS). For each circuit, a numerical
procedure was written to determine the output voltage in terms of the input
voltage, for each moment of time. This was easy when the relationship was
given by a single equation, such as equation (14) for the no-feedback single-
ended FET stage. Other cases, however, required solving simple nonlinear
systems of equations, such as equations (28-30) for the same FET stage with
feedback.

In general, equation solutions are accurate to one part in 10** (—280 dB).
Other errors sometimes contribute to bring the noise floor 15 dB higher. The
two-tone input was generated in a time span of 16 and sampled with 4096
points. The output voltage was computed for each of these input points and
transformed with a 4096-point transform to obtain the frequency spectrum,
with a maximum representable frequency of 128. However, our spectral plots
only show frequencies up to 32. In fact there are no distortion components
above the noise floor in our data above a frequency of 127, so our graphs are
not contaminated by aliases.

Two-tone spectra of FET amplifiers

The amplifiers were designed to have an incremental gain of —10 (that is,
20 dB, inverting), using formulas (19) and (31). The FETs were assumed

10



to have k = 0.002 A V=2 and V3 = 1.0 V.°> The other device parameters
and operating conditions are given in the table below. We see that both
amplifiers are comfortably biased into the saturation region, and that the
source resistor in circuit b produces only a small amount of feedback (about
1.8 dB). The bias current in amplifier a is 1.0 mA; and in b, about 0.814 mA.
The table shows parameters for these two amplifiers, and for amplifier ¢, with
the same topology as b but more feedback (about 9.5 dB). We include ¢ to
demonstrate the robustness of the conclusions.

L | al b[ ] |
Vis | 20| 20| 30| V

Ry, | 5000 | 6800 | 15000 | £2
Rs 0| 120| 1000 | €

[ Ip] 1.0]J0814] 1.0]mA]

In these experiments the two tones of the stimulus are of equal amplitude
(.05 peak volts), at frequencies 3 and 5. As mentioned above, we use the same
stimulus frequencies throughout this paper, though the amplitudes may vary;
and all single-ended amplifiers studied have incremental gains of —10 (that
is, 20 dB, inverting).

In the spectrum of amplifier a (figure 3) the fundamental components
(frequencies 3 and 5) have been normalized to 0 dB. The second harmonics
(frequencies 6 and 10) are at —38 dB; and the sum and difference intermod-
ulation products (frequencies 2 and 8) are at about —32 dB.

Here we can check the simulations against the theory: The simulations
show that the second harmonics are down by -38 dB. If we evaluate the ratio
of the second harmonic to the fundamental using equation (26), plugging in
0.05 for A and 1.0 for Vg = Vg — Vp, we find that the ratio is 0.0125 or
—38.06 dB.

The spectrum of the feedback amplifier b (figure 4) is more complicated,
as expected. The second harmonics are at about —40.5 dB, and the sum and
difference frequencies are at about —34.5 dB. This is a small improvement—
about 2.5 dB in each line—compared to the amplifier without feedback. How-
ever, there is a new tier of components with peaks at about —80 dB; and
even more components down around —120.

5These paramters are typical for an N-channel enhancement-mode MOSFET when used
for small-signal amplification.
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Figure 3: The spectrum of amplifier a: a single-ended FET without feedback;
the two-tone input has 0.05 peak volts in each component.
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Figure 4: The spectrum of amplifier b: a single-ended FET with source
feedback; the two-tone input has 0.05 peak volts in each component.
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The spectrum of amplifier ¢ is not shown. Its additional feedback com-
pared to b makes for a distortion spectrum which is similar except that all
of the products are pushed down in level.

Returning to feedback amplifier b, in figure 5 we expand the vertical
scale of the spectrum to see the structure more clearly. We see many tiers
of distortion products, each produced by an additional circulation around
the feedback loop and 40 dB below the previous tier. The noise just above
—300 dB is due to numerical error in the equation solver.
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Figure 5: Expanded spectrum of amplifier b: a single-ended FET with source
feedback; the two-tone input has 0.05 peak volts in each component.

Thus we observe that adding negative feedback to a FET amplifier, while
decreasing the overall amount of distortion, significantly changes the distri-
bution of the distortion products. In two-tone tests, feedback introduces new
tiers of products, most very weak, but not necessarily insignificant perceptu-
ally, as they produce a noise floor correlated with the program material. And
not only does the amplitude of this noise floor rise and fall with the amplitude
of the program material, but its character changes as it rises and falls, higher-
order products being more volatile than lower-order ones. If we increase the
drive of the FET amplifier by 12 dB, from 0.05 peak volts to 0.2 peak volts,
the distortion at frequency 2 rises by 24 dB (12 dB relative to the input
signals), which we may take simply as due to higher signal levels. But the
components at frequencies 17 and 19 increase by 60 dB (48 dB relative to

13



