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Figure 6-3.
lnterrelation
between vector,
amplitude, and
phase errors in
the time domain.
(The phase error
is represented
by the time shift
<p/ w.)
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Confusing the vector error for amplitude error sometimes leads to mis-
understanding; see, for example, Marzetta (3) and Mathews (4). To clarify
the difference between the vector and amplitude errors, and to understand
the relation between the vector and phase errors, the time-domain represen-
tation of Figure 6—3 may be useful.

In Figure 6—3, vO1(t) denotes the ideal output waveform and vO(t) represents
the actual output waveform. If treated separately, only the difference in their
amplitudes is observed, which is the essence of the amplitude error eA. An
instantaneous confrontation of both waveforms yields different deviations,
depending on the time of comparison, ranging from zero to a maximum value
equal to the magnitude of the vector difference, which is the essence of the
vector error ev. The cross-hatched difference in both waveforms is again a
sine wave as a time expansion of the phasor vo — vol.

With restriction to small errors, the largest deviation occurs near zero
transition where linearization is possible:

vO,(t) = Vowt, vO(t) = V0(wt + cp).
The magnitude of the vector difference is simply I00 — vO[| = VOl<p| (the
waveforms are drawn so that the phase-angle is negative) and the vector error
ev = VO|(p|/ V0 = l<p| equals the phase error. For a numerical example, a vector
error of

ev = 0.0001 = 0.01%

corresponds to a phase error of

|(p| = 0.0001 rad = 0.0057°.

The interrelation of the vector and phase errors will be expressed more
accurately in the next section.

6.1.2 Dynamic Errors of the Single-Pole Lag Network
Before starting analysis of the partial causes of error, we shall investigate the
dynamic errors of a simple operational circuit with a normalized closed-loop
gain G/G] in the form

G . _ 151 on - —1+ if,” (6.3)
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suggesting the transfer function of a single-pole lag network. We are not
interested in the frequency dependence of the ideal closed-loop gain G1. We
are concerned only with its deformation that arises from reality of the op-
erational circuit and we represent this by a single lagging time constant cor-
responding to the upper frequency fH. This idealized case covers a broad
range of practical operational circuits. It includes the first-order resistive
operational circuit (e.g. , the voltage inverter and noninverting amplifier), and
also the integrator in the frequency range f > f,/A0.

The individual dynamic errors will be easily found from their definitions
[Eqs. (6.2a), (6.2b), and (6.2c)]2:
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or,

Ev = fi,
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for f < fH. For a tenfold separation from the upper frequency fH, i.e., for
f < fH/ 10, the inaccuracy of the approximate equations [Eqs. (6.5a), (6.5b),
and (6.5c)] is less than 1% and thus it is immaterial in estimating the errors
ev, 6A, and cp. No other situation is worth consideration, anyway. At fre-
quencies closer to the upper frequency, the dynamic errors increase to such
an extent that the operational circuit becomes useless.

Surprising conclusions follow from Eqs. (6.5a), (6.5b), and (6.5c):

1. The vector error ev increases in proportion to frequency, achieving
appreciable values even far below the upper frequency fH. A distinct
paradox arises. The operation within the vector error of 0.01% at a
frequency fl requires the upper frequency fH to be at least 10,000 fl.
To be specific, processing a low-frequency signal of 100 Hz by a non-
inverting amplifier with a gain of G; = 10 requires the upper fre-
quency fH (identical with crossover frequency fa) to be at least 1
MHZ and the necessary operational amplifier unity-gain frequency f,
to be at least 10 MHZ! Little can be done to moderate this discrep-
ancy (see Section 6.3.4). Here, the general conflict between accuracy
and speed manifests itself perhaps most dramatically.

2 Should calculation of Eq. (6.4) present any difficulty, the detailed derivation of dynamic
errors in Section 6.3.1 can be used as a guide.
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Figure 6-4.
Normalized gain
G/G, of a single-
pole lag network
with upper
frequency fll.
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2. Substantially more favorable results follow from judging the accuracy
according to the amplitude error eA. To achieve the same error of
0.01% at a frequenty fl, an upper frequency of fll = (100/\/E) fl =
71 fl will suffice. The same noninverting amplifier as above will pro-
cess sine-wave signals with an amplitude error of less than 0.01% up
to a frequency of 14 kHz.

3. The phase error (,0 expressed in radians coincides with the vector error
ev. (It coincides except for the sign. The vector error, being the mag-
nitude of the difference phasor, is always a positive number.)

This last conclusion also follows from Figure 6-4. Varying the frequency
from zero to infinity causes the end point of the vector of normalized closed-
loop gain G/Gl, according to Eq. (6.3), to move along a half circle below
the vector 1 as a diameter. At low frequencies, both the vectors 1 and G/ Gl
are close to each other, their difference vector G / Gl — 1 is perpendicular to
them, and its length ev = |G/Gl — 1| can be thought of as a measure of the
phase angle — (,0 in radians. Rotation of the vector G / Gl (i.e. , the phase error
<p) appears to be the main cause of the vector error ev, while contraction of
the vector G/Gl (i.e., the amplitude error 6A) is negligible in comparison.
Although Eqs. (6.5a) and (6.5b) relate to a grossly simplified model, they
are most useful and we shall often refer to them in subsequent sections.

6.1.3 Effect of Static Error
The preceding conclusions are illustrative, but conditional. Eq. (6.3) does not
describe a general case since it implicitly assumes coincidence of the actual
and ideal closed-loop gains at f = 0, that is, it assumes zero static error.
Generalization will be achieved by the modified expression

G 01
— 1. .GI 1 + rm.’ “ F (6 6)

With a real constant a close to +1 and for f < fll, the dynamic errors are

ev = \/[(a — 1)2 + (£01, (6.7a)

-€,,=1-a+%(£), (ms)

—<p = (6.7c)
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which has some relation to the dynamic error. With negligible loading of the
artificial summing junction (if needed, a buffer emitter follower can be in-
serted),

_ RN2 RNI RN2 (G )e - vs + 0,, — vs 1 .
RNI + RN2 Rm + RN2 Rm + RN2 G1

In this expression, we have denoted vl,/vs = G and —Rl.l;l/Rl,ll = Gl as actual
and ideal closed-loop gain, respectively. The term inside the parentheses is
the dynamic error [Eq. (6.1)]. The desired vector error ev = lG/Gl — 1| is
obtained by taking its magnitude,

_ fit H€V — 1 + RN2) IUSI.

The indicated absolute values are to emphasize that only the amplitudes of
voltages vs and e, as measured by common ac millivoltmeters, are needed for
evaluation of the vector error. The oscilloscope serves only as a monitor.

The amplitude of the sine-wave generator adapts to frequency. It should
be large enough to prevent the voltage e from being lost in noise, and it
should be small enough to keep the amplifier operating in the linear region
(limited output voltage swing and rate). The most reliable indicator of correct
measurement is a mutual proportionality between readings of |vS| and |e| when
the excitation amplitude is reduced to one-half.

A test circuit modified for measuring the vector error of a noninverting
amplifier is shown in Figure 6-26. The input voltage vs is applied to the
amplifier under test as well as to an auxiliary voltage inverter modeling the
ideal closed-loop gain Gl = RN2/Rl.ll + 1. Both output voltages, v0 and — Glvs,
are summed on the normal resistors RN and their sum is evaluated as an error
voltage e. The vector error is then calculated from

2 |e|
- . 6.39

6v RN2/RN1 + 1 lvsi ( )
Dynamic errors of the auxiliary inverter must be negligible. Since both

amplifiers operate with about the same feedback factor, it is sufficient for the
auxiliary inverter to specify an operational amplifier with a tenfold unity-gain
frequency.

Figure 6-25
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6.5 Summary

1. Two kinds of errors are encountered in operational circuits: multipli-
cative and additive.

2. The multiplicative error of a linear operational circuit is the relative
error of its closed-loop gain,

G
= —— — 1.e GI

3. The vector error,

G= _ _ 1 ,

determines the accuracy of those operational circuits that process in-
stantaneous values of general analog signals.

4. The amplitude error,

G
6A: -1,

determines the accuracy of those operational circuits that process an-
alog sine-wave signals fully characterized by their amplitudes.

5. The phase error,

G
(p = Etfg El,

has no meaning by itself. It is often used (sometimes justifiably,
sometimes not) as an equivalent of the vector error.

6. The static error,

G.
€0=a(J0)—1,

is the dc value of the amplitude error and (taken absolutely) the vec-
tor error.


