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1 Introduction

This document describes the dnalysis and esign of a 4th order State Variable
filter with either a Linkwitz-Riley transfer characteristic or a Butterworth char-
acteristic.
A State Variable filter is a very elegant solution if a filter with both high-pass
and low-pass outputs at the same cut-off frequency are required, like in audio
active cross-over applications. Because both frequencies are equal by design,
component selection or frequency adjustment becomes quite easy. Deviations of
5-10% of a cross-over frequency do not usually have any effects on performance
as an audio filter.
The contents relies heavily on a technical paper written by Janne Ahonen: ”The
analysis of fourth-order state variable filter and it’s application to Linkwitz-Riley
filters” [1]. However, the circuit design described in that paper is somewhat
complicated due to interdepencies of components in the feedback loop.
The analysis as described here uses a different approach with an active inverter
element in the feedback loop. This allows for very easy adjusting the gain and
Q of the filter. In addition it is demonstrated that the LR characteristic can
easily be converted to a 4th order Butterworth filter.
This design does not offer any better performance than Ahonen’s design. It is
also questionable if the more complicated synthesis actually is such a burden
given the todays available calculation applications. For me it was just fun to
see if it could be done.
I should emphasize that without the paper of Ahonen, I would not have been
able to understand the analysis of the 4th order State Variable filter, and hence
I could not have changed the design to something easier to implement.

2 4th order Linkwitz-Riley compared to Butterworth

An electronic filter circuit is broadly characterized by its characteristic or Q,
cut-off frequency ω0, its category (low-pass, high pass, etc) and its order. Com-
mon for all filters is that by definition the attenuation is −3dB at the cut-off
frequency.
This also holds for a 4th order filter other than Linkwitz-Riley. Despite of the
attenuation of 24db/oct the attenuation at the defined ω0 still is 3dB.
However, the 4th order Linkwitz-Riley filter has a defined attenuation of 6dB
at ω0. This is preferable for audio applications 1 and enables simple cascading
of two 2nd order Butterworth filters with an equal Q of 0.707 each, yielding an
attenuation of 6dB at ω0.
The design of the 4th order State Variable filter in this report decribes both
options, a 4th order Butterworth with 3dB attenuation at ω0 and a 4th order
Linkwitz-Riley with 6dB attenuation at ω0.

1More specific for loudspeaker active crossover filters. Since the resulting sound pressure
level of two speakers driven in phase is summed, the attenuation for each driver should be
6dB at the crossover frequency.
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The 4th order Butterworth is formed by changing the Q’s of each 2nd order
transfer functions to an appropriate value.
Since the Linkwithz-Riley filter is considered optimal for analog audio applica-
tions, the 4th order Butterworth is not intended as an alternative, but it might
be applicable in other applications.

3 4th order transfer function

Note: Equations 1 thru 4 are copied from [1]
The transfer function H(s) for a 2nd order high pass filter is:

Hhp2(s) =

 Ks2

s2 + s
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Q

)
+ ω2

0

 (1)

A 4th order filter can be synthesized by cascading two 2nd order filters For the
transfer function is obtained by multiplying two 2nd order functions:
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This transfer function can be simplified by these assumptions:
ω01 = ω02 = ω0

K1 = K2 = K

but deviating from the design by Ahonen Q1 and Q2 are not made equal to keep
the option for a Butterworth filter.
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(4)
and further reduced to:
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To obtain an expression for a high pass output, the definition if the transfer
function is used:

Hhp4(s) =
Uhp(s)

Uin(s)
(6)

By cross multiplying the nominator and denominator with Uin and Uhp :
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(7)
Then divide both sides by s4:
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(8)
The State-Variable filter is synthesized using a summing circuit, and number of
integrators which voltage is used for feedback with various attenuation factors.
After reworking equation 8 the desired form is obtained:

Uhp(s) = Uin(s)K
2 − (Q1 +Q2)

Q1Q2

(ω0

s
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This form can easily be converted into a block diagram as in figure 1.

∫ ∫ ∫ ∫

−Q1+Q2

Q1Q2

− 2Q1Q2+1
Q1Q2

−Q1+Q2

Q1Q2

−1

Uin K1K2 Ulp

Uhp

-ω0

s Uhp

ω2
0

s2 Uhp -ω
3
0

s3 Uhp
ω4

0

s4 Uhp

Figure 1: Block diagram of a 4th order State Variable filter

Recalling equation 5 for the transfer function of a high-pass filter we can now
write out the transfer function of the output of the fourth integrator in equation
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10:

Ulp = Uhp ·
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This indeed is the expression for a 4th order low pass filter.

4 Implementation

When the block diagram as in figure 1 is straightforwardly implemented a circuit
as proposed by Ahonen results, figure 2.
The problem here is that the integrator outputs for the first and third order
integrations 1

s and 1
s3 already are inverted with respect to the input signal and

Uhp. Substracting these signals from the input signal Uin means that they have
to be added in the summing stage by connecting them to the non-inverting
input of the summing opamp OP1.
The non-inverting input of the opamp has a very high input impedance, hence
the voltage at this summing point is a superposition of the input voltage and
the two feedback signals. Every change in one of the resistors connected to this
summing point will affect the amplification of all three signals. But this, in turn,
means that every change in the feedback constants affects the other feedback
constant as well as the overall gain of the input stage,

−

+
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Uhp

R4

−

+
OP2
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−

+
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−

+
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−

+
OP5

C4
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R8
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R12

−ω0

s Uhp
ω2

0

s2 Uhp −ω3
0

s3 Uhp

ω4
0

s4 Uhp

Figure 2: Implementation using the non-inverting input of the summing ampli-
fier as summing point

The complexity of calculating the resistors in the non-inverting path can be
overcome by adding one additional inverting amplifier OP6, figure 3. This
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Figure 3: Implementation with an additional inverter

amplifier inverts the phase of the 1
s and 1

s3 terms. In this way these signals can
be added to the inverting input of the summing amplifier.
Both terms have to be feed back to the summing amplifier with a gain of Q1+Q2

Q1Q2

so the gain of the inverter must be set to this value. The output signal of the
inverter is summed with unity gain in the summing amplifier.
The signal input has also been moved to the inverting input of the summing
amplifier. It is mandatory that the source has a low output impedance.

5 Circuit synthesis

5.1 Calculations

The component designation is according to figure 3.
When determining the component values it is assumed that R2 is chosen first.
This determines the gain of the summing amplifier. The value is not critical and
values for the other resistors used for summation are derived using this value.
R8: gain K2:

K2 =
R2

R8
⇒ R8 =

R2

K2
(11)

R6, R3, R7, R12 Gain of the inverting amplifier OP6 and feedback constant for
1
s and 1

s3 : R6 is set equal to R2 so gain of this amplifier must be:

Q1 +Q2

Q1Q2
(12)
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The feedback constant for both 1
s and 1

s3 is equal. By choosing an arbitrary
value value for R7, R12 the value for R3 can be calculated.

R3

R7, R12
=

Q1 +Q2

Q1Q2
⇒ R3 = R7, R12

Q1 +Q2

Q1Q2
(13)

R1: Feedback constant for 1
s4 The feedback constant is -1 so the value for R1 is

equal to R2.
R11: Feedback constant for 1

s2 The feedback constant for this branch is:

R2

R11
=

2Q1Q2 + 1

Q1Q2
⇒ R11 = R2

Q1Q2

2Q1Q2 + 1
(14)

R4, C1;R5, C2;R9, C3;R10, C4 corner frequency ω0 Each RC pair sets the inte-
grator time constant

RC =
1

ω0
=

1

2πf0
(15)

The time constant must be equal for all integrator stages.

5.2 Example

In this example corner frequency is set at f0 = 185Hz and transfer characteristic
is Linkwitz-Riley.
ω0 = 2π · f0 = 2π · 185 = 1162rad−1

Usually for capacitors less standard values are available than for resistors. In
this case C1-C4 are set at 220nF.

RC =
1

ω0
⇒ R =

1

1167 · 220 · 10−9
= 3895Ω

R4, R5, R9 and R10 are set at 3.9kΩ

The value R2 is quite arbitrary and normal design rules for opamp summing
amplifiers should be followed. Here R2 = 10kΩ is chosen.
For the application this circuit was built for a gain of approximately 10dB was
needed. A gain of 10db is a gain factor of 10 10

20 or approximately 3.2 times. From
equation 11 we recall:

R8 =
R2

K2
⇒ R8 =

10 · 103

3.2
= 3.12kΩ

A standard value of 3.3kΩ will suffice
The value for R6 is equal to R2, in this case also 10kΩ

The gain factor for the feedback circuit through OP6 is set to unity by choosing
R6 = R1 = 10kΩ.
To determine R3 first R7 and R12 must be chosen. These values are non-critical
and chosen is R7 = R12 = 10kΩ.
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This example ia for a Linkwitz-Riley characteristic, hence Q1 = Q2 = 0.707.
Then from equation 13:

R3 = R7, R12
Q1 +Q2

Q1Q2
⇒ R3 = 10 · 103 0.707 + 0.707

0.707 · 0.707
= 28.4kΩ

This value is critical and for actual circuit implementation the value must be
chosen as close to this value as possible. For the simulation this exact value was
used.
R11 from equation 14

R11 = R2
Q1Q2

2Q1Q2 + 1
= 10 · 103 0.707 · 0.707

0.707 + 0.707
= 2.5kΩ

6 Switch between Linkwitz-Riley or Butterworth

As mentioned previously in paragraph 3 if Q1 and Q2 are both 0.7 the 4th order
filter behaves as 2 cascaded Butterworth filters. However Q1 and Q2 can be
set to the values which make up a real Butterworth 4th order filter with an
attenuation of 3dB at f0.
From [3] we get the values Q1 = 0.543 and Q2 = 1.31 for 2 cascaded 2nd

order filters with a Butterworth transfer characteristic. To change the filter
circuit, remarkable few changes have to be made. In table the Q-values, feedback
constants and resistor values have been summarized.

Q1 Q2
Q1+Q2

Q1Q2

2Q1Q2+1
Q1Q2

R8 R10

Butterworth 0.543 1.31 2.60 3.40 2.93k 26 k
Linkwitz-Riley 0.707 0.707 2.84 4.00 2.50k 28.4 k

Table 1: Q-values and feedback constant for Butterworth and Linkwitz-Riley
variants

Unfortunately only Linkwitz-Riley and Butterworth filter characteristic have
two 2nd order sections which have the same cutoff frequency f0. For other
characteristics both Q1 and Q2 are different and also ω01 and ω02 from equation
3 are different. For implementation that would incur multiple integrator chains
with multiple corner frequencies f0. While certainly doable, it would void the
elegance and simplicity of this circuit.

7 Simulation

The circuit of figure 3 has been entered in QUCS-S [2] and simulated. The
QUCS diagram is according to the drawing on page 11. For the initial runs the
theoretical resistance values from table 1 were used to prove the concept. A final
run was made using the practical resistor values which were used to built the
circuit with a Linkwitz-Riley characteristic. Although the State-Variable filter
is not extremely sensitive to component tolerances, nevertheless seemingly small
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deviations from the theoretical values have a noticable impact. The Butterworth
and Linkwitz-Riley response using the theoretical values are shown in 4 and 5.
The signal levels and y-scales of the graphs have been modified to be the same as
for the actual measurements. The reference level is set at −47dB to accomodate
for the reference level in the real measurement.

Figure 4: Simulated transfer characteristic Butterworth adjustment f0 = 185Hz

Figure 5: Simulated transfer characteristic Linkwitz-Riley adjustment
f0 = 185Hz
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8 The actual circuit

The actual design of the filter part is unchanged with respect to the simulated
version. Some trivial input and output buffers are added but these have no
effect on the filter part.
The complete schematic is included on page 13. A differential input amplifier
acts as the low impedance source to the input of the summing amplifier. The
high-pass output is adjustable and buffered to provide a low-impedance output
after the potentiometer. The low-pass output is intended as an input to another
amplifier to sum Left and Right signals for a subwoofer. Therefor no additional
gain adjusted output is added.
A nice touch is the addition of R18 to the contact of the adjustable resistor. It
is very hard to obtain such an adjustable resistor in a logarithmic version. By
adding R18 the output of the adjustable resistor is delinearized and somewhat
resembles a logarithmic curve. Which is nice to have when controlling audio
levels.
The circuit was built on breadboard as shipping costs for PCB services are
prohibitively high for the area where I live. The breadboard layout is shown in
figure 6. A picture of the assembled breadboard is in figure 7.
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Figure 6: Component layout as assembled on breadboard PCB
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Figure 7: Assembled breadboard PCB

15



9 Measurement

A measurement was taken on simultaneously the High-pass and Low-pass out-
puts. The measured curve is shown in figure 8. The curves are nearly identical
with the simulation result in figure 5. In the real world situation the damping
at the crossover frequency is slightly less than -6dB. This is caused by choosing
the resistors not exactly as calculated because of the availabilty of such values.
In a later simulation it was obvious that this indeed causes a different damping
at f0.
The reference level of −47dB is a result of the measurement circuit used. This
value bears no relevance.

Figure 8: Measurement on actual implementation of 4th order Linkwitz-Riley
filter. Fc = 185Hz
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