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ABSTRACT

The low frequency horn design procedures described by Keele and Leach are extended and generalized to cases
where the horn is already specified, or where maximum output or the smoothest response is desired. The impact of
finite-length horns is analysed. A more detailed analysis of the high frequency range is given, where it is shown
how the voice coil inductance can be taken into account to create a third order low pass filter of specified shape. A
new analysis of reactance annulling is presented that significantly improves the performance above cutoff for a
certain class of horns. Large signal behavior is touched upon, and finally, an analysis of the sensitivity of driver and
system parameters is given.

1 Introduction

About 40 years ago, Keele [1], Small [2] and Leach [3]
presented papers on the design of low frequency horns
using Thiele-Small parameters. The papers give good
basic information, but are somewhat restricted in that
they only consider maximum efficiency or maximum
sensitivity designs for infinite horns.The purpose of this
paper is to extend the work described in these papers.

In some cases, a horn is already available, and one
wants to select or design a drive unit for it, giving
a specified response. The horn may be short, with
large ripples in the throat impedance, and a system
design that minimizes the response variations may be
desirable.

Reactance annulling is reviewed and it is found that
the traditional method of reactance annulling has some

shortcomings when considering the frequency range
above cutoff. While efficiency is maximized close to
the horn cutoff frequency, it is in many cases reduced
in the octave above it. A new method is presented to
reduce this shortcoming.

While Small’s 1977 paper includes some discussion of
large signal behavior, his analysis is based on a driver
loaded by a plane wave tube. The current paper will
therefore look into the case where the driver is loaded
by an infinite horn.

It has also been found that by including the voice coil
inductance (and potentially an extra inductor) in the
analysis, the high frequency response can be shaped to
conform to known third-order low pass filter functions.
A procedure for this is given.
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None of the previously mentioned papers have included
any analysis of the sensitivity of the system response
to variation in driver and system parameters. This is
quite important for all loudspeaker systems due to drive
unit production tolerances, and a sensitivity of vented
enclosures have previously been published by Keele [4].
The current paper therefore explores the sensitivity of
the system performance to changes in CMS, MMD, RE ,
Bl, front and rear chamber volumes, and horn throat
area.

2 Front Loaded Horns

The front loaded horn is the most common of all horn
loudspeaker configurations, as this is the configura-
tion used in practically all compression driver-and-horn
combinations in use. Many bass horns are also front
loaded, with a closed rear chamber. A typical config-
uration of a front loaded horn is shown in figure 1,
with the acoustic equivalent circuits shown in figure 2.
The symbols are defined in [3], but a short summary is
provided here.

Driver

VAFVAB

Fig. 1: Typical front loaded horn

pAE =
egBl
SdRE

, RAT = RAE +RAM,
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(Bl)2

S2
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, RAM =
RMS

S2
d

+RAB,

RAL =
ρ0c
St

, CAT =
CAMCAB

CAM +CAB

RAB describes the loss in the rear chamber, CAM =
S2

dCMS, CAB =VAB/ρ0c2 is the compliance of the rear
chamber, and

MAD =
MMD

S2
d

, CAE =
S2

dLE

(Bl)2 .

The system Q is defined as

QTC =
1

RAT +RAL

√
MAD

CAT
=

ω0

ωL +ωH

=
1

ω0 (RAE +RAM +RAL)CAT
. (1)

where the corner frequencies ωH and ωL are given by
the simplified midband equivalent operating into a re-
sistive acoustic load, and ω0 is the resonance frequency
of MAD and CAT . See [3].

It may also be useful to define a set of partial Q-factors:

QEC =
1

ω0RAECAT
, QMC =

1
ω0RAMCAT

,

QLC =
1

ω0RALCAT
, Q−1

TC = Q−1
EC +Q−1

MC +Q−1
LC .

Efficiency can be expressed by these Q-factors:

ηc =
QTC

QLC
· QTC

QEC−QTC
. (2)

As show by Leach, the conversion efficiency is max-
imized if RAL =

√
RAMRAT , and sensitivity is maxi-

mized if RAL = RAT .

It will be useful in later calculations to also define an
impedance matching parameter β as

β =
RAL

RAT
=

Sd

St
· ρ0cSdnRE

(Bl)2 +RES2
dRAM

(3)

which we can see is proportional with the compression
ratio Sd/St .

3 High-Frequency Range with
Inductance Included

Leach provides an analysis of the high frequency range
of the horn speaker neglecting the voice coil induc-
tance, and shows how CAF can be chosen to maximize
the upper corner frequency. If the voice coil inductance
is not negligible, the resulting high frequency equiva-
lent circuit will look like figure 3. This circuit can be
recognized as a third order lowpass filter, and in some
cases it may be desirable to adjust the components of
this filter to obtain a third order response at a given
cutoff frequency, for instance to roll off the response of
a bass horn in a multiway system.
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Fig. 2: Front loaded horn loudspeaker equivalent diagram, acoustic domain.

pAE

RAE RAM MAD

RALCAE CAF

Fig. 3: High Frequency acoustical equivalent circuit
with electrical inductance included.

Since tabulated values for normalized filters of several
types exist, designing the horn loudspeaker to approx-
imate one of the standard filter responses is relatively
easy. Tabulated values are given in standard text books
for filters with equal and unequal termination resis-
tances [5], see figure 4a.

If unequal termination of the filter is required, Bartlett’s
Bisection Theorem may be applied. This theorem states
that if a symmetrical filter is bisected, as in figure 4b,
and one half is impedance scaled, the response of the
filter will not change. A method for this will be given
below. It is assumed that RAM is negligible.

In order to use tabulated filter values, the values must be
denormalized, as the filters are tabulated for a frequency
of 1 rad/s and termination impedances of 1Ω. The
process is described in [5].

Let C1, L2 and C3 be the tabulated, normalized filter val-
ues, see figure 4a. With β = RAL/RAE , the transformed,
normalized inductance L to use in the calculations can
be found using Bartlett’s Bisection Theorem as

L = L2
1
2
(1+β ) , (4)

which gives

MAT =
RAEL2

1
2 (1+β )

ω3
. (5)

Similarly,

CAE =
C1

ω3RAE
, CAF =

C3

ω3βRAE
. (6)

From the definitions of CAE and CAF , it follows that

LE =
C1RE

ω3
, CAF =

C3S2
dRE

ω3β (Bl)2 =
C3St

ρ0cω3
(7)

In most cases, the diaphragm mass is fixed, and either
ω3 or β must be adjusted to get the desired filter func-
tion. For a given diaphragm mass, these are as follows.
For a given β ,

ω3 =
RAEL2(1+β )

2MAD
=

(Bl)2L2 (1+β )

2REMMD
, (8)

and for a given ω3 the necessary β is

β =
2MADω3

RAEL2
−1 =

2ω3MMDRE

(Bl)2 L2
−1. (9)

A few examples of third order responses are given
in figure 5, with the component values given in ta-
ble 1. The driver parameters are Bl = 18Tm, RE = 6Ω,
Sd = 350cm2, CMS = 2 · 10−4m/N, MMD = 64.5g and
RMS = 2Ns/m. Two of the curves show the response
without CAF , and with the optimum CAF for a second or-
der response, illustrating the difference between second
and third order responses using the same driver. It can
be seen that the Butterworth type filter response gives
a -3 dB point close to ωH , the mass corner frequency,
while the Chebychev type filter responses either pro-
duces a much lower corner frequency, or requires a
higher compression ratio.
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Eg

R L2

RC1 C3

(a) Normalized filter with equal terminations.

Eg

R1 L2a L2b

R2C1 C3

(b) Bisected filter.

Fig. 4: Using Bartlett’s Bisection Theorem.

Curve f3 [Hz] LE [mH] VAF [l]
β = 1, B3 800 1.19 0.644
β = 1, C3 435 4.86 2.62

β = 2.68, C3 800 2.65 0.533

Table 1: Component values for the third order re-
sponses in figure 5.
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β =2.68, C3

Fig. 5: Examples of third order horn loudspeaker re-
sponses, compared to second and first order
responses. Data for the third order systems are
found in table 1. B3 is third order Butterworth,
C3 is third order 1 dB ripple Chebychev.
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RAT
CAT

MALRAL

Fig. 6: Low frequency simplified equivalent circuit.

4 Analysis Low-Frequency Range

The simplified equivalent circuit for the low frequency
range is shown in figure 6. In this range, it is not

possible to regard the horn as a pure resistance anymore,
and an approximation that enables relatively simple
expressions to be derived, is to use an infinite horn. It
can be shown that the impedance can be expressed as a
parallel connection of a mass reactance and a frequency
dependent resistance. For a hyperbolic-exponential
horn above cutoff, these are [6]

MAL = RAL
1

T ωc
(10)

RAL = RAL
1√

1−
(

ωc
ω

)2
, (11)

where the bold RAL indicates the frequency dependence,
and RAL = ρ0c/St as before. ωc is the cutoff frequency
of the horn.

From these expressions, the radiated power can be cal-
culated as

PAR =
p2

AE

|ZAT |2
ℜ(ZAL)

=
(Bl)2 e2

g

S2
dR2

E
·

RAL

√
1−
(

ωc
ω

)2{
1−
(

ωc
ω

)2
(1−T 2)

}
|ZAT |2

(12)

where

|ZAT |2 =

RAT +
RAL

√
1−
(

ωc
ω

)2

1−
(

ωc
ω

)2
(1−T 2)

2

+

(
RAL

T ωc
ω

1−
(

ωc
ω

)2
(1−T 2)

− 1
ωCAT

)2

. (13)

We can see here that the radiated power would be max-
imized if the denominator of equation (12) was min-
imized, and this can be achieved with the technique
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commonly known as reactance annulling. Perhaps the
earliest reference to this technique is found in Paul
B. Flanders’ second memorandum on horn theory [7]
from 1924, where he writes:

“[...] if possible, it would seem desirable
to make receiver [driver] elements so that
they would have impedance characteristics
nearly equal to the minus reactance surge
impedance of the small end of the horn [...]
for the required frequency interval.”

Flanders’ description highlights that reactance an-
nulling is not so much about resonating the horn acous-
tic mass with the system compliance, but to provide a
conjugate impedance match between the driver and the
horn, in order to maximize power transfer. The tech-
nique was first publicly described by Albert L. Thuras
in the patent for the W.E. 555-W compression driver
[8], and later expanded on in the patent for the low fre-
quency driver for the Fletcher system [9]. The method
was later rediscovered and used by Paul W. Klipsch in
his Klipschorn [10], and further developed by Plach
and Williams at Jensen Manufacturing Company [11].

If the negative reactance of the total compliance is
made equal to that of the positive reactance of the horn,
the last term of |ZAT |2 disappears, and the denominator
of equation (12) is minimized. It is clear that that this
happens when

RAL
T ωc

ω

1−
(

ωc
ω

)2
(1−T 2)

=
1

ωCAT

or, for ω = ωc,

ωcRALCAT = T. (14)

This condition equates the system compliance with the
horn reactance at the cutoff frequency. Horns with
lower T -values have less reactance above cutoff than
the corresponding exponential horn, so that the negative
reactance from CAT will overcompensate for the horn
reactance. Looking at the total reactance, X = Xh−
XCAT , figure 7, we see that the reactance can be annulled
completely above cutoff for the exponential horn, but
that there is still a significant reactive component for
horns with T < 1. We also note that the reactance of
finite horns oscillate around the curves for the infinite
horns.
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−4

−2

0

f/fc

X
h
−

X
C

A
T

T = 1.0
T = 0.7
T = 0.5
T = 0.2
T = 0.2, kcam = 0.5

Fig. 7: Total reactance Xh−XCAT , normalized. T cal-
culated from equation (14) using ωc = ωL.

As equation (14) shows, low-T horns need very small
VB. This, combined with the low reactance of these
horns above cutoff, causes the condition for reactance
annulling to actually cause a significant drop in the
efficiency above cutoff. Since the real power of re-
actance annulling lies in providing a conjugate match
between driver and horn, it is clear that it works best for
horns with T close to 1, and that for low-T horns the
rear chamber should be made larger than the equations
above predict, in order to match the horn reactance
above cutoff.

It is not particularly difficult to find the optimum sys-
tem compliance: the average reactance in a specified
frequency range above cutoff should be zero. The aver-
age reactance over the range ωc to nxωc is

X =
1

(nx−1)ωc

nxωcˆ

ωc

{
Xh−XCAT

}
dω =

RAL

(nx−1)ωc

nxωcˆ

ωc

 T ωc

ω

(
1− (1−T 2)

ωc2

ω2

)
− 1

ωRC

}
dω

=
1

(nx−1)ωc

{
T ωc

2
ln

∣∣n2
x +T 2−1

∣∣
T 2

− 1
RC

lnnx

}
. (15)

where RC = RALCAT . To achieve reactance annulling
over the desired range, X must be zero. Rearranging
equation (15), we get the optimal value for CAT for
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maximum power output in the range above cutoff:

CAT =
1

RALT ωc
· 2lnnx

ln
(
|n2

x+T 2−1|
T 2

)
=

1
RALωc

· fnx(T ). (16)

fnx(T ) is plotted in figure 8 for nx = 2. It can be seen
that that in the range 0.7≤ T ≤ 1.1, the value is very
close to unity. Unfortunately, equation (16) cannot be
solved directly for T , and either graphical or numerical
methods must be used. It is in general interesting to
note that the dependence on T for reactance annulling
is opposite of that predicted by equation (14), i.e. larger
compliance for lower values of T .

The effect of using this new equation is quite dramatic
for low-T horns, as shown in figure 9. For the T = 0.2
horn, efficiency is improved by about 6 dB in the octave
above cutoff.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

T

ω
c
R

A
L
C

A
T

Fig. 8: Optimal CAT to maximize power in the octave
above ωc; nx = 2.

Leach comments that for an exponential horn, it is not
possible to achieve reactance annulling for ωc = ωL,
and that a Hypex horn is required for this [12]. While
it is possible to specify a lower ωL to achieve reactance
annulling at the horn cutoff frequency, Leach argues
that this is not an optimal solution, as the driver/rear
chamber then has a larger bandwidth than the horn can
transmit, and that the efficiency will also be reduced.
However, as we have seen above, low T -values will
result in low efficiency above cutoff, and when using
Leach’s system design method, one may easily end up
with low T -values.

1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

ω/ωc

η c
[d
B
]

T = 1.0
T = 0.7
T = 0.5
T = 0.2

(a) With CAT from equation (14).

1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

ω/ωc

η c
[d
B
]

T = 1.0
T = 0.7
T = 0.5
T = 0.2

(b) With CAT from equation (16).

Fig. 9: Efficiency above cutoff. β = 1, RAM =
0.0357RAL, MAD neglected.

5 Finite Horns

Finite horns typically have fairly large ripples in the
throat impedance. By adjusting β , the variation in
power output can be minimized. The procedure is de-
scribed in detail by A. L. Thuras for the low frequency
loudspeaker for the Fletcher system [9, 13]. Assuming
that the horn is properly reactance annulled,

PAR = p2
AE

RAL

(RAT +RAL)
2 .

It follows therefore that for minimum variation
in output power, the variation in the factor
RAL/(RAT +RAL)

2 should be as small as possible. By
differentiating it with respect to RAL and equating the
result to zero, we find that RAT = RAL.

This ratio will however depend on the horn in question.
In order to minimize the variation in output power, we
must set

RALmax

(RAT +RALmax)
2 =

RALmin

(RAT +RALmin)
2 . (17)
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Solving for RAT , we find that RAT =
√

RALmax RALmin , or

β =
1√

ζmaxζmin
, (18)

where ζmax and ζmin describe the deviation from the
asymptotic throat resistance RAL, and are defined so
that RALmax = ζmaxRAL, and similar for ζmin.

6 Large Signal Analysis

At low frequencies, power output is limited by the
maximum cone excursion, and at high frequencies by
the heat dissipated in the voice coil. Due to the high
efficiency of horns, maximum power input can be sig-
nificantly higher than the rated power of the driver. The
maximum power input is therefore [2]

PE,in =
PE,max

1−ηc
. (19)

One should, however, keep in mind that at maximum
power, the voice coil resistance can easily be two times
or more the rated RE , lowering efficiency.

If maximum power output is desired, the system should
be designed so that maximum displacement limited
power output at the lowest frequency of interest co-
incides with the maximum thermally limited power
output. The first of these is frequency dependent, and
is [2, 14]

PAR,X =
X2

maxω2
L

2
· ρ0c

St
S2

d , (20)

and increases with the compression ratio.

The second condition only depends on efficiency

PAR,E = PE,max
ηc

1−ηc
. (21)

Neglecting driver and rear chamber losses, i.e. RAM =
0, The factor ηc/(1−ηc) in equation (21) reduces to
RAE/RAL, and the equation becomes

PAR,E = PE,max
RAESd

ρ0c

(
Sd

St

)−1

, (22)

which decreases with the compression ratio. Equat-
ing these expressions, we find that the condition for
maximum output as

Sd

St
=

√
2PE,maxRAE

ρ0cXmaxωL
=

√
2PE

RE

Bl
ρ0cSdXmaxωL

. (23)

Note that the quantity under the square root is the peak
input current.

For an infinite exponential horn, the same procedure,
and assuming reactance annulling is used so that CAT =
St/ρ0cωc, gives the condition for maximum output as

Sd

St
=

√
2PE

RE
(
ω2

L−ω2
c
) Bl

ρ0cSdXmax
, (24)

i.e. there is a factor
√

ω2
L−ω2

c replacing ωL. It shows
us that the closer to the cutoff frequency of the horn
we put the lower frequency of maximum power, the
higher compression ratio we need, since the radiation
resistance falls away. The equation for power output
under this condition stays the same.

For finite horns, one has to take into account the peaks
and dips in the throat resistance. Below the first peak in
the throat impedance, the resistance falls away quickly,
and trying to obtain high power output in this range
requires a high compression ratio, as shown above for
the infinite horn, with resultant loss of efficiency and
output power at higher frequencies, see equation (22).
It may be possible to find analytical expressions for
this, but the expressions are likely to be to complex to
be useful.

7 Parameter Sensitivity

In [4], Keele did an analysis of the sensitivity of vented
box alignments to variations in driver and box param-
eters. The sensitivity function of a system function
M(w) to the parameter x is defined as

SM
x (w) =

dM(w)/M(w)
dx/x

=
x

M(w)
· ∂M(w)

∂x
≈ ∆M(w) in %

∆x in %
. (25)

A sensitivity value of +1 indicates that, say, a 5% in-
crease in x results in a 5% increase in M. Keele anal-
ysed the vented box alignments by analytically deriving
the sensitivity function for several parameters. With fi-
nite horns this can easily become complex, and we will
restrict ourselves to a numerical study using the approx-
imate form in equation (25). According to Keele, this
is acceptable for a variation of ±15%. For this study,
perturbations of 15% will be made in each direction,
and the average sensitivity will be plotted.
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Fig. 10: Sensitivity of a front loaded horn loudspeaker to variation in driver and system parameters.
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Figure 10 sums up the results for a horn using a driver
with Bl = 18Tm, RE = 6Ω, Sd = 350cm2, CMS =
2 · 10−4m/N, MMD = 64.5g and RMS = 2Ns/m. LE
is neglected. For the horn, fc = 45Hz, kcam = 0.7
and T = 1. The system uses β = 1, VAB = 28.45l and
VAF = 1.24l.

In judging these results, it appears that the driver param-
eters Bl, RE and MMD are the most important for horn
loudspeaker performance. The sensitivity to variations
in RE is unfortunate, as RE will vary with voice coil
temperature. If the system is to be used at high levels
this should be taken into account in the design phase.

Sensitivity to variations in CMS and VB is large only
close to, and below, fc, and at higher frequency they
have little effect. MMD has some effect in the midband,
but the sensitivity increases towards, and beyond, the
mass corner frequency. Sensitivity to variations in VAF
is confined to frequencies above the upper corner fre-
quency. RMS had so little effect on the results that the
curve has been omitted. Sensitivity to horn throat and
mouth areas is medium in the pass band. At higher
frequencies the throat area influences the mass corner
frequency. The sensitivity to mouth area changes is
greatest around cutoff, as one would expect.

8 System Design With Driver

The basic procedures of horn system design have
been described by Small [2], Keele [1] and Leach [3].
Leach’s method is in general sound, and will not be
repeated. One should, however, remember the issue
with reactance annulling mentioned above.

A horn system can be designed based on several re-
quirements. Leach’s analysis is based on specifying the
the upper and lower corner frequencies of the system,
while as we have seen above, specifying a system by
a given value for β may be required, and a method for
this will be developed here. In the case of design for
minimum ripple, some knowledge of the horn perfor-
mance is required. At least an approximate simulation
of the throat impedance is useful.

In order to design a system with a driver, we need to
know the driver parameters fs, VAS, QES and QMS. We
also need to specify the lower corner frequency fL and
β .

If a one wants to specify the frequency range based
on a -3 dB frequency from a third order low pass filter,
determine β from equation (9).

From the relation(
Q−1

EC +Q−1
MC

)−1
=

1
ω0RATCAT

, (26)

and using the relation that QEC = ω0
ωs

QES, QMC =
ω0
ωs

QMS, and consequently
(
Q−1

EC +Q−1
MC

)−1
= ω0

ωs
QT S,

we find that
RAT =

ωs

ω2
0 QT SCAT

. (27)

Combining this equation with

CAT =
1

RAT (β +1)ωL
(28)

makes it possible to calculate the system resonance
frequency without knowing ωH .

1. If we are designing a driver for a given horn with
a specified cutoff and T -value, the value of ωL
required for reactance annulling is given as

ωL =
βωc

(β +1) fnx(T )
(29)

using fnx(T ) from equation (16).

2. From ω2
0 = ωLωH , calculate the system resonance

frequency

ω0 =

√
ωLωs (1+β )

QT S
. (30)

3. Calculate the upper corner frequency as

ωH =
ωs (1+β )

QT S
. (31)

4. Calculate the system Q, QTC = ω0
ωL+ωH

.

5. Find the compliance ratio and rear volume as

α =

(
ω0

ωs

)2

−1 =
ωL (1+β )

ωsQT S
−1, (32)

VB =VAS/α. (33)

6. Calculate the throat area as

St =
ω0QTCVAS

(
1+ 1

β

)
(α +1)c

(34)
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7. Calculate QEC =
√

α +1QES = ω0
ωs

QES and

QLC =
(
Q−1

TC−Q−1
EC−Q−1

MC

)−1
, and find ηc from

equation (2).

8. If not aiming for a third order HF response, cal-
culate VAF and ω3 using the equations given by
Leach.

9 Conclusion

The analysis of a front loaded horn loudspeaker as pre-
sented by Keele [1], Small [2] and Leach [3], has been
extended. It has been shown that the high frequency
rolloff can be designed to conform to a third-order slope
of known properties by proper adjustment of electrical
inductance and front chamber volume.

Shortcomings of the traditional method of reactance
annulling have been demonstrated, and an alternative
method, that improves performance in the octave above
horn cutoff, has been shown.

A method to find the optimum compression ratio for
a horn with large variations in throat impedance have
been presented.

Since several of the above methods require a certain
value for the impedance matching parameter β , a sys-
tem design method has been presented that takes this
into account.

Finally, large signal analysis and parameter sensitivity
analysis have been performed.
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