
Matthew Schwartz

Lecture 9:
Reflection, Transmission and Impedance

1 Boundary conditions at a junction

Suppose we take two taut strings, one thick and one thin and knot them together. What will
happen to a wave as it passes through the knot? Or, instead of changing the mass density at the
junction, we could change the tension (for example, by tying the string to a ring on a fixed rod
which can absorb the longitudinal force from the change in tension). What happens to a sound
wave when it passes from air to water? What happens to a light wave when it passes from air to
glass? In this lecture, we will answer these questions.

Let’s start with the string with varying tension. Say there is a knot at x= 0 and the tension
changes abruptly between x < 0 and x > 0. To be concrete, imagine we have a left-moving trav-
eling wave coming in at very early times, hitting the junction around t=0 (obviously all parts of
the wave can’t hit the junction at the same time). We would like to know what the wave looks
like at late times. Let us write the amplitude of the wave as ψL(x, t) to the left of the knot at
ψR(x, t) to the right of the knot.

ψ(x, t)=

{

ψL(x, t), x< 0
ψR(x, t), x> 0

(1)

To the left of the knot, the wave must satisfy one wave equation

[

∂2

∂t2
− v1

2 ∂
2

∂x2

]

ψL(x, t)= 0, v1=
T1
µ1

√

(2)

and to the right of the knot, another wave equation must be satisfied

[

∂2

∂t2
− v2

2 ∂
2

∂x2

]

ψR(x, t)= 0, v2=
T2
µ2

√

(3)

Recalling that the Heaviside step function (or theta-function) is defined by θ(x) = 0 if x < 0
and θ(x)= 1 for x> 0, we can also write Eq. (1) as

ψ(x, t)= ψL(x, t)θ(−x)+ ψR(x, t)θ(x) (4)

This way of writing ψ(x, y) makes it clear that it is just some function of position and time. We
need to determine what the boundary conditions are at the junction, and then find the full solu-
tion ψ(x, t) for all times.

Obviously ψ(x, t) should be continuous. So

ψL(0, t) = ψR(0, t) (5)

This is one boundary condition at the junction.

Recall from Lecture 6 that a point on the string of mass m gets a force from the parts of the
string to the left and to the right:

1



The force from the part to the left is T
∆ψ

∆x
≈ T

∂ψ(x, t)

∂x
. This form makes sense, since if the string

has no slope, it is flat and there is no force. From the right, the force is −T
∂ψ(x, t)

∂x
. The sign has

to be opposite so that if there is no difference in slope there is no force (with equal tensions). So
if there are different tensions to the right and left, as at x=0, we have

m
∂2ψ(0, t)

∂t2
=T1

∂ψL(0, t)

∂x
−T2

∂ψR(0, t)

∂x
(6)

Now m is the mass of an infinitesimal point of string at x = 0. But T1 and T2 as well as the

slopes
∂ψL(0, t)

∂x
and

∂ψL(0, t)

∂x
are macroscopic quantities. Thus, if the right hand side doesn’t

vanish, we would find
∂2ψ(0, t)

∂t2
→ ∞ as m → 0. Equivalently, we can write m = µ∆x then this

becomes

µ∆x
∂ψ(0, t)

∂t2
=T1

∂ψL(0, t)

∂x
−T2

∂ψR(0, t)

∂x
(7)

Taking ∆x→ 0 we find

T1
∂ψL(0, t)

∂x
=T2

∂ψR(0, t)

∂x
(8)

So the slope must be discontinuous at the boundary to account for the different tensions.

Now we have the boundary conditions. What is the solution?

2 Reflection and transmission

Suppose we have some incoming traveling wave. Before it hits the junction it has the form of a
right-moving traveling wave

ψL(x, t)= ψi(x− v1t), t < 0 (9)

To be clear, ψL(x, t) is the part of ψ(x, t) with x < 0. ψi(x) is some function describing the
wave’s shape in this region. It is easy to check that ψL(x, t) satisfies the wave equation in the

x < 0 region:
[

∂2

∂t2
− v1

2 ∂
2

∂x2

]

ψL(x, t) = 0. The i subscript on ψi(t) refers to the incident wave.

Let t=0 be the time when the first part of the wave hits the knot at x=0.

To be concrete, think of ψi(t) as a square wave. For example ψi(z) = 2mm for −1 cm < z 6

0cm and ψi(z) = 0 otherwise. At t=0, ψL(x, 0) is zero outside of −1 cm<x< 0, so it just starts

to hit x= 0. At earlier times, say t1=−
5cm

v1
, then ψL(x, t1) is zero outside of −6 cm<x<−5cm.

So as time goes on, it approaches the junction, and hits it just at t=0. So ψ(x, t) = ψL(x, t)θ(−
x) is a perfectly good solution of the wave equation for t < 0. The real wave doesn’t have to be a
square wave, it can have any shape.

Actually, it will be extremely helpful to make a cosmetic change and write ψi

(

t −
x

v1

)

instead of ψi(x − v1t). Clearly these functions carry the same information, because we just
rescaled the argument. The new form is nicer since at the boundary x= 0, ψi doesn’t depend on

v (so Eq. (12) below has a simple form). So let’s pretend we wrote ψi

(

t − x

v1

)

from the start of

this section (I didn’t want to actually write it that way from the start to connect more clearly to
what we did before).

Now, after t = 0 ψL can have left and a right moving components, so we can more generally
write

ψL(x, t)= ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)

(10)

where ψr is the reflected wave. Recall that any wave can be written as a sum of left and right
moving waves. So writing ψL this way does not involve any assumptions, it is just convenient to
solve the wave equation including boundary conditions at the junction.
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For t > 0 there will also be some ψR (the part at x > 0). This part will always be right-
moving. We call this the transmitted wave and write

ψR(x, t) = ψt

(

t−
x

v2

)

(11)

That we can write the wave for x > 0 in this form follows from the assumption that for t < 0
then ψ=0 for x> 0. If there were a left-moving component on the right side, then as t→−∞ it
would always be there. Note that the transmitted wave has wave speed v2, since it is in the
string on the right. Note that we are not assuming that the incident, transmitted and reflected
waves all have the same shape.

The picture is as follows

Figure 1. Incident, reflected and transmitted waves.

Now we impose our boundary conditions. Continuity at x=0, Eq. (5) implies

ψi(t)+ ψr(t) = ψt(t) (12)

For the other boundary condition, Eq. (8), we have

T1
∂ψL(0, t)

∂x
=T1

∂

∂x

[

ψi

(

t−
x

v1

)

+ ψr

(

t+
x

v1

)]

x=0

=
T1
v1

[−ψi
′(t)+ ψr

′(t)] (13)

and

T2
∂ψR(0, t)

∂x
=T2

∂

∂x

[

ψt

(

t−
x

v2

)]

x=0

=−
T2
v2
ψt

′(t) (14)

Thus,
T1
v1

[−ψi
′(t)+ ψr

′(t)] =−
T2
v2
ψt

′(t) (15)

In other words
d

dt

[

−
T1
v1
ψi(t) +

T1
v1
ψr(t)+

T2
v2
ψt(t)

]

=0 (16)

Since a function whose derivative vanishes must be constant, we then have

T1
v1

[−ψi(t)+ ψr(t)] =−
T2
v2
ψt(t)+ const (17)

If the constant were nonzero, it would mean that the wave on the righthand side, ψt has a net
displacement at all times. There is nothing particularly interesting in such a displacement, so we
set the integration constant to zero.

Substituting Eq. (12) into Eq. (17) we get

T1
v1

[−ψi(t) + ψr(t)] =−
T2
v2

[ψi(t)+ ψr(t)] (18)

or
(

T1
v1

+
T2
v2

)

ψr=

(

T1
v1

−
T2
v2

)

ψi(t) (19)
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which implies

ψr=

T1

v1
−
T2

v2
T1

v1
+
T2

v2

ψi (20)

We have found that the reflective wave has exactly the same shape as the incident wave, but
with a different overall magnitude. By Eq. (12) the transmitted wave also has the same shape.
The relevant amplitudes are the main useful formulas coming out of this analysis.

Defining

Z1=
T1
v1
, Z2=

T2
v2

(21)

we have

ψr=
Z1−Z2

Z1+Z2
ψi (22)

Substituting back in to Eq. (12) we get

ψt=
2Z1

Z1+Z2
ψi (23)

Sometimes this solution is written as

ψr=Rψi, ψt=Tψi (24)

where

R=
Z1−Z2

Z1+Z2
(25)

is the reflection coefficient and

T =
2Z1

Z1+Z2
(26)

is the transmission coefficient.
Z is known as an impedance. In this case it’s tension over velocity, but more generally

Impedance is force divided by velocity

That is, impedance tells you how much force is required to impart a certain velocity. Imped-
ance is a property of a medium. In this case, the two strings have different tensions and different

velocities. Using v=
T

µ

√

we can write

Z =
T

v
= Tµ
√

(27)

Note that as Z1 = Z2 there is no reflection and complete transmission. If we want no reflection
we need to match impedances. For example, if we want to impedance-match across two
strings with different mass densities µ1 and µ2 we can choose the tensions to be T2 =

µ1

µ2

T1 so
that

Z2= T2µ2

√
=

µ1

µ2
T1µ2

√

= T1µ1

√
=Z1 (28)

Thus the impedances can agree in strings of different mass density.
Note that the transmission coefficient is greater than 1 if Z1<Z2. That means the amplitude

increases when a wave travels from a medium of lower impedance to a medium of higher imped-
ance. This is an important fact. We’ll discuss a consequence in Section 7.1 below.

3 Phase flipping

What happens when a wave hits a medium of higher impedance, such as when the tension or
mass density of the second string is very large? Then Z2 > Z1 and so, R =

Z1−Z2

Z1+Z2

< 0. Thus, if

ψi> 0 then ψr < 0. That is, the wave flips its sign. This happens in particular if the wave hits a
wall, which is like µ=∞.
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On the other hand if a wave passes to a less dense string then Z2 < Z1 and there is no sign
flip. This can happen if Z2 = 0, for example, if the second string is massless or tensionless – as
in an open boundary condition.

before after

before after

Figure 2. Phase shift of reflected pulses on a string. Top has pulse going from lower to higher imped-

ance. Bottom has pulse going from higher to lower impedance.

This phase flipping has important consequences due to interference between the reflected
pulse and other incoming pulses. There will be constructive interference if the phases are the
same, but destructive interference if they are opposite. We will return to interference after dis-
cussing light.

4 Impedance for masses

To get intuition for impedance, it is helpful to go back to a more familiar system: masses. Sup-
pose we collide a block of mass m with a larger block of mass M

Figure 3. Mass m starts with velocity vi, with M at rest.

Say m has velocity vi. To find out the velocity of M we solve Newton’s laws, or more easily,
use conservation of momentum and energy. The initial momentum and energy are

pi=mvi, Ei=
1

2
mvi2 (29)
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After the collisions, m bounces off M and goes back the way it came with “reflected velocity” vr
and M moves off to the right with “transmitted velocity” vt:

Figure 4. After the collision, m has the reflected velocity vr and M the transmitted velocity vt.

The final momentum and energy are

pf =−vrm+ vtM, Ef =
1

2
mvr

2+
1

2
Mvt

2 (30)

Conservation of momentum implies

vt=
m

M
(vi+ vr) (31)

then conservation of energy implies

1

2
mvi2=

1

2
mvr+

1

2
M
[

m

M
(vi+ vr)

]

2
(32)

After a little more algebra we find

vr=
M −m

M +m
vi, vt=

2m

m+M
vi (33)

These equation have exactly the same form as Eqs. (22) and (23) with Z1 = m and Z2 = M .
Thus for masses, impedance is mass. This makes sense – the bigger the mass, the less force
you can impart with a given velocity.

Let’s take a concrete example. Suppose m = 1, M = 3 and the incoming velocity is v. Then
the final velocity of M is

vt=
2m

m+M
v=

2(1)

1+ 3
v=

1

2
v (34)

Thus the mass M gets half the velocity of m. Now say we put a mass m2 = 2 in between them.
When m bangs into m2 it gives it a velocity

v2=
2m

m+m2
v=

2(1)

1+ 2
v=

2

3
v (35)

Then m2 bangs into M and gives it a velocity

vt=
2m2

m2+M
v2=

2(2)

2+ 3

(

2

3
v

)

=
4

5

2

3
v=

8

15
v= 0.533v (36)

Thus M goes faster. Thus inserting a mass between the two masses helps impedance match.
Similarly inserting lots of masses can make the impedance matching very efficient.
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5 Complex impedance

It is sometimes useful to generalize impedance to complex numbers. For example, suppose we
have a driven oscillator satisfying

mẍ+ kx=F0e
iωt (37)

First consider the case where k≈ 0. Then mẍ=F0e
iωt. Integrating this gives

ẋ=
F0

iωm
eiωt (38)

Then

Zm=
force

velocity
=

F0e
iωt

F0

iωm
eiωt

= iωm (39)

Thus at fixed driving frequency ω, Zm∝m as with the masses.

In the other case, when m≈ 0, kx=F0e
iωt and so

ẋ= iω
F0

k
eiωt (40)

Then

Zk=
force

velocity
=

F0e
iωt

iω
F0

k
eiωt

=−i
k

ω
(41)

The impedance of the whose system is the sum of the impedances

Ztotal=Zm+Zk= i

(

ωm−
k

ω

)

(42)

So at high frequencies, the mass term dominates. This is called mass-dominated impedance.
Physically, when the driver is going very fast, the mass has no time to react: a lot of force at
high frequency has little effect on velocity. At low frequencies, the k term dominates. For slow
motion, how much velocity the mass gets for a given force depends very much on how stiff the
spring is. This is called stiffness dominated impedance.

Note that Ztotal = 0 when ω =
k

m

√

, that is, no resonances. At the resonant frequency,

nothing impedes the motion of the oscillator: a small force gives a huge velocity.

With complex impedances you can add a damping term.

γẋ=F0e
iωt ⇒ ẋ=

F0

γ
eiωt (43)

Thus,

Zγ=
F

v
= γ (44)

This makes perfect sense: damping impedes the transfer of energy from the driver to the oscil-
lator.

With all 3 terms,

Ztotal= γ+ i

(

ωm−
k

ω

)

(45)

Now the impedance is always nonzero, for any frequency.

6 Circuits (optional)

An important use of complex impedances is in circuits. Recall that the equation of motion for
an LRC circuit is just like a damped harmonic oscillator. For a resistive circuit:

V = IR= Q̇R (46)
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where Q is the charge, I is the current, R is the resistance and V is the voltage. For a capacitor

V =
Q

C
(47)

For an inductor

V =Lİ =LQ̈ (48)

Putting everything together, the total voltage is

Vtot=LQ̈+
Q

C
+ Q̇R (49)

This is the direct analog of

F =mẍ+ kx+ γẋ (50)

Instead of driving the mass with an external force F = F0e
iωt, we drive the circuit with an

external voltage V =V0e
iωt. That is we find the simple correspondence

mass/spring F x ẋ ẍ γ k m Z =
F

ẋ

circuit V Q I = Q̇ İ = Q̈ R
1

C
L Z =

V

I

(51)

Thus instead of being Z =
F

ẋ
, impedance for a circuit is

Z =
V

Q̇
=
V

I
(52)

A resistor has

ZR=
V

I
=R (53)

A capacitor has

ZC=
V

I
=

1

iωC
(54)

and an inductor has

ZL= iωL (55)

Impedance of an AC circuit plays the role that resistance does for a DC circuit. We can add
impedances in series or in parallel just like we do for resistance. Impedance has the units of
resistance, that is Ohms. In practice, impedances are more easily measured than calculated.

Matching the impedances of two different wave carrying media is of critical importance in
electrical engineering. Say one wishes to drive an antenna, such as the wifi antenna on your
router. The maximum power we can couple into the antenna occurs when the impedances of the
power supply and antenna are equal in magnitude. This is pretty important in high power appli-
cations, where can waves which are reflected from your antenna can come back and destroy your
amplifying equipment. It’s also critical if you are a receiver. All modern radios have impedance
matching circuits in them. This is because antennas are resonant devices, and as we just saw,
tuning away from resonances causes some impedance. Thus you would need to match your radio
input impedance to your antenna as you pick up different wavelengths.

7 Impedance for other stuff

For air, we recall v =
B

ρ

√

with B = γp = ρv2 the bulk modulus and v the speed of sound in the

gas. Then

Z0=
B

v
= ρv (56)

Z0= ρv is called the specific impedance. Z0 is a property of the medium. For example, in air

ρ= 1.2
kg

m3
, v= 343

m

s
⇒Zair= 420

kg

m2s
= 420

Pa · s
m

(57)
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for water

ρ= 1000
kg

m3
, v= 1480

m

s
⇒Zwater= 1.48×106

kg

m2s
= 1.48× 106

Pa · s
m

(58)

Thus if you try to yell at someone under water, you find that the amount reflected is

R=
Zair−Zwater

Zair+Zwater
=−0.9994 (59)

So almost all of the sound is reflected (and there is a phase flip).
If the wavelength of the sound waves is smaller than the size of the cavity holding the waves

(for example in a pipe) then one must account for this finite size in the impedance. For air in a
finite size cavity, the relevant quantity is not the specific impedance (which is a property of the
gas itself), but the impedance per area

Z =
Z0

A
=

B

v ·A
=

B

volume flow rate
=
ρv

A
, λ> A

√
(60)

This is relevant when λ > A
√

where λ is the wavelength of the sound wave and A is the cross
sectional area of the pipe.

For air of the same density, the impedance is effectively
1

area
. Thus the reflection coefficient

going between pipes of different radii is

R=

1

A1

−
1

A2

1

A1

+
1

A2

=
A2−A1

A1+A2
(61)

So a situation like this will have bad impedance matching:

On the other hand, a megaphone is designed to impedance match much better:

Now you know why megaphones are shaped this way!

7.1 Solids

For liquids or solids, impedance is also Z = ρv. The nice thing about a formula like this is that
both ρ (density of the solid) and v (speed of sound in the solid) are easy to measure, in contrast
to the bulk modulus (what is that?) and the pressure (what is pressure for a solid?). For
example,

Impedance for other stuff 9



material density (kg/m3) speed of sound (m/s) specific impedance (MPa·s/m)

brick 2,200 4,200 9.4

concrete 1,100 3,500 3.8

steel 7,900 6,100 48

water 1,000 1,400 1.4

wood 630 3,600 2.3

rubber 1,100 100 0.11

rock 2,600 6,000 16

diamond 3,500 12,000 42

dirt 1,500 100 0.15

Table 1. Properties of various liquids and solids. 1 MPa = 106 Pascals = 106
kg

ms2
.

It’s good to have a little intuition for speeds of sounds and densities, which you can get from
this table. For example, sound goes very fast in diamond. That’s because diamond is very hard
and rigid, so the the atoms move back to their equilibrium very quickly as the wave passed
through (spring constant is high). Steel is also hard and has a fast sound speed. Rubber and
dirt are soft, so waves propagate slowly through them. Dirt is denser than concrete, but sound
goes much slower since it is not rigid.

Regarding the impedance, because impedance is ρ · v, soft stuff generally has small ρ and
small v, so it has much lower impedance. The highest impedances are for the hardest sub-
stances: steel and diamond, the lowest for the softest stuff, water and dirt.

As an application, recall from Eq. (26) that when the impedance goes down T > 1 and the
amplitude increases. Now, consider an earthquake as it travels from rock (Z1=16 MPa·s/m) into

dirt or landfill (Z2=16 MPa·s/m). Then T =
2Z1

Z1+Z2

= 1.98. So the amplitude of the shaking will

double in amplitude! That’s why you shouldn’t build houses on landfill in an earthquake zone.

10 Section 7


	1 Boundary conditions at a junction
	2 Reflection and transmission
	3 Phase flipping
	4 Impedance for masses
	5 Complex impedance
	6 Circuits (optional)
	7 Impedance for other stuff
	7.1 Solids


