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ABSTRACT 
Various methods exist for crossing over multi-way loudspeaker systems. These methods include those loosely classified as Linkwitz-Riley filters, 
constant-voltage filters, and D’Appolito configurations. All these methods do not provide broad-band constant-beamwidth or constant-directivity 
operation because their vertical radiation patterns change shape as a function of frequency. This paper describes a simple, non-iterative linear-phase 
crossover filter design technique that provides uniform frequency responses vertically off-axis for a given multi-way loudspeaker. Distances between 
the individual drivers, and desired off-axis attenuation are prescribed as input parameters for the design process, the outcome of which is a set of 
crossover frequencies and unique filter frequency responses in each band. In order to obtain wide-band constant-beamwidth, a loudspeaker array 
configuration composed of a single central tweeter surrounded symmetrically by pairs of lower-operating-frequency transducers arranged in a vertical 
line is required. Practical implementation issues are outlined in the paper by means of various design examples. Two design methods are presented in 
in two-parts: Part 1: a general method which emphasizes flatness of arbitrary off-axis frequency responses and Part 2: a simplified method that 
emphasizes frequency uniformity of beam shape and coverage angle (vertical beamwidth) of the polar patterns.    

0 INTRODUCTION 
Uniform and smooth off-axis responses are widely 
accepted as key features of a successful loudspeaker 
design [1]. Ideally, one wishes to achieve flat, 
frequency-independent amplitude responses at any 
measured point in space. 

A common design practice is to accept non-ideal 
behavior, such as interference due to path-length 
differences in multi-way speakers, as unavoidable, and 
then try to optimize the apparent sound quality by 
modifying crossover parameters – a process commonly 
known as voicing. 

There are efforts to circumvent the problem and 
approach the ideal more closely. Keele [2] has presented 
a novel array design that features excellent control over 
the radiated sound field. However, a high number of 
high-quality wide-band drive units are required, and a 
long curved array is not always suitable for domestic 
use. In [3] two different approaches are shown – a 
distributed mode loudspeaker, and a two-way system 
with large high-frequency waveguide and digital, brick-
wall crossover. Drawbacks are high distortion with the 
former, and remaining crossover artifacts such as pre-
ringing with the latter. Recently, Shaiek et al [4] have 
presented a high-end four-way full-bandwidth coaxial 
source. Despite of the very high complexity and cost of 
their design, the achieved off-axis responses appear very 
irregular and require iterative, sub-optimal equalization 
methods.  

Van der Wal’s article on logarithmic arrays [5] 
describes a design algorithm related to our method. 
Here, optimum zero-phase low pass filters provide 
frequency-dependent array aperture, in order to achieve 
constant-directivity. However, it is not a multi-way 
crossover design, since all drivers are required to 
reproduce the low-frequency band. 

In our new technique described here1, a DSP-based 
crossover is designed to work with a loudspeaker array 
composed of a single central tweeter surrounded 
symmetrically by pairs of lower-operating-frequency 
transducers arranged in a vertical line. Each pair of 
drivers at the same distance from the center is driven by 
a separate crossover channel, including the single 
central tweeter. At any specific frequency, only one pair 
or at most two pairs of speakers are operating 
simultaneously (the single central tweeter is the sole 
exception which operates by itself at high frequencies). 
This feature of the new technique allows the design 
method to apply both to equally- and unequally-spaced 
pairs of drivers. 

In Part 1, the design procedure for the new technique  is 
based on specifying a crossover frequency-response 
shape that forces a flat frequency response at a specified 
vertical off-axis angle. When thus specified, frequency 
responses at other vertical off-axis angles are found to 
be reasonable flat as well.  In Part 2 of this paper we 
                                                           
1 Patent applied for May 6, 2005 (US 20060251272). 
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present a somewhat-simplified alternate design 
procedure that emphasizes frequency uniformity of 
beam shape and coverage angle (vertical beamwidth) of 
the polar patterns. This paper illustrates the two 
different design procedures by applying the former 
design technique to the design of  multi-way 
loudspeaker monitors in Part 1, and the latter to the 
design of broad-band constant-beamwidth vertical line 
arrays in Part 2. 

In Part 1, we discuss the performance of some 
commonly used crossover alignments in section 1, then 
introduce our technique in section 2, briefly cover filter 
implementation issues in 3, and close with a summary in 
and section 4. In Part  2, we develop an alternate design 
method for constant-beamwidth line arrays. 

1 TRADITIONAL CROSSOVER 
ALIGNMENTS 

We will employ a three-way loudspeaker design as 
depicted on the left in Fig. 1 throughout this section to 
illustrate the frequency responses of conventional 
crossovers. A small neodymium tweeter with low 
resonance frequency is used to minimize the distance to 
the midrange and allow a low crossover point. For a 
given crossover filter, we compute vertical off-axis 
responses by applying circular piston models for the 
transducers, and compute the complex sum of the 
respective terms after multiplication with the crossover 
transfer functions. In the asymmetric case, different 
sound pressure levels result for angles above and below 
the main axis. We also consider a symmetric 
arrangement of transducer pairs around the tweeter as 
illustrated on the right in Fig. 1, as proposed by 
d’Appolito [6]. We restrict our considerations to the far 
field, where the observation distance is large compared 
with the dimensions of the loudspeaker. 

The sound pressure of a single monopole xi at positive 
angles (upwards) is  

)/2exp(
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and negative angles (downwards) 
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The sound pressure of a source pair is the sum of both: 
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where (see Fig. 2) 
 

 
Figure 1: Speaker system configurations analyzed in this 
paper: conventional (left) and pair-wise symmetric three-
way layout (right). X-axis (vertical) distances in meter. 

 
Figure 2: Source locations and path differences for two 
pairs of point sources located symmetrically about a center 
position at vertical positions ±x1 and ± x2. 
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The far field sound pressure level of the three-way 
loudspeaker at angle α is 
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where Di,α is the attenuation of the i-th transducer at 
angle α, using the first order Bessel function J 1  
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Ci, i=0,1,2, the monopole pressure response according 
to (1), (2) or (3), and HHP, HBP, HLP are the transfer 
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functions of the high-pass, band-pass and low-pass, 
filters respectively.  

Example three-way crossover filter frequency responses 
for several crossover types are shown in Fig. 3. The 
chosen crossover frequencies are 250Hz and 1500Hz. 

Three well-known alignments are illustrated here: a) 4th-
order Linkwitz/Riley, b) 2nd-order constant-voltage, and  
c) 8th-order notched. For comparison, our method is 
shown in d) and is described later in section 2. All 
frequency response functions have been equalized to 
flat on axis.  

 
Figure 3: Frequency responses of several three-way 
crossover filters. a) 4th-order Linkwitz/Riley; b) 2nd-order 
constant-voltage c) 8th-order notched; and d) newly 
proposed linear-phase filter.  

Fourth-order Linkwitz/Riley (L/R) crossovers became 
popular because the high- and low-pass filters are in 
phase, resulting in symmetric lobes without tilt [7]. 
Figure 4 shows on- and off-axis frequency responses for 
a three-way L/R design based on the two configurations 
shown in Fig. 1. The responses for the conventional 
configuration (top two graphs), show that the up-down 
responses are not symmetrical because adjacent 
crossovers interact with each other. Discussions of 
complete L/R designs, rather than just looking at 
isolated single crossover points, have not been widely 
published so far. The bottom graph illustrates the 
responses for the pair-wise symmetric driver layout. 
Although the up-down responses are guaranteed 
symmetrical, the off-axis responses are clearly not flat. 
Thus in practice, the L/R design may not provide either 
symmetrical up-down response or flat off-axis response, 
even though it is a clear improvement over a third-order 
Butterworth filter with phase-inverted midrange shown 
in Fig. 5.  

 
Figure 4: Fourth-order  Linkwitz/Riley off-axis frequency 
responses for the three-way systems of Fig. 1 at 0…45° in 
5° steps. a) above axis b) below axis c) pair-wise symmetric 
driver layout. Crossover frequencies are 250Hz and 
1500Hz. 

 
Figure 5: Third-order Butterworth inverted off-axis 
frequency responses at 0…45° in 5° steps. a) above axis b) 
below axis c) pair-wise symmetric driver layout. 

An interesting result is shown in the following Fig. 6, 
which shows the responses for a second-order constant-
voltage design [8]. This crossover provides poor results 
when applied to a conventional asymmetric three-way 
layout, but excellent results when applied to the 
symmetric configuration. The symmetrical response is 
close to an ideal point-source with little beaming. The 
only drawback is that transducers have to cover a wide 
frequency range without distortion and membrane 
breakup. 
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Figure 6: Second-order Butterworth constant-voltage off-
axis responses at 0…45° in 5° steps. a) Above axis b) below 
axis c) pair-wise symmetric driver layout. 

A recent article proposes to use high order “notched” 
crossovers [9], which are known as “Chebyshev Type 
II” in analog filter design literature. Figure 7, however, 
shows that the results are far from perfect. It seems 
preferable to avoid out-of-axis artifacts altogether, 
rather than claiming their inaudibility. 

 
Figure 7: Eighth-order notched off-axis responses at 0…45° 
in 5° steps. a) above axis b) below axis c) pair-wise 
symmetric driver layout. 

Here not further discussed is the work of Rimell and 
Hawksford [10], and Greenfield [11], who published 
new, improved digital crossover alignments. Proposed 
were frequency responses based on Gaussian functions, 
and “pseudo-analog” filters with wide transition bands 
and high stop-band attenuation. However, their 
approaches aim at minimizing crossover artifacts, rather 
than including off-axis path differences directly into the 
design. This is the basic idea of the following section. 

For comparison, Fig. 8 shows the corresponding 
up/down frequency responses for the new linear-phase 

filter proposed in this paper applied to the pair-wise 
symmetric driver layout of Fig. 1. Except for some 
broadening in the 3 to 8 kHz range and narrowing at 
high frequencies, the response is very smooth and flat 
and exhibits perfect up/down symmetry.  

 

 
Figure 8: Off-axis frequency responses for the new linear-
phase filter for three-way pair-wise symmetric driver layout 
at 0…45° in 5° steps (explained in section 2). In this design, 
the response is forced to be flat at a level of about -4.5 dB at 
±45º from on axis, i.e. a = 0.6 and α = 45º. 

2 CROSSOVER FILTER DESIGN 
TECHNIQUE 

In this section, we only consider symmetric layouts of 
pairs of midranges and woofers arranged around a 
central tweeter (Figure 1, right side). 

2.1 Basic Design 
The far-field frequency responses Ci and Ci+1 of two 
pairs of point sources i and (i+1) (Eqs. 3 and 4), crossed 
over by yet undetermined functions wi(f) (lowpass) and 
1-wi(f) (highpass), respectively, is   

,...2,1
),())(1()()()( 1

=
⋅−+⋅= +

i
fCfwfCfwfH iiii  (7) 

We prescribe 

0)( αα == atafH . (8) 

Parameter a is an attenuation factor that specifies the 
level of a specific off-axis frequency response (both up 
and down), i.e. the frequency response will be perfectly 
flat at this plus-minus off-axis angle. For example, an a 
of 0.316 at α = 45º, specifies that the frequency response 
will be flat at 45º above and below the system’s axis at a 
level 10 dB down from on axis. 

Simple algebra then yields the crossover functions 
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The numerator is zero when 

afCi =)( . (10) 

Using (3) we obtain for this case 

AES 32nd International Conference, Hillerød, Denmark, 2007 September 21–23  4



Horbach and Keele Application of Digital Crossover Filters Part 1: Control of Off-Axis Response 

0sin2
)(arccos

απ ⋅⋅
⋅=

i
i x

acf , (11) 

the frequencies where the lowpass crossover functions 
w(fi) are zero. We call fi “critical frequencies”. At any 
angle α other than α0, the value of the sound pressure aα 
at the critical frequencies is  

),)arccos(
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sincos(

0

aa
α
α

α =  (12) 

combining Eqs. (7) and (11) with w(f)=0.  

Figure 9 shows typical curves for w(f) and (1-w(f)). 
They can be used in a frequency interval as crossover 
functions, defined by a pair of critical frequencies (here 
about 250Hz … 450Hz). The crossover frequency can 
be found where both functions cross, and takes on a 
value of 0.5 (-6dB) (in Fig. 9 at  about 300Hz). Both 
crossover frequencies and interval boundaries cannot be 
chosen freely. They depend on the given input 
parameters xi (driver locations), and the prescribed 
attenuation factor a at the desired angle α. 

 
Figure 9: Crossover functions w(f) and 1-w(f) computed 
from Eq. 9 that define the frequency response shape of 
the new crossover. 

Figure 10 illustrates a six-way application. A central 
tweeter is located at x0=0, and five pairs of midranges/ 
woofers at +/- xi, i=1…5. We obtain a highpass, four 
bandpass filters characterized by four critical 
frequencies according to (11), and a lowpass w5(f). At a 
critical frequency, only one pair of transducers are 
active, otherwise only two pairs. 

2.2 Control of Low-Frequency Response 
Below the lowest critical frequency, the system 
response H(f) equals the response of a pair of 
monopoles (equation 7, w=1, H=Ci+1), which  

 
Figure 10: Crossover filters of a six-way array system 
designed to provide broadband flat off-axis response 
between roughly 200 Hz and 5 kHz. 

approaches one at f=0. The loudspeaker becomes 
omnidirectional at low frequencies. In order to achieve a 
smoother transition to constant-directivity, we prescribe 
a frequency-dependent target function a1(f), to be 
applied to the lowest interval: 
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)()()(
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−
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We can for example use a spline function, as shown in 
Figure 11 (M is the number of ways, here M=6). The 
corresponding critical frequency is reduced by a factor 
c<1 compared with the original one after Eq. (11). In 
general, Eq. (13) can be used if one wishes to 
approximate any non-constant directivity function. 

 
Figure 11: Low-frequency directivity target functions. 
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2.3 Control of High-Frequency Response 
Above the highest critical frequency, the single central  
tweeter operates essentially on its own. In most cases, a 
high frequency transducer (tweeter) cannot be 
accurately modeled as a monopole. For instance, a 
waveguide might be used to extend the desired constant 
directivity to the upper frequency of the loudspeaker. 
We propose an iterative method to optimize the 
crossover function for the tweeter that uses modeled or 
measured data. This technique essentially includes the 
narrowing or non-uniform off-axis high-frequency 
response of the tweeter in the overall design.  

We discretize frequency and off-axis angles of interest 
in the highest frequency interval: 

,...1,/

,...0),(/
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then successively search real-valued x(n) for n=1,2,…N 
such that the error 
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with 
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becomes minimum. The values a(k) are attenuation 
factors at the angles αk according to (12). HTw is the 
tweeter’s frequency response, normalized to the 
response on axis. 

2.4 Examples 
Figures 12 and 13 present illustrative examples of the 
off-axis response that results from the design method. 

Figure 12 shows that constant directivity has been 
achieved with a six-way system throughout the whole 
audible range, with differently prescribed beamwidth 
targets: a) narrow, and b) wide. Figure 12b is an 
example for a nearly perfect point source, with little 
beaming, at the expense of lower crossover frequencies. 

Figure 13 shows responses up to 2kHz for the whole 
angular range up to 90°. Above that frequency, a 
tweeter with optimized directivity may take over. We 
confirm that the responses are forced to be flat at the 
prescribed angle, and are reasonably flat at other angles, 
with frequency-independent fixed values at the critical 
frequencies according to Eq. (12). The figure also 
shows, that by parameter choice, one can generate 
designs with or without side lobes, and focus on very 
flat responses over a limited range of angles, or 
reasonably flat responses over the whole range. 

 

 
Figure 12: Frequency responses of a six-way system 
designed to have narrow vertical coverage (a) and wide 
vertical coverage (b). a) α=40, a=0.35 (level of -9 dB at 
±40º);  b) α=40, a=0.8 (level of -2 dB at ±40º) shown at 
0…40° in steps of 5°.  

 
Figure 13: Graphs illustrating off-axis frequency response 
for four different sets of level a and angular α parameters 
over a wide angular range out to ±90°. Parameter variations 
include: a) α=80, a=0.1 (level of -20 dB at ±80º);  b) α=60, 
a=0.25 (level of -12 dB at ±60º); c) α=60, a=0.031 (level of 
-30 dB at ±60º);    and d) α=45, a=0.5 (level of -6 dB at 
±45º); shown at 0…90° in steps of 5°. 

The three-way example in Figure 8 has been created 
using x1=0.075, x2=0.3, a=0.6 at α=45°, and a pistonic 
model for the tweeter (Eq. (6) with d=0.015 m). A 
properly designed waveguide would help to maintain 
constant directivity over a wider frequency range. 

3 IMPLEMENTATION AND DRIVER EQ 
The zero-phase crossover functions of Eq. (7) can be 
approximated by linear-phase FIR (Finite Impulse 
Response) filters using well-known LMS or Fourier-
approximation methods. In order to achieve the required 

AES 32nd International Conference, Hillerød, Denmark, 2007 September 21–23  6



Horbach and Keele Application of Digital Crossover Filters Part 1: Control of Off-Axis Response 

linear phase response for the overall acoustic system, 
loudspeaker driver magnitude and phase equalisation 
must be incorporated in the crossover design. The 
simple method outlined in the following equation  
turned out to be effective in most cases.  

)(
),(/

resultresult

drivercrossresult

HIFFTb
bFFTHH

=
=

 (17) 

Here, we divide the crossover function Hcross by the 
spectrum of the measured driver’s impulse response, 
and obtain the final filter coefficients by applying an 
inverse FFT, time shifting and –gating. An example is 
shown in Fig. 14. Filter degrees are usually moderate, 
because the filters contain no passband, and wide 
transition bands. Multirate techniques can be employed 
to minimize implementation cost.  

 

Figure 14: Approximation of a crossover filter using an FIR 
filter. 

 
Figure 15: Impulse responses a) measured driver response 
bdriver , b) combined EQ and crossover filter impulse 
response bresult , c) acoustic impulse response. 

4 SUMMARY 
In this paper we described a new linear-phase DSP 
technique for crossing over multi-way loudspeakers 
utilizing pair-wise symmetric driver configurations with 
a central tweeter in a vertical array. The technique is 
based on combining the acoustic outputs of pairs of 
drivers to yield a flat frequency response at an arbitrary 
specified off-axis angle. When thus flattened, responses 
at other off-axis angles are found to be fairly flat as 
well.  

In contrast to prior crossover techniques such as 
Linkwitz-Riley, constant-voltage, high-order notched, 
etc., the new technique actually maintains flat off-axis 
frequency response throughout most of the operating 
range of the speaker except at high frequencies where 
the single central tweeter operates on its own. 

The technique produces a crossover filter frequency 
response with a very distinctive pointed-top shape. On 
either side of the point, called a critical frequency, the 
response rolls off rapidly and essentially shuts off at 
frequencies above and below the critical frequencies of 
the adjacent drivers. At a critical frequency, only one 
pair of drivers are energized. At frequencies between 
the critical frequencies, only two pairs of speakers are 
operating.  

In Part 1 of this paper (this part), we described a 
technique that places emphasis on the flatness of off-
axis frequency response. This is done by specifying an 
attenuation factor that specifies the level of a specific 
off-axis frequency response (both up and down). Thus 
specified, the crossover filter forces the frequency 
response at that specific off-axis angle to be flat and 
nearby off-axis angles are found to be fairly flat as well. 
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