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ABSTRACT 

Traditionally, high-accuracy full-sphere polar measurements require dense sampling of the sound 
field at very-fine angular increments, particularly at high frequencies. The proposed HELS 
(Helmholtz Equation Least Squares) method allows this restriction to be relaxed significantly. 
Using this method, far fewer sampling points are needed for full and accurate reconstruction of 
the radiated sound field. Depending on the required accuracy, sound fields can be reconstructed 
using only 10 to 20% of the number of sampling points required by conventional techniques. The 
HELS method allows accurate reconstruction even for sample spacing that violates the Nyquist 
spatial sampling rate in certain directions. This paper examines the convergence of HELS 
solutions via theory and simulation for reconstruction of the acoustic radiation patterns generated 
by a rectangular plate mounted on an infinite rigid flat baffle. In particular, the impact of the 
numbers of expansion terms and measurement points as well as errors imbedded in the input data 
on the resultant accuracy of reconstruction is analyzed. 

 



Lu and et al. High-Accuracy Polar Measurements
 

AES 121st Convention, San Francisco, CA, USA, 2006 October 5–8 

1.  INTRODUCTION 

Loudspeakers are often designed based on 
their predicted and measured acoustical 
performances, one of them being the 
radiation pattern. Accurate prediction of a 
radiation pattern requires the knowledge of 
source characteristics, boundary conditions, 
etc., which is usually very difficult. So in 
practice, the radiation patterns are measured 
instead. These measurements are taking 
place in the far field as defined by AES 
Standards [1, 2, 3, 4]. To ensure high accuracy 
and spatial resolution, AES also requires 
that measurements be taken at an angular 
resolution equal to or less than 1º. This super 
fine angular resolution coupled with a far-
field measurement requirement result in an 
excessive number of measurements. For 
example, at 1-meter distance and with a 1º 
angular resolution one would need to take 
64,800 measurement points over entire 180º 
polar angle and 360º azimuthal angle ranges, 
which is unrealistic in practice by any 
means. The spacing between two 
neighboring measurement microphones at 1-
meter distance is ∆s = 1.7cm, which means 
that even if we use the minimum Nyquist 
spatial sampling rate of 2.5 measurement 
points per wavelength, we can only depict 
radiation pattern up to f=C/λ= 
340/(2.5×0.017)=8000 Hz. It has been found 
[1] that when coarse angular resolution is 
adopted, for example, at 2º, 5º, and 10º, nulls 
and lobes in a radiation pattern may be lost 
and its image be distorted. This example 
shows how difficult it is to obtain an 
accurate radiation pattern at high 
frequencies. So there is a great demand in 
the speaker industry to search for 
alternatives that can offer accurate 

descriptions of speaker radiation patterns 
with much fewer measurement points. 

In this paper, we present a methodology 
based on expansion theory, which has been 
used in near-field acoustical holography 
known as the HELS (Helmholtz Equation 
Least Squares) method [5, 6]. Specifically, 
HELS expresses the acoustic pressure 
through an expansion of the spherical wave 
functions and the expansion coefficients are 
determined by matching the assumed-form 
solution to the measured data. Note that if 
measurement points are placed on a 
spherical surface enclosing the source, the 
HELS solutions will be exact. Moreover, the 
number of expansion terms required in 
HELS is correlated to the dimension of the 
source and frequency of interest. This gives 
HELS an advantage in dealing with small 
sources. For example, consider a speaker 
with a characteristic dimension a = 0.16m at 
the same frequency as that considered 
above: 8000Hz so a dimensionless 
frequency is ka = (2π f a) / c = 
2π×8000×0.16/340 ≈ 23. Previous studies 
have shown that for a given ka, it is enough 
to expand the spherical wave functions up to 
n = ka in an expansion [7]. Therefore, the 
number of expansion terms is J = (n + 1)2. 
This means that we need M ≥ J = (ka + 1)2 = 
596 measurement points only, which is less 
than 1% of those required by AES 
Standards. Note that the formula for 
estimating the numbers of expansion terms 
and measurement points have nothing to do 
with the Nyquist spatial sampling rate. 
Therefore, with HELS we may be able to cut 
down the number of measurement points 
significantly.  
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2. HELMHOLTZ EQUATION LEAST 
SQUARES (HELS) METHOD 

HELS has been shown to be an effective 
nearfield acoustical holography (NAH) 
methodology to reconstruct the entire 
acoustic field generated by an arbitrary 
source in 3D space, including a 3D source 
surface [5, 6]. In this method, the acoustic 
pressure is expressed in terms of a 
superposition of spherical wave functions 
that consist of the spherical Hankel 
functions and spherical harmonics.  
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where Ψj
(1) is the jth particular solution to the 

Helmholtz equation in any coordinate 
system. For example, using the spherical 
coordinates we can write Ψj

(1) as 
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where  indicates the spherical Hankel 
functions of order n of the first kind, k is the 
acoustic wavenumber, Y

krhn

n
l(θ,φ) are the 

spherical harmonics, and the indices j, n, and 
l in Eq. (2) are related via j = n2 + n + l + 1 
with n starting from 0 to K and l varying 
from − n to n. Hence, for each n and l we 
have j = 1 to J, where J = (K + 1)2 represents 
the maximum number of expansion 
functions. 

The expansion coefficients Cj are 
determined by matching the assumed-form 
solution Eq. (1) to the acoustic pressure 
( )ω;~ Γ

mp x  measured on a conformal surface 
Γ around the source,  
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Normally, we take more measurement points 
than the number of expansion functions to 
form an over-determined system and use 
least squares to minimize the errors in 
calculating the expansion coefficients.  
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Once the coefficients Cj are specified, the 
acoustic pressure can be reconstructed using 
Eq. (1). 

It is emphasized that Eq. (1) is valid in an 
exterior region including an arbitrarily 
shaped source surface S. The completeness 
of an expansion in terms of the particular 
solutions to Helmholtz equation was first 
demonstrated by Vekua [8]. Isakov and Wu 
[9] gave rigorous mathematical justifications 
of using Eq. (1), least squares, and quasi-
solution methods to reconstruct acoustic 
radiation from an arbitrary source. In 
particular, they proved that Eq. (1) outside a 
sufficiently smooth, convex, and bounded 
domain can be approximated by a family of 
special solutions [9]. By using Eq. (1) and 
the conditional stability estimates in the 
Cauchy problem for an elliptic equation, 
Isakov and Wu showed that these special 
solutions are bounded on and outside a 
source surface and converge to the exact 
solution, provided that they converge on a 
measurement surface. The same conclusions 
hold for reconstructing the acoustic field in 
an interior region as well [9].

In this paper, we use HELS method to 
reconstruct radiation patterns from a highly 
non-spherical source. The input data are 
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collected on a spherical surface in the far 
field of the target source. The number of 
input data is much smaller than what is 
required by AES Standards. If these input 
data are used to depict radiation patterns 
directly, they will be distorted because many 
side nulls and lobes are missing, especially 
at high frequencies. 

The main objective of this paper is to 
examine the feasibility of using HELS 
method to produce a correct radiation 
pattern based on a relatively small number 
of measurement points. Note that such a 
problem can be considered a mildly ill-
posed problem since one attempts to fill 
gaps among measurement microphones with 
the acoustic pressures based on a finite 
number of data points measured on the same 
surface. This problem is ill-posed because 
the input data are apparently incomplete. 
This is especially true at high frequencies 
where there are many side lobes and nulls. 
On the other hand, the ill-posedness 
difficulty is not as sever as a typical NAH 
application because the reconstructed 
acoustic pressures are on the same surface as 
the measurement surface. Nevertheless, we 
need to regularize the transfer matrix to 
ensure a satisfactory reconstruction. 

Another objective of this paper is to 
examine the suitability and robustness of 
HELS method to reconstruct the acoustic 
field generated by arbitrary source geometry 
at high frequencies. While HELS can 
produce an exact solution outside the 
minimum sphere that circumscribes the 
source for an exterior problem or inside the 
maximum sphere that inscribes the source 
for an interior problem, the number of 
expansion terms and that of measurement 
points necessary to reconstruct the details of 
an acoustic field are not clear. In other 

words, what is the minimum number of the 
expansion terms in HELS needed to describe 
all side lobes and nulls in reconstruction? 
What is the minimum number of 
measurement points required to avoid spatial 
aliasing in reconstruction? Most 
importantly, how robust is HELS method? 
This is critical because in practice all 
measured data contain errors to certain 
degree. How sensitive are the HELS 
formulations to errors in the input data? Will 
the errors imbedded in the input data be 
amplified in the reconstruction process?  

These questions are addressed in this paper. 
Without a loss of generality, we select a 
source to be a rectangular plate mounted on 
an infinite, rigid baffle. The reason for 
selecting this test object is that a rectangular 
plate represents a class of geometries that 
cannot be exactly described by the spherical 
Hankel functions and spherical harmonics, 
which are embedded in the HELS 
formulations. On the other hand, analytic 
solution is readily available so that the 
accuracy in reconstruction can be studied in 
detail. 

3. RADIATION PATTERNS OF A BAFFLED 
RECTANGULAR PLATE 

The formulation for predicting the radiation 
pattern of a rectangular plate mounted on an 
infinite, rigid baffle is well know [10], whose 
standard normalized pressure amplitude is 
given by 
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where φ1 and φ2 represent the angular 
variables along the longitudinal and 
transverse directions, respectively, d1 and d2 
are the length and width of the plate, 
respectively, and λ is the wavelength of the 
frequency of interest. 

In this paper, Eq. (5) is used to generate the 
field acoustic pressure at a finite number of 
points on a spherical surface. These acoustic 
pressures are taken as input data to the 
HELS formulations to reconstruct the 
radiation patterns over a frequency range of 
250 to 16000Hz. These reconstructed 
acoustic radiation patterns are then 
compared with those generated by Eq. (5). 

The objectives of this numerical simulation 
are to see: 1) if HELS is able to recover all 
details in radiation patterns such as side 
lobes and nulls at high frequencies; 2) the 
impacts of measurement points and errors 
imbedded in input data on the accuracy and 
resolution of reconstruction; 3) the potential 
benefits of using HELS to generate radiation 
patterns in practice. 

The test object is a flat rectangular plate of 
dimensions 45 × 160mm mounted on an 
infinite, rigid baffle. For convenience, we 
use the Cartesian coordinate system with its 
origin at the geometric center of the plate. 
Further, we define the z-axis to be in the 
normal direction and x and y axes to lie on 
the plate pointing in the transverse and 
longitudinal directions, respectively. The 
input data are collected over a hemispherical 
surface of a radius r = 1m with uniform 
angular intervals ∆φ1 and ∆φ2, where φ1 
denotes an angle between the z-axis and the 
projection of the line that links the origin of 
the coordinate system to observation point, 
and that is in the plane normal to the surface 
and parallel to d2. Similarly, φ2 denotes an 

angle between the z-axis and the projection 
of the line that links the origin of the 
coordinate system to an observer, and that is 
in the plane normal to the surface and 
parallel to d1. For clarity, only one quadrant 
of this hemispherical surface is depicted in 
Figure 1. 

Figure 2 shows the grid on which the input 
data are collected using Eq. (5). Note that 
the spacing among individual nodes, ∆φ1 
and ∆φ2, are much greater than that required 
by the AES Standards. There are no sources 
other than this vibrating plate and the field is 
unbounded. 

4. RESULTS AND DISCUSSIONS 

The acoustic pressures generated on a coarse 
grid over a hemispherical surface of radius 
1m are taken as input to reconstruct 
radiation patterns on the same hemispherical 
surface in 1/3-octave bands from 250 to 
16000Hz. For brevity, we display results at 
the center frequencies of these 1/3-octave 
bands. 

4.1. Can HELS Method Recover All the 
Details in Radiation Patterns at High 
Frequencies Based on a Finite Number 
of Measurement Points? 

To address this first question, we collect M = 
410 measurement points over one quadrant 
with an angular resolution of ∆φ1 =2.25° and 
∆φ2 =10°, and reconstruct acoustic pressures 
on 460 points, N = 460, with ∆φ1 =2° and 
∆φ2 =10°.  

Figure 3 shows comparisons of the 
reconstructed radiation patterns (1st, 3rd, 5th, 
7th and 9th rows) and theoretical ones (2nd, 
4th, 6th, 8th and 10th rows) in a linear scale 
projected on y-z plane at the center 
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frequencies of 1/3-octave bands from 250 to 
6278Hz. We notice that the first side lobe 
appears at 2490Hz, the second side lobe at 
4976Hz, and more side lobes show up after 
7896HZ. To get a better view of the side 
lobes in the radiation patterns up to 
16000Hz, we show enlarged images in 
Figure 4. We can see that at f = 16000Hz, ka 
= 25, there are seven side lobes in the 
longitudinal direction and the shapes and 
sizes of these side lobes are well preserved 
in the reconstructed radiation patterns. 

Note that the number of side lobes in the 
transverse direction is less than that in the 
longitudinal direction. This is because the 
width of the plate is about 1⁄4 of its length 
and therefore at a given frequency, the 
acoustic pressure wave can fluctuate along 
the transverse direction about 1⁄4 of that 
along the longitudinal direction. For 
example, at 16000Hz, there are seven side 
lobes seen on the y-z plane, but only one 
side lobe on the x-z plane. Figure 5 shows all 
the reconstructed radiation patterns on x-z 
plane. Figure 6 illustrates comparisons of 
reconstructed and theoretical radiation 
patterns in 3D view in dB scale. The reason 
for selecting dB scale is to emphasize the 
shape and size of the side lobes, which 
would have been much smaller than the 
main lobe in a linear scale.  Figure 7 gives 
the projection of 3D radiation patterns on 
the y-z plane from 3951 to 16000Hz in order 
to provide a clearer view of comparison of 
reconstructed radiation patterns vs. 
theoretical ones. So the answer to the 
question on the subtitle 4.1 is a definite yes. 

It is emphasized that the numbers of 
measurement points in φ1 and φ2 directions 
are substantially less than the AES Standard 
and have severely violated the Nyquist 
spatial sampling requirement. For example, 

at f = 16000Hz the wavelength is λ = 
0.0215m. If we apply the minimum Nyquist 
spatial sampling rate of 2.5 measurements 
per wavelength, we need take 183 
measurement points along φ1 direction or 
with an angular increment of ∆φ1 < 0.5°. If 
we apply the same rule in the φ2 direction, 
we will end up 33489 measurement points. 
Even if we use the same angular increment 
of ∆φ2 =10°, we will need 1647 
measurement points. Thus, it is obvious that 
using HELS can cut down significantly the 
number of measurement points in 
reconstructing radiation patterns. 

4.2. WHAT ARE THE IMPACTS OF 
MEASUREMENT POINTS AND ERRORS 
IMBEDDED IN THE INPUT DATA ON 
THE ACCURACY AND RESOLUTION 
OF RECONSTRUCTION USING HELS? 

The question one may have next is how the 
number of measurement points affects the 
end result and how robust HELS is when the 
input data are not error free. To address 
these issues, we tested cases in which the 
relationship between the number of 
expansion terms in HELS formulation and a 
dimensionless frequency is relaxed. This in 
turn will reduce the number of measurement 
points. For example, it is well established 
[9] that in using the expansion of the 
spherical wave functions to an acoustic 
field, it suffices to stop at, n = ka, where n is 
the index or order of the spherical wave 
function. The total number of expansion 
terms is given by, J = (n + 1)2, which is (ka 
+ 1)2 when we stop at the expansion at any 
given dimensionless frequency ka. This 
relation may still lead to an excessive 
number of measurement points, especially 
when the characteristic dimension of the 
source is large. 

AES 121st Convention, San Francisco, CA, USA, 2006 October 5–8 
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To reduce the number of measurement 
points, we attempt to relax this requirement 
by carrying out a systematic investigation in 
which the measurement points M is 
decreased gradually, while the rest 
parameters remain unchanged. The 
percentage errors in reconstruction versus 
the value of M are studied. 

Note that as the measurement points 
decreases, the spatial sampling rate drops. 
Eventually, distortions in reconstructed 
radiation patterns appear as expected. 

Figure 8 depicts the L2-norm errors, which 
represent spatial-averaged errors in the 
reconstructed radiation patterns. Results 
show that even when M = 190 with angular 
resolution of ∆φ1 =5° and ∆φ2 =10° along 
the longitudinal and transverse directions, 
respectively, the spatial-averaged error is 
less than 0.8dB. This indicates that there is a 
potential for us to further decrease the 
number of input data. Our test results further 
show that the established relation n = ka can 
be relaxed to 

( ) ( ) 397.60716.0023.0 2 +−= kakan        (6 ) 

Eq. (6) is obtained by curve-fitting the test 
results. It is a less stringent requirement than 
the established one. For example, at 
12500Hz, we have ka = 19.6. Substituting 
ka value into Eq. (6), we obtain n = 14 
rather than 20. This means that we need J = 
(n + 1)2 = 225 expansion terms and slightly 
more measurement points than the 
expansion terms, say, M = 250, to recover 
all five side lobes in radiation pattern. At 
16000Hz or ka = 25, we get n = 19 and J = 
400, rather than n = 25 and J = 676. So M = 
410 is enough to recover all seven side lobes 
in radiation pattern. 

It must be pointed out, however, that in 
these cases the input data are error free 
whereas in reality the measured data are 
always contaminated by background noise. 
Therefore, we need to examine the 
robustness of HELS method with respect to 
erroneous input data. This is done by 
introducing Gaussian white noise into the 
field acoustic pressures generated by Eq. (5). 

Figure 9 displays the comparison of 
reconstructed radiation patterns based on the 
input data that contain Gaussian-type, 
pseudorandom noise whose statistical profile 
is (µ, σ), where µ = 0 is the expected mean 
value, σ is the standard deviation, versus 
reconstructed ones with error-free input data 
and theoretical ones. Results show that with 
σ = 5% Gaussian noise, the reconstructed 
side lobes of radiation pattern at 6286Hz are 
still fairly close to that of the theoretical 
ones; when the measurement noise increases 
to σ = 10%, the basic radiation pattern is 
preserved but distortions are observed, 
which are reflected in sharpening of the 
main lobe and splitting of side lobes. It is 
noted that the radiation patterns in Figure 9 
are expressed in a linear scale. If dB scale is 
adopted, the distortions might not seem as 
significant because the major distortion 
occurs at the main lobe and a logarithmic 
scale has less effect on a large value than a 
small value. 

It is important to point out the significance 
of the expansion index n, which controls the 
details of an expansion solution. Figure 10 
illustrates how the value of n can affect the 
reconstructed result. In this case, there are 
five side lobes in the radiation pattern at f = 
12532Hz. When the expansion is stopped at 
n = 8 with a total of J = 81 expansion terms, 
only three of side lobes are recovered. As 
we increase the index to n = 12 with a total  
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of J = 169 expansion terms, all five side 
lobes are recovered successfully. This 
example shows the importance to extend an 
expansion solution to a high order to get all 
details right. The price for acquiring detailed 
information is that the number of 
measurement points must be increased 
substantially. Hence, in practice we must 
balance the accuracy with costs. In any 
event, this example illustrates 
interrelationships among the expansion 
index n, dimensionless frequency ka, and 
numbers of expansion terms J and 
measurement points M needed in HELS 
method, as well as the impact of errors 
imbedded in the input data on the final 
results. 

AES 121st Convention, San Francisco, CA, USA, 2006 October 5–8 

4.3. WHAT ARE THE POTENTIAL BENEFITS 
OF USING HELS? 

Once we have seen the results in Figures 3 
to 10, it is not too difficult to get an overall 
picture of what potential benefits one may 
get by using HELS to reconstruct radiation 
patterns in practice. These benefits are 
summarized in Table 1. Basically, at low 
frequencies with 0 < ka ≤ 1, we can expect 
extremely high accuracy in reconstruction 
using HELS method. At mid frequencies 
with 1 < ka ≤ 5, the accuracy in 

reconstruction using HELS is still very high. 
At high frequencies with 5 < ka ≤ 25, we 
need increase the expansion index n and 
expansion terms in HELS formulations and 
measurement points in order to maintain 
certain level of accuracy in reconstruction 
and get all side lobes right. The total 
measurement points needed by HELS 
method are substantially less than those 
required by AES Standards however. 
Therefore, the HELS method enables one to 
get an accurate description of radiation 
patterns in a very cost-effective manner. 

5. CONCLUSIONS 

The HELS method enables one to 
reconstruct radiation patterns from a non-
spherical source both accurately and 
effectively. The errors in the input data will 
have some effect but not substantial. In other 
words, HELS is quite robust. This is because 
the results have been regularized and errors 
have been minimized by the least squares 
method. The most significant result of this 
study is that HELS can produce accurate 
results with much fewer measurement points 
than those required by AES Standards. 
Therefore, it can become potentially a cost-
effective method for visualizing the 
radiation pattern of a speaker. 
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M 

ka 

M = 210 

90% reduction 

M = 310 

85% reduction 

M = 410 

80% reduction 

10 ≤< ka  negligible error negligible error negligible error 

51 ≤< ka  maximum error 

< 0.1dB 

maximum error 

< 0.1dB 

maximum error 

≈ 0.0dB 

255 ≤< ka  maximum error 

< 1.3dB 

maximum error 

< 1.0dB 

maximum error 

< 0.7dB 

Table 1. Reduction of measurement number by using HELS method 
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Figure 1. Schematic of a rectangular plate with a width d1 = 45mm and length d2 = 160mm. 
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Figure 2. Schematic of the measurement points on a hemispherical surface of radius 1m. For clarity, only one 
quadrant of this hemispherical surface is shown. 

Figure 2. Schematic of the measurement points on a hemispherical surface of radius 1m. For clarity, only one 
quadrant of this hemispherical surface is shown. 
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Figure 3. Comparison of the reconstructed radiation patterns and theoretical ones in a linear scale projected onto the 
y-z plane at center frequencies of 1/3-octave bands from 250 to 6268Hz (left to right). The reconstructed radiation 
patterns using HELS method are shown in the 1st, 3rd and 5th rows, and the theoretical radiation patterns using Eq. 
(5) are shown in the 2nd, 4th and 6th rows. 
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Figure 4. Comparison of the reconstructed radiation patterns and theoretical ones in a linear scale projected onto the 
y-z plane at center frequencies of 1/3-octave bands from 7896 to 16000Hz (left to right). The reconstructed radiation 
patterns using HELS method are shown in the 1st row, and the theoretical radiation patterns using Eq. (5) are shown 
in the 2nd row. 
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Figure 5. Comparison of the reconstructed radiation patterns and theoretical ones in a linear scale projected onto the 
x-z plane at center frequencies of 1/3-octave bands from 250 to 16000Hz (left to right). The reconstructed radiation 
patterns using HELS method are shown in the 1st, 3rd and 5th rows, and the theoretical radiation patterns using Eq. (5) 
are shown in the 2nd, 4th and 6th rows. 
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625 Hz 497 Hz 395 Hz 314 Hz 250 Hz 

625 Hz 497 Hz 395 Hz 314 Hz 250 Hz 

1977 Hz 1570 Hz 1247 Hz 990 Hz 786 Hz 

1977 Hz 1570 Hz 1247 Hz 990 Hz 786 Hz 

6268 Hz 4976 Hz 3951 Hz 3136 Hz 2490 Hz 

6268 Hz 4976 Hz 3951 Hz 3136 Hz 2490 Hz 

16000 Hz 12532 Hz 9947 Hz 7896 Hz 

16000 Hz 12532 Hz 9947 Hz 7896 Hz 

Figure 6. Comparison of the reconstructed radiation patterns and theoretical ones in 3D with dB scale at center 
frequencies of 1/3-octave bands from 250 to 16000Hz (left to right). The reconstructed radiation patterns using 
HELS method are shown in the 4 odd rows, and the theoretical radiation patterns using Eq. (5) are shown in the 4 
even rows. 
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Figure 7. Comparison of the reconstructed radiation patterns and theoretical ones in 3D with dB scale but projected 
on the y-z plane at center frequencies of 1/3-octave bands from 3951 to 16000Hz (left to right). The reconstructed 
radiation patterns using HELS method are shown in the 1st and 3rd rows, and the theoretical radiation patterns using 
Eq. (5) are shown in the 2nd and 4th rows. 
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Figure 8. L2-norm errors in reconstructed radiation patterns versus frequency at different number of measurement 

points M. 
22

/ ttrM
PPPE −=N

. is the reconstructed acoustic pressure;  is the theoretical pressure at 

the same location; M is the measurement number; and N is the reconstruction number. 
rP tP
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Figure 9. Comparison of reconstructed radiation patterns at 6268Hz with different amount of random errors 
embedded in the input data. σ is the standard deviation in Gaussian white noise. 

AES 121st Convention, San Francisco, CA, USA, 2006 October 5–8 
Page 18 of 19 



Lu and et al. High-Accuracy Polar Measurements
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Impact of the index n in expansion on the reconstructed radiation patterns at 12532Hz. As the index n 
increases, more expansion terms are used in the HELS solutions and more side lobes can be recovered.
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