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5. APPLICATIONS 

The results of the previous sections will be 
illustrated here by obtaining the wave equations 
and outgoing wave admittance relations for 
conical, exponential, and Bessel horns in the 
reference shape with a straight axis and circular 
cross section. The hyperbolic horn will be treated 
in somewhat greater detail. 

The use of the synthesis relations will be 
illustrated by investigating what other horns 
have the admittance characteristics of the conical 

horn. A new family of horns obtained by further 
use of the synthesis relations will be treated in a 
subsequent paper. 

To begin consider the conical horn of Fig. 3. 
In the reference shape the diameter is expressed 
as a function of x, the distance from the vertex, 
by d=dt(x/xo) where x0 is the vertex to throat 
distance; hence p=a. Since p" is zero, the wave 
equation is F"+•2F=0, whence A=I, 
q=#, /9=l+(1/j•a); and finally at the throat 
where a= 1, /9t=l+(l/j•t). The equivalent cir- 
cuit at the throat is as shown in Fig. 4, in which 
the elements are independent of frequency and St 
is in square inches. The frequency f0 is the 
reference frequency c/2•'xo = 2155/xo, x0in inches. 

For the exponential horn in Fig. 5, define 
d =d• exp (x/xo) where x0 fixes the scale of axial 
length; at x=xo, d=d•exp(1)=(2.718...)d•. 
Thus o=expa and since o=a'=p ", the wave 
equation is F"+(# 2-1)F=0 for which the solu- 
tion is A = 1, • = (#z_ 1)L Hence ;t = [1 - (1/t•) ] • 

+(l/j#) =tit, and the mechanical circuit at the 
throat (or = 0) is as in Fig. 6. Note the variation 
of the resistive element with frequency; by com- 
paring this expression with those from electrical 
filter theory, it is seen that this variation is 
that of the mid-shunt image impedance of a 
constant-K high-pass filter. This behavior per- 
mits the exponential horn to maintain its input 
resistance constant over a greater range than 
does the conical horn of same length and terminal 
diameters. 

From the expression for ti it is seen that the 
admittance is independent of the position of the 
throat, except for the scale factor of area. Thus 
the infinite exponential horn may be cut off at 
any section without disturbing the frequency 
dependence of the throat admittance. In horn 
loudspeaker development work this is useful 
since it permits adjustment of the throat size 
and therefore the load on the electromechanical 

motor with little change in the frequency charac- 
teristics of the load. This corresponds to the 
action of an ideal transformer. 

The reference frequency f0 is also the cut-off 
frequency, since below #=1 the coefficient of 
F (K •) becomes negative. In this region of non- 
transmission the circuit of Fig. 6 must be modified 
to take account of the absence of the real part. 
This leads to a single mass-like element of me- 
chanical reactance 267St[-(1/t•)-((1/t•Z)-l)•-], 
S, in inches. 

Of some theoretical importance are the Bessel 
horns u defined by S= S•(x/xo)" or p = eon. Thus 
the F equation is 

F" + [-• - (n(n - 2)/4az) ]F= O, 

whose solution is 

? = +J( - 3, 

in which the J and N are the two independent 
solutions of Bessel's equation. From (3.5) the 
admittance may be evaluated, yielding the ex- 
pressions obtained by Ballantine in the reference 
just cited. The significance of the Bessel horns 
lies in the fact that they bridge the gap between 
the conical (n=2) and exponential types. If 
various Bessel horns are fitted to the same 

throat and mouth diameters and length, then it 

n S. Ballantine, J. Frank. Inst. 203, 85 (1927). 
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Fro. 3. Throat portion of infinite conical horn. 

has been shown TM that as n increases xvithout 

limit the shape and admittance characteristics 
of the exponential horn are approached. 

As an example of the application of the plane 
wave analysis presented in Sections 2 and 3, let 
us consider the behavior of the hyperbolic horn 
reported by Freehafer. ? The contour of the 
reference horn is given by (d/d,) •- (x/xo)•= 1, 
where d/2 is Freehafer's • and x his g. See Fig. 7; 
note that when x = x0, d = (2) ida. Thus p = (1 + a ø-) t, 
and the F equation is 

F"+ [• r•- (W(• + d')") IF = 0, 

which is not soluble in terms of elementary 
functions. However, note that for • < 1/(l+a•), 
the coefficient of F changes sign and becomes 
negative. Thus at the throat, where a=O, the 
region of the transmission lies above •=1. 
However, there is no sharp cut-off, since the 
coefficient is a function of •. Since p' is zero at the 
throat, the susceptance is a = - (1/•)(--A'/A). 
Now it is probable that the conductance will be 
small since it depends on q, the rate of change of 
phase, which decreases rapidly in the region of 

42.7 S•. 

FIG. 4. Equivalent circuit at throat of infinite conical 
horn. The units are grams, square inches, cycles per second, 
and mechanical ohms. 

•z C. R. Hanna, J. Frank. Inst. 203, 849 (1927). 

FIG. 5. Throat portion of infinite exponential horn. 
½ =2.718- ß -. 

non-transmission. The net result is that the 

equivalent series resistance will probably have a 
maximum near •= 1, falling rapidly below that 
frequency. 

To obtain a more quantitative picture of the 
behavior of the hyperbolic horn, numerical in- 
tegration (as described in the appendix) was 
employed, taking •*-=0.25, 0.50, 1.00, and 2.00. 
The integration was begun at a value of a such 
that the relation 1/(1 q-ai) • <.005t• -• was fulfilled; 
and the interval/•ot of integration was such as to 
ensure about a hundred points per "wave- 
length." It should be mentioned that these limits 
are much too stringent in view of the approxi- 
mate nature of the fundamental assumptions; a 
more rational set would be starting at 1/(1 +a•) • 
<.05, •, and using about 20 points per "wave- 
length." 

The function F=u--jv for starting the in- 
tegration was obtained from the sinusoidal solu- 
tion for F"-t-•-F=0 at the initial values of ot 
well removed froin the throat. The integration 
was carried one step past the origin in order to 
be able to calculate u'(0) and v'(0). The throat 
admittance was then obtained by substituting 

m • R- 42.?S.• 267St 

fo D-' 

o 

Fro. 6. Equivalent circuit at throat of infinite exponential 
horn. The units are grams, square inches, cycles per second, 
and mechanical ohms. 
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the appropriate functions into Eq. (3.15). In 
order to compare the results with Freehafer's, the 
admittance was first inverted to the series im- 

pedance, which is Rs+jX, in mechanical units. 
Then the abscissa was transformed from Free- 

hafer's 2ra/X = •rdt/X =g tan 00, 00 being the half- 
angle between the asymptotes to the hyperbolic 
contour. The resulting comparison is shown in 
Figs. 8 and 9, the curves being those calculated 
by Freehafer ;7 the coordinates are his. It is seen 
that the agreement is only fair, indicating that 
the numerical integration need not be too de- 
tailed. The plane wave equation for the hyper- 
bolic horn differs but little from that for Free- 

hafer's first radial function; hence the discrepancy 
is due almost entirely to the variation of sound 
pressure transverse to the axis of the horn, which 
in the exact theory introduces functions of 00 
into the impedance. 

Another comparison between the plane wave 
theory and the experimental results is afforded 
by the variation of axial sound pressure along 
the horn as given by Eq. (3.21) for the resultant 
pressure when both transmitted and reflected 
waves are present. Figures .10 and 11 show the 
experimentally determlned is points for the 15 ø 
hyperbolic horn, compared to the curves as 
calculated using Eqs. (3.23) and (3.25). Other 
reference dimensions for the horn were dt = 3.06" 

and x0=5.70"; from the latter f0=378 c.p.s. 
Note that the area factor in the pressure has 
been removed by plotting not P but the product 
P(l+a•) •, thus yielding the absolute value of F 
for the essential variation. The constants ½ and • 
were determined from these amplitude-axial dis- 
tance curves by choosing the pair of values 
causing the experimental and calculated points 
to agree near the first maximum in the curve. 
This same pair of values was then used for the 
phase-axial distance curves, affording an inde- 
pendent check. It is seen that the agreement is 
good for the frequencies used; at higher values 
of the frequency parameter g = kxo = kdt/2 tan 00 
it was found that the surfaces of constant phase 
in the horn were still regular, but the pressure 
amplitude distribution displayed such complexity 
that the axial pressure was no longer representa- 
tive of that across each section. 

•s V. Salmon, Massachusetts Institute of Technology 
Physics Ph.D. Thesis (December, 1938). 

As a last example consider the following 
problem in the synthesis of a horn. Using the 
conical horn admittance components, what other 
horns have similar conductance or susceptance 
functions ? 

First, given •=- 1/ga. Insert this into (4.3), 
yielding for the conductance T;-bgea?(1 _?2) = 0. 
It is easily seen that ? = 1 is one solution, corre- 
sponding to the conical horn. By a quadrature 
there is also obtained ?=I/[-I+D exp (ga) 2-] 
where D=D(g) is the constant of integration. 
When this is substituted into the shape-con- 
ductance Eq. (4.5) it will be found that only for 
D=0 is the coefficient of p independent of g. 
This again yields ? = 1 as the only solution per- 
mitting a realizable horn. 

To work the other way, insert the conductance 
• = 1 into Eq. (4.3), leaving (a'/•) -go = 0, whose 
solution is a=-1/[-ga+E(g)-]. Now, at zero 
frequency no wave energy is being transmitted 
so all of the impedance is reactive. For useful 
horns this reactance is always mass-like, corre- 
sponding to infinite negative susceptance at zero 
frequency. Hence E(g), the integration constant, 
must be zero, yielding the conical horn sus- 
ceptance -1/ga. Thus only the conical horn 
has admittance components in the forms given. 

Many other admittances may be tested in the 
same manner. In a succeeding paper it will be 
shown that one practical form leads to a new 
family of horns having useful throat impedance 
characteristics. 

Thus in this section the analysis and the 
synthesis relations have been applied to various 

½) 

Fro. 7. Throat portion of infinite hyperbolic horn. The 
symbols in parentheses are those of Freehafer (reference 7). 
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FIG. 8. Series resistance at throat of infinite hyperbolic 
horn. Curves from Freehafer (reference 7). Circles and 
triangles, plane wave calculations for 15 ø and 30 ø horns, 
respectively, from Eq. (3.15). 
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FiG. 9. Series reactance at throat of infinite hyperbolic 
horn. Curves from Freehafer (reference 7). Circles and 
triangles, plane wave calculations for 1S ø and 30 ø horns, 
respectively, from Eq. (3.1.5). 

horns to illustrate the tmifying action of the 
theory. 

SUMMARY 

In this paper plane wave horn theory has been 
generalized and unified so as to aid in quickly 
estimating the performance of a given horn, and 
to permit some degree of selection and synthesis 
of horns for a specified performance. Features of 
the analysis are the use of dimension less variables, 
the selection of admittance as the pertinent be- 
havior parameter, and the obtaining of relations 
among the admittance components and the 
shape parameter. 

PHASE 
•AJ 

I 

AMPLITUDE/ • 

2 4 õ S 

FIG. 10. Pressure P exp (--jO) along axis of 15 ø finite 
hyperbolic horn. Throat diameter 3.06", mouth diameter 
38.1", length 70.9". Frequency parameter t• =fifo= 191/378 
=.505. Circles by experiment, curves from Eqs. (3.23) 
and (3.25). 

6. APPENDIX 

Numerical Integration 

It is desired to integrate Eq. (2.6) when two 
initial values are known. The method developed 
is based on the work of Harttee t4 and Manning 
and Millman2 s The starting point is the expan- 
sion for the second finite central difference of a 
function in terms of the second derivative and 
its even finite second differences. This is 

a:F= [F"+(a•'F"/12) 
+(•F"/240)+-..](•a) •, (6.1) 

where b • is the nth order central difference and 

•Ja is the increment of the independent variable. 
Now if /Ja is chosen small enough the last term 
in the right-hand member will be small compared 
to the others, which may be satisfied by using at 
least 20 inte•,als per "wave-length" for the 
integration. In any event, it is easily tested by 

l• D. R. Harttee, Mere. and Proc. Manchester Lit. and 
Phil. Soc. ??, 91 (1933). 

• M. F. Manning and J. Millman, Phys. Rev. 55, 673 
(1938). 
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performing the differencing on the function used 
to get the initial values. 

Using the approximation with two terms in 
the right-hand member we first substitute for 
b•F the expression Fn-x • 2Fn-F F•+• obtained by 
differencing the sequence of functions F arranged 
in order at the equal intervals •ot; secondly, 
i•2F" is replaced by F,•_x"--2F,/'-FF,,.•"; and 
finally for each F" is substituted the appropriate 
-- K2F. This yields a relation in F•+•, F•, and F•_• 
and produces the following approximate re- 
cursion formula for F•.t: 

t0K - 
F•+•= , (6.2) 

N+K,,+t • 
where 

N• 12/(8ot) •. 

For the integration the functions in paren- 
theses may be computed beforehand for the 
whole range of integration. This offers no diffi- 
culties when/C • is given analytically; but when 
the horn contour is known only as a table of 
values, it will be necessary to select a reasonable 
x0 (as noted in Section 2) and to recast the table 
into 0 as a function of or. Then the 0"/0 are 
obtained for each or. In view of the assumptions 
involved in the plane wave theory, this could 
well be done graphically. A convenient sequence 
of columns for the actual integration is a, 
2N--10K a, N+K •, and F. 

Since the first derivative is needed in the 

admittance relations, it is necessary to integrate 

F•. 11. Pressure P exp (-jO) along axis of 15 ø finite 
hyperbolic horn. Frequency parameter •-258/378- .682. 
Dimensions as for Fig. 10. Circles by experiment, curves 
from Eqs. (3.23) and (3.25). 

one step past the throat position in order to 
use the following approximate expression for F'. 

2/iot 

q---[K,•+•-F,•+x-K,•_?F,,_•]. (6.3) 
12 

This is based on the relations given in Hartree2 • 
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