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Abstract

Inrush current in transformer is often gets less importance compared to other
effects/faults. Though the magnitude of inrush current may be in some cases less
than compared to short circuit current, the frequency and duration of inrush current is
generally more frequent, hence it will likely have more adverse effect compared to
other faults. Inrush current may flow when transformer is energised. The amount of
inrush current depends on when in the voltage cycle the transformer is energised and
residual flux in the transformer. The other type of inrush current is sympathetic
inrush current which flows in already energised transformer when another
transformer is energised in parallel connected line.

This report contains basic principle, fundamental theory and relevant laws of the
transformer and inrush current. A number of factors affecting inrush current are
discussed. The inrush current theory and their equation are derived. The effects of
inrush current are described in brief. As a part of this project a number of effects and
factor affecting inrush current are considered for simulation. The Matlab Sim-Power
system is used for the simulation. The simulation results compared with each other
and also data available from actual same size transformer. Finally six solutions to
inrush current mitigation techniques with a practical low cost answer are provided.
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Abbreviations

AC: Alternating Current

AVR: Automatic Voltage Regulator

CB: Circuit Breaker

CT:  Current Transformer

CB: Circuit breaker

DC: Direct Current

GCB: Generator Circuit Breaker

IEEE: The Institute of Electrical and Electronic Engineers
kA:  kiloampere = 1000 amps

MVA: Mega volt-ampere

A= Areaof coil in m2
B = magnetic flux density in tesla or wh-mz2,
B

m= maximum value of flux density in the core in weber/meter2
By=normal rated flux density

Bgr= residual flux density

Bg=  saturation flux density

F= mmf,

H = magnetic field strength in oersteds or A/m2,
| = current in amperes

J= current density

K,= constant for 3 phase winding connection
K,=  constant for short circuit power of network
= air core inductance

= magnetic path length in meter.
= number of turns

=  permeance.

=  total dc resistance

2= Neutral earthing resister

= reluctance in At/Wb,

t= time

to=  core saturation point

Vmax = Maximum voltage

Xopen=0pEN Circuit positive sequence reactance of the transformer

Z,= total impedance under inrush

Ho= permeability of air in H/m,
Hr = permeability of material in H/m,

¢ flux

On = maximum value of flux produced in the core in weber

0= Angle between coil and lines of field in degree

T= time constant of transformer winding under inrush conditions
@=  energization angle
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1. Introduction

Transformers transform electric energy. There are varieties of transformer and used
for many different purposes. They are nearly inbuilt into every electric/electronic
device around us. Power transformers are essential components in power systems.
The large power transformers are considered to be important and very expensive
asset of electric power systems. The knowledge of their performance is fundamental
in determining system reliability and longevity. Potentially disruptive transient
condition may occur when an unloaded transformer is connected to the power
system. Transient inrush current is often considered less important compared to other
effects/faults in the transformers. (Rahman et al 2012) The objective of this report is

to understand the factor affecting the inrush current and effects of inrush current.

There are five key parts of this report. The second and third part comprehends the
background and relevant literature review. The background contains fundamental
principle, basic theory and relevant laws. The construction of transformer including
winding configuration, hysteresis effect and circulating current are also described in
the background. Literature review is the third part, it mainly contains the theory of
inrush current, factor affecting inrush current and their effect. The methodology
describes methods of how the key practicals will be performed. The list of key
selected simulation scenarios are described here. The technical specification of same
sized actual transformer and their data is presented for comparison with simulation

results. Sim-power-system of Matlab Simulink was be used for the simulation.

The result and discussion of model building and simulation are listed in section five.
Here, the six selected scenarios are described with brief description of key difference
of the models and results. Finally in section six the conclusion with a practical low

cost solution to inrush current is recommended.

The relevant information was sourced from varieties of resources. Majority of the
references are from the relevant research, conference and journals of Institutes of
electrical and electronics engineering. Significant parts of citation weree derived
from professional printed books. A number of figures and photos are sourced from
reputed internet sources such as manufactures, professional body, research institutes
and universities. The appendix contains project time line chart and relevant project

supporting information.
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2. Background

Transformers are passive devices for transforming voltage and current. A
transformer is a static electrical device. The energy is transferred by means of
winding’s inductive coupling via core. They are among the most efficient machines,

95 % efficiency being common and 99% being achievable.

Transformer are available and being manufactured in varieties of sizes and
configurations. They are found in tiny microphone to large step up/step down power
system distribution. They are found in most of electrical/electronic devices around

us. Transformers are vital part of electric power system.

The alternating current flowing through a winding produces alternating flux in the
core. This alternating flux links with other winding of same transformer and

produces electromotive force(emf) or voltage in these windings

It is important to understand the basic principles and common laws in beginning. In
this section in beginning common characteristic and their formulas are described.
Equivalent circuit, transformer types and their winding configuration, Eddie current

and hysteresis effect etc. are briefed in short explanations.

2.1 Flux

Flux is defined as a rate of property per unit area. It is a vector quantity. Fluxes are
like lines in space. These flux lines or lines of force, show the direction and intensity
of the field at all points. In magnets the field is strongest at the pole, it’s direction is
from N to S (externally) and flux lines never cross. (Georgolakis 2009)The symbol

for magnetic flux is¢. The equation of flux can be expressed as,
¢ =BAcos 4
Where ¢=Flux in weber or Tesla-meter?,
B=Magnetic flux density in Tesla,
A = Area of coil in m?, and

6= Angle between coil and lines of field in degree.
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Side view

B

NO field lines pass
through the coil

0=0° 0= 180°

& = BA ® = -BA ®=0 ¢ = BA cos @

Figure 2.1 :Equitation of flux (Hsu NDT)

2.2 Magnetic field intensity

An object in presence of external magnetic field produces force. As a result it lines
up in the direction of field. The magnetic forced produced in the object is called
induced magnetisation. The strength of magnetic field is called magnetising
field(H)(Flanagan 1992). Magnetic field intensity is also known as magnetising
force, is denoted by H and measured in A/m?. The equitation of magnetic field

intensity is,

Where H = magnetic field strength in oersteds or A/m2,
N = number of tutns,
I = current in amperes, and

¢ = magnetic path length in meter.

2.3 Magnetic flux density

As per name the magnetic flux density is an amount of magnetic flux per area right
angle to the flux (Devki Energy Consultancy 2006). It is denoted by B and unit is

Tesla or Wb m?. The equitation of magnetic flux density is,
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NI

B= Hoky 7

Where B = magnetic flux density in tesla or wb-m2,

Ho = permeability of air in H/m,

Hr = permeability of material in H/m,
N = number of conductor,
| = current in ampere, and

¢ = length of conductor in meter.

2.4 Reluctances

Reluctance in magnetic circuit is same as resistance in electric circuit. Reluctance
varies depending on material of core. Reluctance is opposition force that opposes the
flux flow in the magnetic circuit. It is inversely proportional to the permeance

(Gardner & Stevenson 2003). In equation form,

Mot A P

Where R= reluctance in At/Whb,

¢ =length of conductor in meter,

Ho = permeability of air H/m,

Hr = permeability of material in H/m,
A = cross section area in m2, and

P = permeance.
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2.5 Magneto motive force (MMF)

Magneto motive force is magnetic potential. It is analogous to electromotive force or
voltage. It is a motive force that produces flux. Ampere-turn is a standard unit of
magneto motive force. (Georgolakis 2009) The MMF creates a magnetic field in the
core having an intensity of H ampere-turns/meter alone the length of the magnetic

path. Hence,

IWM:IH%:Ni

Where mmf = Magneto motive force,
H=NI//,
¢ = Length of conductor,
N = Number of coil turns, and

i = Current in the coil.

2.6 Ampere’s law

This is Ampere’s law which sate that the mmf proportional to the flux ¢, is
proportional to the inductor coil current and to its number of turns. Hence, according

to Hopkinson’s law, Georgolakis 2009
F=R¢ or F=¢/P
Where F = mmf,
R = reluctance,
¢ =flux, and
P = permeance.
Mathematically it can also be proven as below,

¢=BA
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= 1HA (*B=4H)

=H— A (H=NI/2)

01 pA ('.'mmf:NI)

2.7 Faraday’s law

Whenever there is change in the fluc linking with a coil, electro motive force is
induced in the coil. Change in flux linkage can be obtained by two ways, Coil is
stationary and there is change in flux. (Gardner & Stevenson 2003)This will produce

the statically induced emf.
Flux is constant and the coil rotates. This will produce dynamically induced emf.

The statically induced emf is convers electrical energy to electrical energy only. The
first applies to transformer where no moving parts are present however, the
continuous change of flux produces the emf. The send applies to generator where
coils are stationary and flux remains constant. Note that in AC generator, even
though field winging are rotating the actual flux is constant as supply on of the field
is DC. The rotation of constant flux which links with stationary stator winding

causes emf.

The faraday’s law can be expressed by following equitation,

e-—N%
dt

Where, e = emf
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N = number of turns

d¢

dt = change in flux with respect to time

The emf produced is proportional to the linkage of coil turns and also rate of change
of flux linkage. The statically induced emf is convers electrical energy to electrical

energy only.

2.8 Magnetic/electric circuit equitation

Flux density is line right angle flux in given unit area. The SI unit is weber/meter? or

tesla. The equation of maximum flux density is,

Where B - maximum value of flux density in the core in weber/meter?
On = maximum value of flux produced in the core in weber

A area of cross section of core in meter?

The value of flux becomes zero to

@, when timeis L
4 4f

In terms of transformer the average value of emf induced in a turn of conductor is
(Kulkarni & Khaparde 2004)

_ change in flux
time
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Now form factor = M =111

Averagevalue
. RMS emf =1.11x Averagevalue
. RMSemf =1.11x 44, f
. RMSemf =4.44¢ f

For N conductor,

~E=4.44¢ N

~.E=4.44B_AfN (w4 =B.A)

Magnetic Symbol Unit | Electrical Symbol Unit
Magnetic flux ) Wb | Electric current I A
Magneto-motive F— J‘ H.dl | At Electro-Motive e= J E.d |V
force (mmf) force (emf)

Reluctance R 1/H | Resistance R Q
Hopkinson’slaw | F=®-R Ohm’s law c=1-R

Permeance P=1/R H Conductance G=1/R Qt
Permeability M H/m | Conductivity o Q/m
Magnetic field H A/m | Electric Field E Vim
Flux density B H/m | Current density J A/m?
Relation between | B = - H H/m | Microscopic Ohm’s | J=¢-E Alm?
B&H law

Table 2.1 Comparison between magnetic and electrical circuits (Physical process modelling NDT)

2.9 Equivalent circuit

Transformer has windings called primary and secondary. Primary winding is the one
which get the electrical energy input and output is transformed in secondary. There
are many different types of transformers however, here we will mainly discuss
power transformers. Depending on core design the transformers are identified in
manly two categories known as core type or shell type transformers. In core type
transformers, winding encloses whole core where, in shell type transformers the core

encloses the windings.
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Transformer works on the principle of electromagnetic induction. Figure 2.2 shows a
single phase transformer with two coils with no load on any of its winding. The
winding are wound on core which becomes magnetic with alternating current
flowing in the winding. The primary winding is connected to source of which
alternating voltage V1 supplied. In beginning small excitation current flows i0 flows
through this winding. As this current is alternating mutual flux is induced in core
(Gardner & Stevenson 2003). The primary and secondary winding contains N1 and
N2 turns respectively. The instantaneous emf in primary winding caused by mutual

flux is,

dg

:N—
€ 14t

With assumption of zero resistance of winding,

g -
Vi~ Gl e =

E R

Primary Secondary

= 7
// ) //

Figure 2.2: Transformer at no-load condition (Kulkarni & Khaparde 2004)

Since the voltage of primary winding v1 is, v, Sinat, sinusoidal varying, the flux ¢

must also vary with at the rate of at.

¢ =¢,Sinat
Where [ mutual flux

P = pick value of mutual flux

w =2

Now substituting value of Pin equitation of elwe get,
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N, d (g, sin wt)
dt

=N, o (¢, cos wt)

=N, w ¢, cos wt

€ =

S8 = N, 0@

_No
7 P
= 2_7[ fN1¢m

J2

° elrms

e, =444 N, g

This equitation is known as emf equitation of a transformer (Kulkarni & Khaparde 2004).
The amount of flux and its density is determined by supplied voltage where number

of turn and frequency are considered as constant. Because ¢, maximum value of flux

is flux density times the area which is constant hence,
I =By A
Where ¢,, = maximum value of flux produced in the core in weber
B,, = maximum value of flux density in the core in weber/meter2
A = area of cross section of core in meter2

Also the voltage induced in the secondary winding due to mutual flux ¢ linkage is,

dg

e, =N, ot

Similarly the induced voltage in secondary winding is,

o6, =444 N, g,

Therefor the ratio of induced voltages, e; and ey, is,

=— =g =TurnsRatio
2

a_N
)
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At this instance, no load condition as there is no load on secondary winding, the

current in primary wining is ip. There are two components of no load primary current
io,
1) i,=i,c086,

This part is called active component. It consists of iron loss (hysteresis &

eddy current loss) and primary winding copper loss.
2) i,=i,sing,

This part is called the reactive component or the magnetising component. The

alternating flux in the core is produced by this component.

Here i, =,/i2 +i’

V7

v, !

\JGG

E, o

Ea
Figure 2.3: Phaser diagram of transformer at no load (Gardner & Stevenson 2003)

When secondary winding of the transformer is connected to the load, secondary
current I, flows. This current (I,) lags the secondary voltage V, by ¢, .The cosd, is
the power factor of the load. (Gardner & Stevenson 2003) According to Len’z law
due to this current I, flux ¢,is produced in the core, which opposes the flux ¢

produced by primary winding.

So the net flux in the core tries to reduce. But the primary winding tries to maintain
the flux so the primary winding draws more current from the supply and keeps the
flux as before. Thus due to the current I, flowing in the secondary winding,
balancing current I’; flows through the primary winding. This current I’ is 1800 out

of phase by current I,. Now, two currents flow through the primary winding-I, and
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lo. The vector sum of both the currents is called the primary current ;. This is shown

in figure 2.4 and 2.5 as below.

Figure 2.4; Transformer on load

For resistive load For inductive load

Figure 2.5: Phaser diagram of transformer on load

In actual transformer the primary winding has resistance, which is denoted by R;.
Similarly, the secondary winding resistance is denoted by R,. (Flanagan 1992)
Actually, both these resistances are the distributed in nature but for simplicity, these

are shown as lumped resistance in following figure.

The total flux produced by the primary winding does not link with the secondary
winding but some flux complete its path through air without passing through the
core. This is called the primary leakage fluxg, ,. Due to this leakage flux emf is
induced in the primary winding which opposes the primary voltage. To account for
this effect, it is assumed that the primary winding has reactance and the voltage drop
occurring in this reactance is equal to this emf. (Flanagan 1992) This leakage

reactance is denoted by X, ,. Similarly, the total flux produced by the secondary

winding does not link with the primary winding and some flux completes the path

through air. This is secondary leakage flux ¢ ,. Due to this leakage flux

electromotive force is induced in the secondary winding. This emf opposes the

induced emf due to the main flux. (Gardner & Stevenson 2003) This effect is
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indicated by the secondary leakage reactance X,,. The figure 2.6 shows the

resistance and reactance of the primary and secondary windings and figure 2.7 vector

diagram.
Ii
Rx X 1 N 2 N RZ XL2
R s W20 mo PS e AmO——0
| winding winding
0 = -
——— @1z Mainflux—
h L o~
g 5 ou O 3
\/r E x‘: P Y 1 Y \/2
RW X“ ! :: X j Leakage - 3 Ez
G ; 3 ﬂuxi . B
ST Erom)
O O

Figure 2.6: equivalent circuit diagram of a transformer

Figure 2.7: Transformer phaser diagram for lagging and unity power factor

2.10 Types of transformers

The transformers are classified mainly depending upon the geometry of the winding
and core. There are two main types of this classification. (i) core-type transformer

and (ii) shell-type transformer. (Devki Energy Consultancy 2006)

(i) Core-type transformer. The core type transformer design is shown in figure 2.8.

The primary and secondary wining are overlapped depending on the voltage
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structure. Such design improves leakage flux (Farzadfar 1997). Generally the low
voltage winding are first wound and high voltage winding are wound on the top of
LV winding. This ensures the HV winding away from core as core is earthed.

Visually core are sounded by the coils. Such design has single magnetic/flux paths.

Primary and Secondary

3. 3-leg Core Windings 39, 5-leg Core
e == == =,
|I | | |
l I |
l g |
|| I I
= 1= )
Core-type Construction Magnetic ; Shell-type Construction

Lines of Flux

Figure 2.8: Core and shell type transformers winding and core arrangements (Storr 2013)

(ii) Shell-type transformer. The shell type transformer design are as sown in figure
2.8. The winding configuration is same as core type. They contains five limb/legs.
The visually coils are surrounded by the cores. In this design there are double
magnetic/flux paths and hence it acts as low-reluctance (Li et al 2010).

# Core type Shell type

1 | The winding encircles the core The core encircles most part of the winging

2 | The cylindrical type of coils are used Generally, multilayer disc type or sandwich coils are used

3 | Aswindings are distributed, the natural cooling As winding are surrounded by the core, the natural cooling does not
is more effective exist.

4 | The coil can be easily removed for maintenance For removing any winding for the maintenance, large numbers of

laminations are required to be removed.

5 | The construction is preferred for low voltage The construction is used for very high voltage transformers
transformers

6 It has a single magnetic circuit It has a double magnetic circuit

7 In a single phase type, the core has two limbs In a single phase type, the core has three limbs

Table 2.2: Differences between core and shell type transformers (Your electrical home, 2011)

The choice of type (whether core or shell) will not greatly affect the efficiency of the
transformer. The core type is generally more suitable for high voltage and small
output while the shell-type is generally more suitable for low voltage and high

output.
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2.11 Three-Phase Transformer

A three phase power transformer are mostly used in transmission and distribution of
electric power. The three phase transformer can be built by building a three phase
transformer or using bank or three single phase transformers. The primary and
secondary winding are connected according to circuit requirement however,

generallyinY—-Y, A—A, Y—A, orA-Y.

2.11.1 BANK OF THREE 1 TRANSFORMERS

The three single phase transformer if connected in any of the three phase winding
configuration works as three phase transformer. The widely used connections are
Y—-Y, A—A Y—A, orA—Y. The figure 2.9 illustrates on left three single phase
transformer and on right a three phase transformer. The primary windings of both of
this arrangements are in star and secondary are in delta. This makes then ideal for

use in their place.

| [ [

Wl (R 24 Qe o
TW

o oy LS AL

Figure 2.9: Three single phase(left) and three phase transformer (right)

The primary and secondary windings shown parallel to each other belong to the
same single-phase transformer (on left). The ratio of secondary phase voltage to
primary phase voltage is the phase transformation ratio K. Phase transformation
ratio, K = Primary phase voltage / Secondary phase voltage. As discussed earlier in

emf equation the phase transformation ratio is K (= N2/N1).

2.11.2 3 TRANSFORMER

A three phase transformer contains common magnetic circuit. All of its winding are

would on core that acts as magnetic circuit. The basic three phase circuit
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arrangement is shown in figure 2.9. The figure 2.10 contains a three phase core type
transformer. This transformer has windings on each individual limbs but the
magnetic circuits end in common magnetic limb. The centre limb completes the
return flux path of each phase. The primaries as well as secondaries may be
connected in star or delta. If the primary is energized from a 3-phase supply, the
central limb (i.e., unwound limb) carries the fluxes produced by the 3-phase primary
windings (Sainz et al 2004). The instatineous vector summation in ideal condition is
always zero therefore the vector summation of flux should also be zero. Hence no
flux exists in the central limb and it may, therefore, be eliminated. This modification
gives a three leg core type 3-phase transformer. In this case, any two legs will act as
a return path for the flux in the third leg. For example, if flux is @ in one leg at some
instant, then flux is @/2 in the opposite direction through the other two legs at the
same instant. All the connections of a 3-phase transformer are made inside the case
and for delta-connected winding three leads are brought out while for star connected

winding four leads are brought out.

Primary and Primary and
Secondary Secondary

Figure 2.10: Three phase transformer

For the same capacity, a three-phase transformer weighs less, occupies less space
and costs about 20% less than a bank of three single-phase transformers. Because of
these advantages, 3-phase transformers are in common use, especially for large
power transformations. A disadvantage of the three-phase transformer lies in the fact
that when one phase becomes defective, the entire three-phase unit must be removed
from service. The three phase circuit in which three single phase transformers are
used the prime advantage is when a fault occurs in a winding other two phase’s
circuit can be left in service and defective transformer can be isolated for repair. The
only drawback is such arrangements are costly and management in terms of phase

load balance can be challenging.
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2.12 Three-Phase Transformer Connections

As describer in previous two sections, three phase circuit can be built using a single
three phase transformer of three single phase transformers. The connection in any
case of its primary and secondary will be same for same arrangement. The most

widely used connection arrangements are as shown in table 2.3

Primary Secondary
Transformer - .
Connection Line Phase Line Phase
(Primary to 5 -
Secondary) Volt. | Current | Volt. | Current | Volt. | Current | Volt. | Current
o *
. 3 I v \4 al
A-A v I v e = al = =
v v v
Y-Y v I == I o al — al
V3 2 V3a
v v v
Y-A v I - I — = — al
V3 V3a | v3al | 33
I Rv al A\ al
AY A% I AY e V3V = = =
3 a 3 a e

Table 2.3: Voltage and current ratings of common transformer winding configuration

The primary and secondary voltages and currents are also shown. The primary line
voltage is V and the primary line current is I. The phase transformation ratio K is

given by;
K=Vs/Vp=Ns/Np

2.13 Eddie current

The alternating flow of magnetic flux in core generates circulating current(by
Faraday’s law) in the core. This happens as core material behaves like short circuited
single loop of wire. This circulating current is known as Eddie current. (Flanagan
2004) Generally any magnetic core material is made of iron material due to its good
permeability. Iron is a good electric conductor and hence large circulating current

will be induced.

Figure 2.11: Eddy current (black) and current induced by the external magnetic field(red)
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The magnetic field generated by circulating current counter acts the main alternating
flux. The magnitude of circulating current depends on how strong the alternating
magnetic flux is and the conductivity of the core material. Eddie current generates
loss and acts as a counter efficient effect. It opposes the induced current which
generates loses and causes the resistance in flux path. It generates heats in the core

and reduces the efficiency.
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Figure 2.12: Circulating current in thick, medium and thin laminations (Elliott 2012)
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Figure 2.13: Induced Eddie current density of solid to sliced (1,2 &4) (Infolytica NDT)

It is not possible to completely remove the Eddie current in transformer, however, its
magnitude can be reduced significantly. The circulating current is proportional to the
thickness of the core material (magnetic path) hence if the thickness of the core
material is reduced (reduction of magnetic path) then the Eddie current is reduced.

Therefore transformer core are made of lamination instead of solid core.

The lamination loss can be predicted using two methods (Brauer et al 2000). One
way is to use manufacturer’s datasheets. The information of eddi current loss of
specific transformer are generally not available to users. Generally eddie current in
normal power frequency is built using standard thin lamination for less loss.
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However, for transformer that works on high frequency requires special core design

and material to reduce loss considerably (Brauer et al 2000).

2.14 Hysteresis effect

The hysteresis in magnetic material is generated by the resistance of grains against
the alternating flux required to magnetise the core. (Flanagan 1992) Heat in the form
of 12R generates due to grain resistance. This heat contributes to energy loss in the
magnetic material/ transformer. (Faiz & Saffari 2010) The rate of heat generation
depends on the resistance and excessive heat in core is harmful to winding insulation
we well as core lamination insulation. The hysteresis effect is inversely proportional
the frequency, meaning decrease in frequency will cause increase in hysteresis
losses. The transformer rated 60Hz, if operated at 50Hz will cause higher hysteresis
losses and decreases the VA capacity of the transformer.

Hysteresis loop (B-H curve) describes the characteristic of magnetic material. The

figure 2.14 presents the B-H curve,

B Flux Densit
y Saturation

Retentivity

(Residual Flux Density - Br) \

Coercivity

N

H

Magnetizing Force

-H
Magnetizing Force
In Opposite Direction

Saturation ;
A Flux Densit
In Opposite Direction -B in DpposileyDireclion

Figure 2.14: Hysteresis loop/ B-H curve (NPTEL, NDT)

This curve loop is developed by measuring flux when mmf(magneto motive force) is
alternating at given frequency. It will follow the doted like when H, magnetic force,
is increase for the material which has never been magnetised (no residual flux). The
curve shows that higher the magnetic force the greater the magnetic field is. At the

sharp tip of max H and B where most of magnetic domains are aligned is called
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saturation point. At this point onwards any increase in magnetic force will cause very
small amount of increase in flux density. Now if the curve is reduced zero current, it
Is apparent that the material still retains some magnetism, called residual magnetism.
(Bronzeado 1995) On reversing the current, the flux reverses and the bottom part of
the curve can be traced. By reversing the current again from bottom saturation point,
the curve can be traced back to top saturation point. The result is called a hysteresis
loop. (Flanagan 1992) A major source of uncertainty in magnetic circuit behaviour is
apparent: Flux density depends not just on current, it also depends on which arm of
the curve the sample is magnetized on, i.e., it depends on the circuit’s past history.
For this reason, B-H curves are the average of the two arms of the hysteresis loop.
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Figure 2.15: B-H curve for selected material
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3. Literature Review

This section contains the relevant theory to inrush current, factor contributing to
inrush current and finally the effect of inrush current. A number of possible
controllable factors are included in the contributing factors. Following is the
summary of the factor and effect associated with inrush current.

FACTOR AFFECTING INRUSH CURRENT

- Starting/switching phase angle of VVoltage
- Residual flux in core

- Magnitude of Voltage

- Saturation flux

- Core material

- Supply/Source impedance

- Loading on secondary winding

- Size of transformer

EFFECT OF INRUSH CURRENT
- High starting current
- Voltage distortion (harmonics)
- Sympatric inrush
- Vibration/geometric movement of winding

- Life of transformer

- Protection complexity - Actual fault v/s Inrush current

INRUSH CURRENT MITIGATION TECHNIQUES
- Asynchronous switching v/s Inrush Current
- Neutral Earthing Resister v/s Inrush Current

- Comparison of various methods
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3.1 Inrush current theory

When a transformer is energised from a standard power source it draws high starting
current which can be as high as 10 — 100 times of transformer’s rated current. This
current will starts to decay at the rate of effective winding resistance and will settle
down to steady state condition. The time to decay can be as long as few seconds.

This current is known as magnetising inrush current (Naghizadeh et al 2012).

Decay of this transient current is proportional to the series resistance of the
transformer winding. If resistance of winding is ignored, the flux offset will never
fall back to zero and inrush will continue. (Chiesa et al 2010) In a real transformer,
winding resistance will damp out the inrush. The decay time can range from a few
cycles up to a minute depending on the transformer size and relevant design

parameters.
Inrush current can be divided in to three categories (Vaddebonia et al 2012):
3.1.1 ENERGIZATION INRUSH

Energisation inrush current results from the re-energisation of the
transformer. The residual flux in this case can be zero or depending on de-

energisation timing.
3.1.2 RECOVERY INRUSH

Recovery inrush current flows when transformer voltage is restored after

having been reduced by system disturbance.
3.1.3 SYMPATHETIC INRUSH

Sympathetic inrush current flows when multiple transformers are connected
in same line and one of them is energised. Offsets inrush currents can

circulate in transformers already energised, which in turn causes a inrush.

It is possible to control or make the incurrent to near zero if it was possible to control
the switching time such that the supply voltage angle matches the exact normal flux
angle. Since the flux lags the voltage by 900, switching of voltage should occur at
the max value. Generally the flux in the transformer is zero (no remanent flux) and

hence switching to voltage when it reach to max value then corresponding flux in
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ideal condition should be near zero. This will be like ideal normal condition and

hence the normal current will flow in the primary. (Kulkarni & Khaparde 2004)
e = E sin wt
v = Vpaxcos(wt + a) .30
Where v = Applied voltage at primary
Vmax = Maximum voltage
t=time

The moment ac voltage is applied to winding, emf is produced in it and it is opposite

direction to supply voltage V. (Chen et al 2005)

Le=—v
se = Vg cos(wt + a)
Also,
ne=—N2
ne=—N; = 3.2

Now, comparing equitation 3.1 and 3.2 we can write,

o
~—N; P —Vmaxcos(wt + @)

. ao _ Vimax

Tdt N,

cos(wt + a)

Integrating above equitation we get,

V
Q= Zaxj cos(wt + a) dt

1

v
W0 =2 sin(wt + a) + C
Ny

8@ = Qax sin(wt+a) +C ..3.3

Where @0 = Vﬁ‘l“‘and C=asymmetrical component of flux
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The core contains some residual magnetic flux in it denoted by @,-csiqua
The asymmetrical component of flux

C = Dresiaual + Dmax Sin @
Now putting value of C in equitation 3.3 we get,

Q= (Dmax Sin(wt + a) + (Dresidual + (Dmax sina .34

Now consider the switching instant when =0 or = m/2,
(a = phase angle of flux,6 = phase angle of voltage = a + m/2) i.e the
voltage is at its peak value. The flux is residual flux in the core at this instant. The

operation of transformer is normal at this instant.
520 = Omax Sin(wt + 0) + Dresiduar + Dmax Sin 0
@ = Dpax Sin(wt) + Bresiquar
0 = Dmax + Dresidual

Now consider the switching instant when a=— /2 or 8 = 0. In this case equitation

is,
Q= Q)max Sin(wt + T[/Z) + Q)residual + Q)max sin (T[/Z)
w0 = =0y cos(wt) + Dresidual T Dmax

Q= 2®max + Qresidual

Therefor the flux density is almost double. This is often referred as double fluxing,
2 X Omax- 10 generate flux more than normal current tends to increase exponentially

due to saturation effect.
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3.2 Factor affecting inrush current

3.2.1 Starting phase angle of voltage

The starting phase angle of voltage depends on when the transformer was switched.
As per the equitation of inrush current, = @ = @4, sin(wt + @) + Bresiguar +
Dmax Sin a it is clear that inrush current depends on two variables, the remnant flux
and switching angle of voltage. If the residual flux in the transformer is zero and

switching angle is 8 = 90, than final flux is,
20 = Qpax SiN(wt +0) + 0+ @0y Sin 0

)

Dmax sin(wt)
0= Omax

This means normal flux will be produced and that mean normal current will be
drawn during starting condition (no inrush current). However, if the voltage is

switched on when 8 = 0 and taking residual flux to zero, the equitation of flux is,
20 = Omax Sin(wt +1/2) + 0 + B0y Sin (1/2)
20 = —0pmax cos(wt) + Drmax

0 =20max

Steady-state
magnetizing
current

Inrush current

Figure 3.1: Inrush current for twice flux (Gladstone 2004, p.14)
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3.2.2 Residual flux in core

In reality transformers are made of ferromagnetic material and hence they have
hysteresis effect. This means they always have residual flux present. The figure 3.1
shows the inrush current with respect to twice of the flux and figure 3.2 shows the
inrush current for flux with twice and residual flux.

o(t) D(t)
'y

20m + or
20m |\

Transient
flux
Lo e s Yy

Inrush current

Inrush current |
t  (noremanence) (with remanence)

Figure 3.2: Inrush current for twice + residual flux (Gladstone 2004, p.16)

This means the optimum closing time so that no inrush can occur when residual flux
IS zero is when 8 = 90 or 270. However, optimum switching time with residual flux
is when the corresponding voltage angle of flux riches to the residual flux level in

the core. According to (Ebner 2007) the equitation of optimum switching time

ignoring CB restrike is,

. _ 1 Presidual . _ 1 Presidual
Q)residual <0: topt = ——arccos( Q)residual = 0: topt = —|arccos | ———=) + 1.
@o Pmax wo Pmax

1

08F---1-FA-1----

U [p.u.]. @ [p.u.]
S &
= [ o

'
o
o

&
o0
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Figure 3.3: The optimum switching time for single phase transformers (Ebner 2007)
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Figure 3.4: Inrush current in first cycle v/s switching angle and residual flux (Ashrami et al 2012)
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3.2.4 Saturation Flux

As explained in background that saturation flux plays important part in inrush

current magnitude. The B-H curve of the core material and design shows the

saturation level. “The base angle of the inrush current is a monotonically decreasing

function of the residual flux.” (Wang & Hamilton 2004). Therefore with decrease in

saturation flux causes fundamental where increase in saturation flux causes the

increase in DC offset and hence increase in second harmonics.

350 T T T T T T T T T
% Irnd harmenic lo Tundsmerdsl ralio
N i i i i i = = 7 7 % furdamental 16 inrush peak ratio
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Figure 3.5.1: Saturation flux v/s inrush current (Wang & Hamilton 2004)

Figure 3.5.2: Effect of core saturation on secondary voltage (ElectronicsTeacher.com)

Al-Khalifah & Saadany (2006) agrees to the dame principles. The transformer are

generally operates in the range of 1.5 to 1.7 tesla. The inrush current of transformer

are lower which operates close to the latter values.

Page 28



3.2.5 Core material

Magnetic properties are related to atomic structure. Each atom of a substance, for
example, produces a tiny atomic-level magnetic field because its moving (i.e.,
orbiting) electrons constitute an atomic-level current and currents create magnetic
fields. For nonmagnetic materials, these fields are randomly oriented and cancel.
However, for ferromagnetic materials, the fields in small regions, called domains (as
shown below), do not cancel. (Domains are of microscopic size, but are large enough
to hold from 1017 to 1021 atoms.) If the domain fields in a ferromagnetic material
line up, the material is magnetized; if they are randomly oriented, the material is not

magnetized.

Figure 3.6: Random orientation of microscopic fields in a non magnetized ferromagnetic material

A nonmagnetized specimen can be magnetized by making its domain fields line up.
The figure 3.7 shows how this can be done. As current through the coil is increased,
the field strength increases and more and more domains align themselves in the
direction of the field. If the field is made strong enough, almost all domain fields line
up and the material is said to be in saturation (the almost flat portion of the B-H
curve). In saturation, the flux density increases slowly as magnetization intensity
increases. This means that once the material is in saturation, you cannot magnetize it
much further no matter how hard you try. Path 0-a traced from the nonmagnetized

state to the saturated state is termed the dc curve or normal magnetization curve.
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For ferromagnetic materials, z is not constant but varies with flux density and there
is no easy way to compute it. In reality, however, it isn’t £ that we are interested in:
What we really want to know is, given B, what is H, and vice versa. A set of curves,
called B-H or magnetization curves discussed in earlier section, provides this
information. (These curves are obtained experimentally and are available in various
handbooks. A separate curve is required for each material.) The figure 3.8 shows

typical curves for various materials.
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Figure 3.8: B-H curves of various material. 1)Steel steel, 2) Silicon steel, 3) Cast steel, 4) Tungsten

steel, 5) Magnet steel, 6) Cast iron, 7) Nickel, 8) Cobalt, 9) Magnetite (Steinmetz 1917, p.84)
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Figure 3.9: Field intesity v/s Permeability and Flux density

In core type transfors the windings are wound around each limbs. The general

arrangement is as shown in figure 3.10.

a b c

Figure 3.10: Example of core section length

It is clear from the above figure that the lib of centre phase is shorter then remaining
two phases. The reluctance of the core is directly proportional to the length of the
material. Hence for the given flux density the limb of centre phase will have less

reluctance compared to the other two limbs.

3.2.6 Supply/Source impedance

The source impedance in any power supply system is the key parameter that
indicates the capacity of maximum current delivery. In terms of inrush current, the
maximum current will be transferred if both source and transformer primary
impedances are match or source impedance is higher than transformer impedance.

However, a small transformer connected to a diesel generator set which often has
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smaller impedance than that of transformer causes the inrush current to be limited.
This will also cause system voltage drop which is harmful to house/office hold
electrical and electronics equipment’s. (Seo & Kim 2008) The distance between
supply source and transformer is also indication of longer busbars/transmission lines.
This indicates additional resistance which contributes to damping of the current. The
transformer away from the supply with higher line/busbar resistance has shorter
inrush currents in duration compared to the ones which are closer to the generating
units (Al-Khalifah & Saadany 2006)

3.2.7 Loading on secondary winding

The load on the transformer secondary side has no effect on the inrush of primary
current. There are number of authors who claim that this is not the case. The testing
done by [34] shows that the load (resistive or inductive) on secondary winding of the
transformer has no influence on the inrush current of primary. “The reason for this
feature is that when the transformer is saturated, the current peak mainly depends on
the slope in the nonlinear zone of the saturation curve.” (Moses eta al 2010)

3.2.8 Size of transformer

The size of transformer reflects the internal transformer impedance. The larger the
transformer the smaller the impedance it has and the smaller the transformer the
higher the impedance it has. As mentioned in the supply/source impedance sections
that impedance ratio of power supply system source and transformer internal affects
the inrush current in the transformer. If the system has relatively smaller impedance
then it will cause voltage drop and increase in inrush current and duration. The
smaller transformer generates higher inrush current (i.e 30 times) while duration of
inrush currents are generally smaller and decays faster (Al-Khalifah & Saadany
2006) however, larger transformer has comparatively small inrush current but for
longer duration. The decay time for smaller transformer (<1000kVA) is in the rage
of 100 milliseconds while the larger transformer inrush current decay times are in

range of seconds.
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3.3 Effect of inrush current

3.3.1 High starting current

When a transformer is energised from a standard power source it draws high starting
current which can be as high as 10 — 100 times of transformer’s rated current. This
current will starts to decay at the rate of effective winding resistance and will settle
down to steady state condition. The time to decay can be as long as few seconds.
This current is known as magnetising inrush current (Naghizadeh et al 2012). This

effect is described in section 3.1 and section 3.2.
3.3.2 Voltage distortion (harmonics)

Transformers power quality performance in distribution system is the key
performance indicator. Switching due to alteration or load is continuously required
and due to this it invites problems like inrush current which is rich of harmonics (Seo
& Kim 2008). The figure 3.11 shows a spectrum of harmonics and their magnitude
derived by Ashrami and others (2012).
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Figure 3.11: Spectrum of harmonics in inrush current (Ashrami et al 2012, p.537)

It is clear that the second harmonics are the dominant in the inrush (Al-Khalifah &
Saadany 2006). The main reason here is when inrush current starts it off setts in
either positive or negative direction and instead of full wave it will be half wave.
This means 50 x 2 = 100Hz. 100Hz is the frequency of second harmonics of which
fundamental frequency is 50Hz. The figure 3.12 shows the harmonics distribution of

three phases.
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Figure 3.12: Harmonics contents of the idealised inrush current (Kulidjian et al 2001)

When a transformer is energised, due to large inrush current, it also caused the
voltage drop especially when transformer impedance is smaller than that of source
impedance (Seo & Kim 2008). Such effect can be very sensitive to the some
industrial customers and house hole/office electrical equipment. For this reason the
calculation of inrush current, voltage drop and harmonics is important. The balanced
three phase system the equitation of voltage drop is given by Vaddeboina et al
(2012),

Where Vd =voltage drop
m = change in load in kVA
S = short circuit level in MVA

A desktop study is done by Vaddeboina et al (2012) on transformer (400kv/19kV)
with residual flux set so that sum of three phases is zero, the voltage of source is
414kV and source impedance of 8.5GVA. During the simulation they have
considered worst case scenarios such as switching at O cross over etc. The figure

3.13 shows that voltage shag due to poor impedance matching condition
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Figure 3.13: Simulated RMS Voltage in kV v/s time in seconds (Vaddeboina et al 2012)

3.3.3 Sympathetic inrush

Sympathetic inrush is a flow of current on already connected transformer due to an
inrush current of a transformer just being switched on (Kumbhar & Kulkarni 2007).
Due to an inrush of new transformer the already connected transformer goes to
saturation mode which is caused by asymmetrical voltage drop throughout the
system resistances. This phenomenon makes the already connected transformer
contribute to the inrush of the transformer just switched on. This transient interaction
known as sympathetic interaction affects the duration and amplitude of the inrush
current in already connected transformer and also a transformer just switched on.
The key determining factor that causes the sympathetic inrush current is total series
resistance of the AC supply system. The study done by (Bronzeado & Yacamini
1995) revels that the inrush current decays slower when the transformer was
connected with a network where other transformers are already energised. The
problem of sympathetic incurrent gets worse when system impedance is higher that
causes resistance to current flow and drop in voltage. The large transformers with
small impedance make the effect worst. The long inrush and high magnitude of
inrush current generates temporary harmonics and this effect can cause serious
problems to power systems. The energy dissipation patterns by the system and
saturation level reached by transformer are the two factors that determine the

duration and impact of sympathetic inrush current and interaction.
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Figure 3.14: Inrush currents v/s sympathetic inrush currents (Vaddeboina et al 2012)

Sympathetic inrush current can be as high as normal inrush. Due to this effect the
importance of transformer differential protection and other protection study for
nuisance tripping becomes vital. T
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Figure 3.15: System strength v/s sympathetic reaction (Bronzeado & Yacamini 1995)

3.3.5 Vibration/geometric movement of winding

Power transformers are important and valuable assets in any plants. The failure or
down time of this equipment costs significantly in terms of money and production
time too. For this reason transformers are highly protected compared to other
equipment’s in the plants. The one of the many reasons of power transformer failure
is insulation failure which is caused by vibration and other electromechanical forces

during starting, short circuit and normal running conditions. To account these
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problems transformer manufacturers accounts for strong structure which holds the
winding and core tightly (Steurer & Frohlich 2002).

In a number of discussions it was argued that what (inrush or short circuit) is the
worst in terms of electromechanical forces. During the discussion it was pointed that
the short circuit last for only few milliseconds as protection system isolates the faulty
circuit, where the inrush current last for 10s of seconds. The frequency of
occurrences of inrush is far more than short circuit faults too. It was also discussed
that the magnitude of current are near similar to each other when transformers are
energised at no loads. (Steurer & Frohlich 2002)

Transformer energised during no load exhibits large inrush current which causes
unbalanced magneto motive forces and transformer core saturation. (Steurer &
Frohlich 2002) This leads to large axial forces on windings. Such forces are much
higher in the range of two - ten times compared to the forces generated during short
circuit conditions. The key difference between the inrush current and short circuit
current however, is the forces on secondary side of the transformer. During inrush
condition no or very small amount of current and hence forces being generated,
where, in short circuit condition the both sides of the windings are equally(or

according to % ratio) loaded and affected due to electro-mechanical forces.
The equitation of the local force density in a coil is given by
f=]xB
Where J = current density
B = flux density

During the inrush of current and short circuit of a transformer generates two main

types of forces acts on the winding. These forces are square of current.
RADIAL FORCE

Radial force occurs during inrush current. This force tries to strength the
winding meaning it will try to make the coil diameter bigger. This only
happens to the primary winding or the winding being energised. However,

during short-circuit condition the radial force in inner winding compresses
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while outer winding, like inrush current, gets stretched. The radial forces

during short-circuit are more harmful than that of inrush current. (Neves et al

2011). Please referrer to the figure 3.16 for clarification.

LV - Low Voltage (Inner Winding)
HV - High Voltage (Outer Winding)

HV

-

Lv LV ||HV

LV - Low Voltage (Inner Winding)
HV - High Voltage (Outer Winding)
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]
<

—

Lv LV||HV!
J Y I
A 3 ¢
e — —

l Fe Fe l l

Be Be || B

Energizing Condition (a)

Short-Circuit Condition (b)

Figure 3.16: Radial forces during inrush and short-circuit conditions (Neves et al 2011)

AXIAL FORCE

The axial force compresses the winding towards the ground means the forces

pushes the winding downwards. The force during inrush current is higher

than short-circuits as flux during transformer energization is higher. (Neves

et al 2011) The inrush current generates axial force only on the winding

being energised however the short-circuit, as current flows through both

windings, generates axial force on both primary and secondary windings.

Please refer to the figure 3.17.
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HV - High Voltage (Outer Winding)
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Figure 3.17: Axial forces during inrush and short-circuit conditions (Neves et al 2011)
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3.3.6 Protection complexity - Actual fault v/s Inrush current

As discussed in earlier chapter, in B-H curve, to generate any flux higher than knee

point a large amount of current is requires as core trends to saturate exponentially.

The general equitation of inrush current that provides amplitudes of current over a

function of time is as shown below, .(Apolonio et al 2004)

—(t=to)
i(t) = \/—ZZ—I:’" X K, X K, X (sin(wt —@p)—e = . sina)

Where V,,=maximum applied voltage
Z=total impedance under inrush
K, =constant for 3 phase winding connection
K =constant for short circuit power of network
p=energization angle
to=core saturation point
t=time
t=time constant of transformer winding under inrush conditions

However, for the purpose of protection system design the most important factor
remains the peak magnitude of inrush current.(Apolonio et al 2004) The much
simplified version of equitation for peak value calculation is derived as shown

below,

V2V, <2BN + By — BS>

lpeak = m By
Where 1;,,=maximum applied voltage
L =air core inductance
R=total dc resistance

By=normal rated flux density
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Bgr=residual flux density
Bg=saturation flux density

It is clear from above two equitation that the inrush current depends on mainly

residual flux and switching angle. (Apolonio et al 2004)
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Figure 3.18: Sample inrush current (Kulidjian & Kasztenny 2001)
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Figure 3.19: Ratio of second harmonics to fundamental (Kulidjian & Kasztenny 2001)

An algorithm developed by Aktaibe and Rahman (2004) based on differential current
and harmonics contents in the inrush current. In his logic there are two main parts.
The first part compares the differential currents |Id1-1d2|. These current is measured
from the CTs installed on primary and secondary. If the difference is not zero then it
indicates the either internal fault or presence of inrush current. The zero difference
shows there is no fault inside the protected boundary. In second parallel part of the
logic, the components of harmonics and their amplitudes are calculated. After the
calculation the contents of seconds harmonic’s percentage amplitude is checked in
the range of (0.3 to 0.6) of the components of supply frequency amplitude. If the
second harmonic’s contents are in the given range then it indicates the presence of
inrush current otherwise it is an internal/external fault. Finally if the outputs of both
parts are zero than it shows there is presence of inrush current and trip will be
prevented. However, if the outputs of both parts are 1 which shows there is an

internal fault, the trip signal will be sent to the tripping logic/protection.
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The algorithm (figure 3.20) developed by Hooshyar (2012) has same principle
however, instead of calculating direct harmonics contents, the waveform correction
scheme and odd and even part extraction methods are used to differentiate the inrush

current in actual internal fault.

START

/ Data entry coming from C.Ts /

> Calculation of 1st
& 2nd Harmonics

1d1 —1d2]: 0

Detection of Detection of inrush
external fault or or internal fault
increase of load (1)

(0)

0.3F1<F2<0.7F1

Detection of inrush Detection of Internal,
(0) external fault
or increase of load
(1)

Detection of inrush Detection of
or external fault Internal fault
No Trip Trip signal released

Return to Process
The next sample

Figure 3.20 : Flow chart to differentiate the inrush current (Aktaibe and Rahman 2004)
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The wave form of fault current is full wave but of higher magnitude. This waveform
will be close to sine wave. However, the waveform of inrush current is not sine
wave. It has DC components and it is half and peaky wave. The difference is as
shown in figure 3.21 and figure 3.22. A paper presented by Rehmati and Sanaye-

Pasand (2008) shows that transformer fault and inrush can be distinguished by

Decrease in N
Slope ™3 /
Fault |
|
| /
| J

wavelet transform.

Current

,(— time interval

Increase in '

/\ s

Disturbance Time Time

Figure 3.21: The fault current v/s inrush current waveform (Rehmati & Sanaye-Pasand 2008)

F 3

A

Figure 3.22 : Idealised inrush current (Kulidjian & Kasztenny 2001)

3.4 Inrush current mitigation techniques
3.4.1 Asynchronous switching v/s Inrush Current

A practical done by Rahnavard et al (2010) found that the inrush current can
significantly be reduced by asynchronous switching operation. The result based on a
Matlab sim-power system simulation shows that the by switching each pole circuit

breaker at the interval of 6 milliseconds can reduce current from 5.96/-5.24 pu to 1/-
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1pu. However, this exercise can create other problems depending on the connected at
downstream of the transformers. It was also noted that the operation can be

expensive as exchange of line breakers were necessary.

Asynchronous switching is turning each phase circuit breaker at separate time
instead of same time. In start connected primary of transformer, when asynchronous
switching takes place, during the first phase switch all current goes from first phase
winding to neutral. (Cui 2005)This current is negative sequence current. During
second phase switching the neutral current can be even greater than that of second
phase as first phase also contributes to the neutral current. However, then third phase

is energised the negative sequence current comes to zero instantly.

3.4.2 Neutral Earthing Resister v/s Inrush Current

A practical done by (Cui 2005) on transformer reveals that the optimal neutral
resister can be derived from simulation and is as effective as series
resistance/voltage divider method and can significantly reduce the inrush current
magnitude and duration. The figure 3.23 and 3.24 shows the optimum value of NER
is 50o0hm based on calculations and analysis done on 225kVA, 2400/600V, 50Hz
3ph, YY transformer.
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Figure 3.23: Value of NER v/s Inrush current(p.u), duration & neutral voltage(p.u) (Hajivar 2010)

Page 43



bt )

Inrush current R =00 E—

HHTTTTITTTrTeTmasessSY

E] [E=1 [EN=1 0.7 N1

o 0.z 5] o.a
tirme (=)

iajbc )

Inrush current R =500

iahje ()

o 2l:| o1 0.2 EI.I3 .I 0.5 o
tirme (=)
o Maximum neutral voltage R, =50(£2) B
. (== -
= A A A A A A A AN IR A A AR A A A A AN A A A A
= ER o= a's aa ol ER= =7 oo
o.5 - .
Maximum neutral voltage R, = 5(2).
o.a |
— 0.3 | -
= o.2 - —
(= B —
T JYMHFMHHHH#HMHHMMM-M4%

Figure 3.24: Inrush current v/s value of neutral earthing resistors (Hajivar 2010)

a

The equitation derived by Xu et al (2005) for the optimum value of the resister is,

Ry,

= 0.085X,pen

Where, R,,=Neutral earthing resister and

Xopen=0pEN Circuit positive sequence reactance of the transformer
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(Xu et al 2005) suggests that about 1 quarter of circuit breaker contact voltage and
up to 90% reduction of inrush current can be achieved by switching the pole

sequence as A, B & then C.

The neutral earthing resister limits the current going to neutral which limits the
inrush of current during first and second phase energisation.
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Figure 3.25: The value of neutral earthing resister and effect on inrush current (Cui et al 2005)

3.4.3 Comparison of various methods

Results of studies done by Rahnavad and et al (2010) suggest that best of time
switching is as effective as asynchronous switching. In their study they added a
circuit breaker and load on secondary side. In primary side of transformer a RLC
load and this load’s circuit breaker were connected with parallel to main primary
circuit breaker. Combinations of various switching patents were done. It was
observed that the current can be inrush current can be reduced about five time by

switching secondary load first, the RLC load across primary CB second and finally
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the main primary circuit breaker. This method is derived from so called reduced

initial primary voltage.

Method Positive max | Negative min
current (pu) current (pu)
Normal 5.96 -5.24
A. With pre-resistor 5.05 -4.91
B. With capacitor 4.95 -4.2
C. Capaclltor& pre- 419 3%
resistor
D. Auxiliary load 4.78 -2.39
E. Aux111ary load & 32 27
capacitor
F. Auxiliary load &
capacitor & pre- 2.89 -2.48
resistor
G. BeAst tgne of 1,08 101
switching
H. Asynchronous 1 -1

Table 3.1: Comparison of outcome of various methods (Rahnavad et al 2010)
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4. Methodology

This chapter contains information about the number of inrush current effects and the
construction of the model. It describes the list of simulation scenarios and, the
specification of an actual transformer and running data history, modelling software,
brief on model, parameter used in model, the sketch of model and finally
measurement techniques. The chapter basically presents the methodology of

constructed models and simulated scenarios.

When a transformer is energised from a standard power source it draws high starting
current which can be as high as 10 — 100 times of transformer’s rated current. This
current will starts to decay at the rate of effective winding resistance and will settle
down to steady state condition. The time to decay can be as long as few seconds.
This current is known as magnetising inrush current (Naghizadeh et al 2012). This
effect is described in section 3.1 and section 3.2. The inrush current results in
nusence trip of protection system, it generates second harmonics creating power
quality issue, and added mechanical stress due to high magnetic forces generated due

to such events and due to all of above it negatively affects the life of a transformer.

The listed following simulation effects are based on above principle.
4.1 List of scenarios

- Inrush current compared to actual transformer

This model is the base model. This model is later updated for the remaining
simulation scenarios listed below. Here the parameters entered in transformer
model block resemble the actual transformer. This model resembles the
actual remaining system connected with transformer such as transformers
connected at input and outputs, the neutral earthing transformer, the circuit
breaker pole closing timing accuracy etc. This addition is important as the
actual transformer’s data will be compared with simulation at results and
discussion topic. Transformer also behaves differently when other
components are connected with it. This simulation results when compared
with actual data will reveal any match/mismatch and will be progressed

accordingly.
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Inrush current in 3 single phase and a 3-phase transformer

After comparing above model with actual transformer a 3 single phase
transformer model will be created that matches all relevant power parameters
of 3-phase transformer model. The results of 3-single phase transformer
model simulation will be compared with 3 phase transformer model. The

discussion and conclusion will be derived according to the findings.
Sympathetic inrush current

This inrush current flows when two or more transformers are connected
together in parallel. Sympathetic inrush flows to the transformer which is
already energised when another new transformer on same parallel line is
energised. Due to inrush on new transformer the remaining connected
transformer will feed the necessary current (as impedance goes down). This
effect will be simulated by connecting a number of transformers in the
system and switching a new transformer on the system. The magnitude and

duration will be a key focus in this simulation result.
Sequential phase energisation (with/without NER)

As listed in literature review the inrush current depends on two key
parameters, the pole switching time and residual flux. In large transformer it
is difficult to control/remove residual flow in the core. Hence the only low
cost practical controllable option is the pole switching time. The switching
time can be easily adjusted in many circuit breakers. This simulation which
reduces the inrush current will be carried out by phase of supplying source
voltage at several instant. Here optimum switching time will also be

recommended from the derived results.
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4.2 Modelling package

SimPowerSystem is specially designed Simulink block library that has all necessary
power system components. This system was developed by Hydro-Quebec of
Montreal. “SimPowerSystem models are assembled as a physical system. Models are
connected by physical connections that represent ideal conduction paths. This
method of modelling being physical and schematic it is easier to understand while at
backend the system automatically constructs the differential algebraic equations
(DAEsS) that characterize the behaviour of the system and integrates with the rest of
the model”. (Mathworks NDT)

4.3 Measurement techniques

The three phase voltage and current is measured using a VI meter as modelled
below. The Fast Fourier Transformation reveals the harmonics contents and

magnitude. The time of inrush current decay is also noted.

Vabc >
| > Vabc (pu} |

labc y -
| > labc (pu/S12 MVA) T |
Fn)
flk) FFT

RMS b 3ph_V_|_Scope

FFT

Figure 4.1 : Three phase V, | and Igxr scope

4.4 Existing arrangement

The existing power system arrangement is as described in figure 4.3. A 592MVA, 2
pole, 50Hz synchronous machine rated 20kV p-p terminal output connected to a
600MVA transformer known as generator transformer through a GCB. The HV side
of Generator transformer is connected in star and directly grounded. This transformer
steps ups the generator voltage to 500kV. The power station load is supplied via a
11kV, 70MVA unit transformer which is connected between generator circuit

breaker and generator transformer. Generator gets its field power from stator

Page 49



terminal via an AVR and three single phase

/900Vtransformer rated 2.2MVA.

Generator is star connected and neutral is grounded via a neutral earthing

transformer and 5.60hm resister.
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Figure 4.2 : Simplified one diagram of actual system arrangement
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4.5 Actual data sourcing

High speed data is be sourced from the IDM-Hathaway unit. The device has already
captured varieties of different data from various system disturbances to new start and
shutdown event etc. This data from the date file will be converted to appropriate file

format to import in to Matlab simulation program.
IDM (HATHAWAY)

IDM-Hathaway is electrical fault recorder. It is a well-known brand in large
electric power stations. This recorder in the event of any system disturbances
captures the high speed data triggered according to user defined settings.
“The product, when coupled with the Qualitrol Hathaway Replayplus
software package, provides a powerful platform for the acquisition, analysis

and reporting of data from power systems.” (Hathaway, NDT)
SAMPLE DURATION AND RATE

The existing IDM unit is set to capture 128 samples per cycle for fast data
capture. This high speed recorder captures the data for 6 seconds. The
settings are done so that it starts recording 1 second pre event and 5 second
post event. The second inbuilt recording function is slow speed type. This
recorder captures the data at 10 samples per cycle. This data is continuously
being recorded however, due to memory issues the data after 3 months gets

over written.

4.6 Model subsystems & parameters

Following is base model built during this semester to get general concept of what
are the possible obstacles and issues. The data in table 4.10 three phase power
transformer block is actual data of the 600MVA transformer as discussed in section
4.4. The key parameter is hysteresis data. This data of the existing transformer is not
available. However, about 5 year back the same capacity spare transformer from
different manufacture has been bought. Some hysteresis data were available however

they were incomplete. Enquiry was done to the manufacturer for the actual hysteresis
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curve however the curves were unavailable due to confidentiality issue. Therefore
instead of using user defined curves, here a standard more widely referred in

Matlab’s curve is used by selecting the transformer as saturable transformer.

The following are the key components of the models that can be used in a subsystem

however, for simplification they are left on the main system.
Circuit Breaker Timer

The circuit breaker timer was created to simulate the circuit breaker turning on times.
The low voltage side of the transformer was switched on at half second interval and

the high voltage side of the circuit breaker was switched on at two seconds interval.

Step
m— '
— doubl _
Py ™ — | double GCE1_Switch
0.5s
Step2 Relayl oo Delayi Data Type ConversionZ
m— '
— doubl _
i » 0. W double GTCEZ Switch

Reley2  onioff Delayz Date Type Conversion?
SW_Time_Scope

Figure 4.3 : Circuit breaker timing circuit

The circuit breaker timer system as shown in figure 4.3 was used in model. This
system runs with the main model and when running it generates step up input from 0
to 1 by Step2 block. This sends the trigger signals to Relayl and Relay2. The relay 1
has 0.5 seconds on delay timer in series and Relay2 has two seconds on delay timer
in series. Both of this relays at definite time send on trigger signals to dedicated
circuit breaker via data type conversation block. The data conversion block required
to match the data signals between the timer and circuit breaker. The GCB1_Switch
sends trigger signal to the circuit breaker which is located at the input (low voltage
side) of the transformer and the GTCB2_Switch triggers the circuit breaker located

the output (high voltage side) of the transformer.
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Transformer Input model

The input model described in figure 4.4 provides the energy to low voltage side of
the transformer. This model consists of a three phase generator, V/I sensor,

excitation transformer, three phase isolated circuit breaker and a unit transformer.

a
]
]

Ale—a|A
Blo—=
Gle—s|C

Figure 4.4: Transformer output system

The three phase synchronous generator generates 20kV voltage and is connected to
three phase isolated circuit breaker via a V/I_Meter block. The isolated circuit
breaker resembles the actual plants isolated air circuit breaker. They all get the relay
signal at the same time however, since they are physically/mechanically isolated

from each other the actual contact time varies in order of up to 10 milliseconds in its

healthy state.
e =i F“@ A -
e & ke
< __: U —> Dol a._.@> b
e
=+ v » i

Figure 4.5: VI_Meter subsystem

The VI_meter block senses each phase voltage and current signals and stores in
variable which are connected to scope for analysis. For simplification, the excitation
transformer here is represented as RLC circuit with active power 6MW, inductive
reactive power IMVAR and capacitive reactive power of 0.5MVAR. The excitation
transformer also acts as initial starting load before the generator circuit breaker turns

on. The actual rating of unit transformer is 70MVA however in actual plant the
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transformer is only partially loaded. The unit transformer provides the energy to
station’s local load. For actual simulation here the unit transformer is represented as
RLC load with active power of 30MW, the inductive reactive power of 6MVARs
and capacitive power of 2MVARs.

Main Transformer model

The main transformer is 600MVA, 20kV to 500kV step up transformer. It gets
power from synchronous generator, steps up the voltage to 500kV and sends full
output to transmission line. The transformer is delta-star grounded with saturable

core. All units are described in per unit quantity.

Winding 1; V1: 20,000V, R1: 0.002pu, L1: 0.08pu

? Winding 2; V2: 500,000V, R1: 0.002pu, L1: 0.08pu
Saturation Characteristic: 0,0;0,1.2;1.0,1.2

600MVA
20kV/500kV

The details of inrush current model that matlab sim-power system has used is as
shown below. The model consist of mainly a s function, couple of lookup tables and

switches.
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Figure 4.6: Transformer hysteresis model
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Transformer output model

The output model described in figure 4.7 provides the energy to load from high
voltage side of the generator transformer. This part of model consist of a HV circuit
breaker and load that is represented by a similar size step down transformer and load
as RLC load at both LV and HV side of the transformer.

Three-phase
Transformer
600 MVA 20 KV /500 kv2
com a a A
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BOOMVA GTCB2
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Figure 4.7: Transformer output system
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In this model, the three phase power at 500kV phase — phase voltage is transferred to
same size transformer however in this case stepping down the input voltage from
500kV to 20kV representing the distribution transformer of the grid. Between these
two transformers the 500kV circuit breaker is placed to switch the load
instantaneously to simulate the large load switching. A small line loss (10MW,
0.3MVAR L & 0.1IMVAR C) representing the transmission line loss as a RLC load
is placed between the generator transformer and 500kV CB. A decent size RLC load
representing large transmission line loss is represented as 60MW active power,
3MVAR inductive and 1MVAR capacitive load. At the end of distribution
transformer 60MW load with some inductive and capacitive load is connected. The
reason for not connecting full load is when a generator is synchronised to grid the
loading on it is controlled carefully and hence load is increased gradually in steps not

instantaneously.
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5. Result & Discussion

This chapter contains details about each model, the results and discussion. As
described in methodology here mainly five models are built and simulated for
analysis of inrush current effect. The conclusion and outcome will be listed in the
next chapter.

The computer used here has 64bit i7-2620 CPU with 2.70GHz speed and 8GB RAM
that runs on Windows 7 operating system. The Matlab version 7.10 (R2010a) with
Simulink 7.5 and SimPowerSystem 5.2.1 is used. The model takes significant

amount of processing power and time to simulate each scenario.

The first model described in section 5.1 is a base model. It basically consist of a
three phase generator, three phase isolated circuit breaker, the 600MVA generator
transformer, a load breaker at output side and grid consist of another transformer and
load. The model is simulated at 50Hz and the three phase voltage, current and
harmonics are measured and presented on scope. The harmonics content of current
for each second is also presented on a separate live figure. This figure automatically

runs and updates when model is run.

There are three stages of the switching in each model described in section 5.1 to 5.6.
In the beginning of simulation for first 500mS only excitation transformer is in
circuit. This transformer is represented by RLC load and hence only small steady
state current is seen in the results. At the 500mS interval the generator 3 phase
isolated circuit breaker is energised. Here all phases are switched at same time and
considered no lag in stitching time. Switching this circuit breaker energises the
generator transformer and also unit transformer. Unit transformer is represented as
RLC load and hence it has only a small steady state component in power sharing.
The output of generator transformer is connected to 500kV load breaker and it is also
connected to some line loss represented as RLC load. Hence except small RLC load

there is no significant load on the circuit.

However, as seen in the plot on scope the large amount of three phase inrush current
flows. This current slowly decays towards the steady state current. The magnitude of
current depends on the hysteresis characteristic of core material and switching angle
of applied voltage. The rate of inrush current decay is proportional to circuit
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resistance of core material. This large amount of inrush current will always be
present in all three phases of the circuit as each phase is 120 degree apart from each
other. Even if it is considered to have no residual magnetism in core and one phases
switches at 90deg to contribute zero inrush current for that phase, the other two
phases will 120 deg apart and contribute to out of sync(v/f). This means there will

always be an inrush of current in any given condition in three phase circuits.

The inrush current decays exponentially with increase in time. As time riches to
2000 mS, the load circuit breaker located on 500KV line is energised. This results in
energisation of distribution transformer and supply to distribution load. This results
in inrush current in main transformer. This current is called sympathetic inrush
current as transformer is already energised and inrush of another transformer causes
the inrush to the already connected and energised transformers. The magnitude of
peak inrush current again depends on voltage switching angle, residual flux in core

and also load connected to on secondary.

In section 5.2 instead of one, three phase generator transformer, three single phase
transformers are used. This is simulated to understand the effect of separate tank
transformers on inrush current. The rating of these three single phase transformer is
estimated to be equivalent to one three phase transformer. The inrush current results
of this simulation seem to be almost identical to a three phase transformer. However,
when transformer is de-energised the residual flux in each single phase transformer
will be proportional to the switching off angle of voltage. Hence, each three
transformer will contain different level of residual flux. The level of residual flux
will also be proportional to phase angle, 120 degree. This means if the transformer is
energised in proportional to remaining residual flux in core, the existing flux in core
will match 120 degree phase angle of each voltage angle. This will result in

minimum or zero inrush current which is not possible in one three phase transformer.

The HV size of generator transformer which is star connected is grounded via a
150mH reactor in section 5.3. The result simulation did not reveal any different

results. It was expected to see reduced inrush current with addition of NER.

The last three sections contain 90° lag voltage phase lock switching system. Here
first phase was energised when phase one voltage reaches to 90°. The second and

third phases weree energised 120° and 240° respectively. This results in zero inrush
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current. The following six sub section of this section contains matlab sim-power
system model, three phase instantaneous current plot and fast furrier transformed

plot of the three phase current.
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5.1 Model 1 — Three phase transformer
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Figure 5.1: Three phase transformer model
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5.2 Model 2 — Three single phase transformers
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Figure 5.4: Three single phase transformers model
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5.3 Model 3 — Three single phase transformers with NER at HV
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5.4 Model 4 — Three single phase transformer with sequential switch
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5.5 Model 5 — Three phase transformer with sequential switch
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5.6 Model 6 — Three single phase transformers with NER at HV and

sequential switch
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6. Conclusion

The contribution of transformer inrush current is affected mainly by starting phase
angle of switching voltage and residual flux in the core. It also depends on
magnitude of voltage, core material’s hysteresis characteristic, supply/source

impedance and also loading on secondary side of transformer.

The effect of inrush current are high starting current, voltage distortion/harmonics,
sympathetic inrush current, vibration of transformer/winding, protection system

nuisance operation. Due to all of these effects the life of transformer is reduced.

In three phase circuit where a three phase transformer is used zero inrush current is
not practical even if a phase is switched when phase is at its peak. This is not
achievable due to fact that each phase is 120° apart hence only one phase’s inrush
can be made to near zero. The remaining two phases will be 120° out of phase and

hence will contribute to inrush current.

The three single phase transformers with separate cores used in three phase circuit
can achieve near zero inrush current if switched when voltage is at its peak. This is
practical as each core will contain, when transformers are switched off, residual flux

proportionate to 120° difference of corresponding phase.

The inrush current in already established transformer or systems can be effectively
controlled by sequential switching. This is most convenient when circuit breakers are
isolated because 120° pole switching is achievable with small modification and does
not require replacing the expensive circuit breaker. The residual flux in this system
can be detected by detecting the switching off angle by monitoring the system
voltage and current. The starting time of first pole is then decided based on residual
flux in core. The second and third poles are switched at 120° and 240° respectively.
As the method does not require purchasing expensive new equipment or large
modification in system, it is the most economical solution of transformer inrush

current mitigation.

FUTURE WORK

Modelling based on the system described in above paragraph (residual flux
calculation from de-energisation time) can be considered.
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1. Introduction

The transformers are nearly inbuilt into every
electric/electronic  device  around us.  Power
transformers are essential components in power
systems. The knowledge of their performance is
fundamental in determining system reliability and
longevity. Potentially disruptive transient condition
(due to inrush current) may occur when an unloaded
transformer is connected to the power system.

This report contains information about effect of inrush
current in power transformers. The analysis is done
through system modelling and a practical solution is
provided.

2. Background

Inrush current in transformer is often gets less
importance compared to other effects/faults. Though
the magnitude of inrush current may be less in some
cases compared to short circuit current, the frequency
and duration of inrush current is generally more
frequent, hence it will cause more adverse effect
compared to other faults. High magnitude inrush
current may flow when transformer is energised.

3. Methodology

A design data of a large step up transformer is used to
model it in Sim-Power System of Matlab. A number of
models are created and simulated to resemble the
actual system. The simulation results are compared
with actual results of the transformer. The inrush
current effects between three single phase and a thee
phase transformers are compared. Sequential phase
enegisation model is created and combined with
transformer inrush current model to simulate the
desired outcome.

Upwl. @ [pu]

10
Figure 1 - Optimum switch timle f‘or minimum inrush current
4. Key Outcomes
The results show that inrush current s
affected/contributed by a number of factors such as
switching phase angle and residual flux in core. The
key inrush current effects are high starting current with
second harmonics, voltage distortion, sympathetic
inrush current, vibration, false protection trip and
reduction of transformer life.

S. Further Work

For low cost practical implementation of phase
energisation technique, further modelling is required to
memorise de-energisation time. This time will then be
used to re-energise to counter-act residual magnetism.

6. Conclusions

The inrush currents are harmful for life of the power
transformer and system stability. They are mainly
contributed and controlled by residual flux in
transformer and switching instance of voltage cycle.
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8.4 Appendix C  Project Presentation
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