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Abstract 

 

Inrush current in transformer is often gets less importance compared to other 

effects/faults. Though the magnitude of inrush current may be in some cases less 

than compared to short circuit current, the frequency and duration of inrush current is 

generally more frequent, hence it will likely have  more adverse effect compared to 

other faults. Inrush current may flow when transformer is energised. The amount of 

inrush current depends on when in the voltage cycle the transformer is energised and 

residual flux in the transformer. The other type of inrush current is sympathetic 

inrush current which flows in already energised transformer when another 

transformer is energised in parallel connected line.  

This report contains basic principle, fundamental theory and relevant laws of the 

transformer and inrush current. A number of factors affecting inrush current are 

discussed. The inrush current theory and their equation are derived. The effects of 

inrush current are described in brief. As a part of this project a number of effects and 

factor affecting inrush current are considered for simulation. The Matlab Sim-Power 

system is used for the simulation. The simulation results compared with each other 

and also data available from actual same size transformer. Finally six solutions to 

inrush current mitigation techniques with a practical low cost answer are provided. 
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Abbreviations 

 

AC:  Alternating Current 

AVR: Automatic Voltage Regulator 

CB:  Circuit Breaker 

CT:  Current Transformer 

CB:  Circuit breaker  

DC:  Direct Current 

GCB:  Generator Circuit Breaker 

IEEE:  The Institute of Electrical and Electronic Engineers 

kA:  kiloampere = 1000 amps 

MVA: Mega volt-ampere 

A =  Area of coil in m2  

B =  magnetic flux density in tesla or wb-m2, 

mB
=  maximum value of flux density in the core in weber/meter2 

  = normal rated flux density 

  = residual flux density 

  = saturation flux density 

F =  mmf, 

H =  magnetic field strength in oersteds or A/m2, 

I =  current in amperes 

J =  current density 

  = constant for 3 phase winding connection 

  = constant for short circuit power of network 

L = air core inductance 

 =  magnetic path length in meter. 

N =  number of turns 

P =  permeance. 

R= total dc resistance 

  = Neutral earthing resister 

R=  reluctance in At/Wb, 

t= time 

  = core saturation point 

Vmax = Maximum voltage  

     =open circuit positive sequence reactance of the transformer 

  = total impedance under inrush 

0 =  permeability of air in H/m, 

r =  permeability of material in H/m, 

 = flux 

m =  maximum value of flux produced in the core in weber 

 =  Angle between coil and lines of field in degree 

 = time constant of transformer winding under inrush conditions 

 = energization angle 
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1. Introduction 

Transformers transform electric energy. There are varieties of transformer and used 

for many different purposes. They are nearly inbuilt into every electric/electronic 

device around us. Power transformers are essential components in power systems. 

The large power transformers are considered to be important and very expensive 

asset of electric power systems. The knowledge of their performance is fundamental 

in determining system reliability and longevity. Potentially disruptive transient 

condition may occur when an unloaded transformer is connected to the power 

system. Transient inrush current is often considered less important compared to other 

effects/faults in the transformers. (Rahman et al 2012) The objective of this report is 

to understand the factor affecting the inrush current and effects of inrush current.  

There are five key parts of this report. The second and third part comprehends the 

background and relevant literature review. The background contains fundamental 

principle, basic theory and relevant laws. The construction of transformer including 

winding configuration, hysteresis effect and circulating current are also described in 

the background. Literature review is the third part, it mainly contains the theory of 

inrush current, factor affecting inrush current and their effect. The methodology 

describes methods of how the key practicals will be performed. The list of key 

selected simulation scenarios are described here. The technical specification of same 

sized actual transformer and their data is presented for comparison with simulation 

results. Sim-power-system of Matlab Simulink was be used for the simulation.  

The result and discussion of model building and simulation are listed in section five. 

Here, the six selected scenarios are described with brief description of key difference 

of the models and results. Finally in section six the conclusion with a practical low 

cost solution to inrush current is recommended.  

The relevant information was sourced from varieties of resources. Majority of the 

references are from the relevant research, conference and journals of Institutes of 

electrical and electronics engineering. Significant parts of citation weree derived 

from professional printed books. A number of figures and photos are sourced from 

reputed internet sources such as manufactures, professional body, research institutes 

and universities. The appendix contains project time line chart and relevant project 

supporting information.   
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2. Background 

Transformers are passive devices for transforming voltage and current. A 

transformer is a static electrical device. The energy is transferred by means of 

winding’s inductive coupling via core. They are among the most efficient machines, 

95 % efficiency being common and 99% being achievable.  

Transformer are available and being manufactured in varieties of sizes and 

configurations. They are found in tiny microphone to large step up/step down power 

system distribution. They are found in most of electrical/electronic devices around 

us. Transformers are vital part of electric power system. 

The alternating current flowing through a winding produces alternating flux in the 

core. This alternating flux links with other winding of same transformer and 

produces electromotive force(emf) or voltage in these windings 

It is important to understand the basic principles and common laws in beginning. In 

this section in beginning common characteristic and their formulas are described. 

Equivalent circuit, transformer types and their winding configuration, Eddie current 

and hysteresis effect etc. are briefed in short explanations. 

 

2.1 Flux 

Flux is defined as a rate of property per unit area. It is a vector quantity. Fluxes are 

like lines in space. These flux lines or lines of force, show the direction and intensity 

of the field at all points. In magnets the field is strongest at the pole, it’s direction is 

from N to S (externally) and flux lines never cross. (Georgolakis 2009)The symbol 

for magnetic flux is . The equation of flux can be expressed as, 

 cosBA  

Where  =Flux in weber or Tesla-meter
2
, 

 B=Magnetic flux density in Tesla, 

 A = Area of coil in m
2
, and 

  = Angle between coil and lines of field in degree. 
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Figure 2.1 :Equitation of flux (Hsu NDT) 

 

2.2 Magnetic field intensity 

An object in presence of external magnetic field produces force. As a result it lines 

up in the direction of field. The magnetic forced produced in the object is called 

induced magnetisation. The strength of magnetic field is called magnetising 

field(H)(Flanagan 1992). Magnetic field intensity is also known as magnetising 

force, is denoted by H and measured in A/m
2
. The equitation of magnetic field 

intensity is,  



mmfNI
H 

 

Where H = magnetic field strength in oersteds or A/m2, 

 N = number of tutns, 

 I = current in amperes, and 

 = magnetic path length in meter. 

 

 2.3 Magnetic flux density 

As per name the magnetic flux density is an amount of magnetic flux per area right 

angle to the flux (Devki Energy Consultancy 2006). It is denoted by B and unit is 

Tesla or Wb m
2
. The equitation of magnetic flux density is, 
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

NI
B r0

 

Where B = magnetic flux density in tesla or wb-m2, 

0 = permeability of air in H/m, 

 r = permeability of material in H/m, 

N = number of conductor, 

 I = current in ampere, and  

  = length of conductor in meter. 

 

2.4 Reluctances 

Reluctance in magnetic circuit is same as resistance in electric circuit. Reluctance 

varies depending on material of core. Reluctance is opposition force that opposes the 

flux flow in the magnetic circuit. It is inversely proportional to the permeance 

(Gardner & Stevenson 2003). In equation form, 

PA
R

r

1

0






 

Where  R= reluctance in At/Wb, 

  = length of conductor in meter, 

 0 = permeability of air H/m, 

 r = permeability of material in H/m, 

 A = cross section area in m2, and 

P = permeance. 
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2.5 Magneto motive force (MMF) 

Magneto motive force is magnetic potential. It is analogous to electromotive force or 

voltage. It is a motive force that produces flux. Ampere-turn is a standard unit of 

magneto motive force. (Georgolakis 2009) The MMF creates a magnetic field in the 

core having an intensity of H ampere-turns/meter alone the length of the magnetic 

path. Hence, 

  NiHmmf   

Where mmf = Magneto motive force, 

 /NIH  , 

  = Length of conductor, 

 N = Number of coil turns, and 

 i = Current in the coil. 

 

2.6 Ampere’s law 

This is Ampere’s law which sate that the mmf proportional to the flux  , is 

proportional to the inductor coil current and to its number of turns. Hence, according 

to Hopkinson’s law, Georgolakis 2009 

F = R   or   F =  / P 

Where  F = mmf, 

 R = reluctance, 

  =flux, and 

 P = permeance. 

Mathematically it can also be proven as below, 

BA  



Page 6  

 

HA   ( )HB   

A
NI




  ( )/  NIH   

A

NI

/


 

A

mmf

/


  ( )NImmf   

R

mmf


  ( )/ AR    

 

2.7  Faraday’s law 

Whenever there is change in the fluc linking with a coil, electro motive force is 

induced in the coil. Change in flux linkage can be obtained by two ways, Coil is 

stationary and there is change in flux. (Gardner & Stevenson 2003)This will produce 

the statically induced emf. 

Flux is constant and the coil rotates. This will produce dynamically induced emf.  

The statically induced emf is convers electrical energy to electrical energy only. The 

first applies to transformer where no moving parts are present however, the 

continuous change of flux produces the emf. The send applies to generator where 

coils are stationary and flux remains constant. Note that in AC generator, even 

though field winging are rotating the actual flux is constant as supply on of the field 

is DC. The rotation of constant flux which links with stationary stator winding 

causes emf. 

The faraday’s law can be expressed by following equitation, 

dt

d
Ne




 

Where, e = emf 
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 N = number of turns 

 dt

d

 = change in flux with respect to time 

The emf produced is proportional to the linkage of coil turns and also rate of change 

of flux linkage. The statically induced emf is convers electrical energy to electrical 

energy only. 

 

2.8 Magnetic/electric circuit equitation 

Flux density is line right angle flux in given unit area. The SI unit is weber/meter
2
 or 

tesla. The equation of maximum flux density is,  

i

m
m

A
B




 

Where mB
= maximum value of flux density in the core in weber/meter

2
 

 m = maximum value of flux produced in the core in weber 

 iA
= area of cross section of core in meter

2
 

The value of flux becomes zero to 

m   when time is 
f

T

4

1

4
  

In terms of transformer the average value of emf induced in a turn of conductor is 

(Kulkarni & Khaparde 2004) 

time

fluxinchange


 

 













f

m

4

1

0
 

fm4
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Now form factor 
valueAverage

valueRMS
 = 1.11 

valueAverageemfRMS  11.1  

femfRMS m411.1 
 

femfRMS m44.4  

For N conductor, 

fNE m44.4
 

fNABE im44.4
  ( imm AB ) 

Magnetic Symbol Unit Electrical Symbol Unit 

Magnetic flux   Wb Electric current I  A 

Magneto-motive 

force (mmf)   dlHF  A.t Electro-Motive 

force (emf)   dlE  V 

Reluctance R  1/H Resistance R    

Hopkinson’s law RF    Ohm’s law RI    

Permeance RP /1  H Conductance RG /1   -1
 

      

Permeability   H/m Conductivity    /m 

Magnetic field H  A/m Electric Field E  V/m 

Flux density B  H/m Current density J  A/m
2
 

Relation between 

B&H 
HB    H/m Microscopic Ohm’s 

law 
EJ   A/m

2
 

 

Table 2.1 Comparison between magnetic and electrical circuits (Physical process modelling NDT) 

 

2.9 Equivalent circuit  

Transformer has windings called primary and secondary. Primary winding is the one 

which get the electrical energy input and output is transformed in secondary. There 

are many different types of transformers however, here we will mainly discuss 

power transformers. Depending on core design the transformers are identified in 

manly two categories known as core type or shell type transformers. In core type 

transformers, winding encloses whole core where, in shell type transformers the core 

encloses the windings. 



Page 9  

 

Transformer works on the principle of electromagnetic induction. Figure 2.2 shows a 

single phase transformer with two coils with no load on any of its winding. The 

winding are wound on core which becomes magnetic with alternating current 

flowing in the winding. The primary winding is connected to source of which 

alternating voltage V1 supplied. In beginning small excitation current flows i0 flows 

through this winding. As this current is alternating mutual flux is induced in core 

(Gardner & Stevenson 2003). The primary and secondary winding contains N1 and 

N2 turns respectively. The instantaneous emf in primary winding caused by mutual 

flux is,  

dt

d
Ne


11 

 

With assumption of zero resistance of winding, 

11 ev   

 

Figure 2.2: Transformer at no-load condition (Kulkarni & Khaparde 2004) 

Since the voltage of primary winding v1 is, tvm sin , sinusoidal varying, the flux 

must also vary with at the rate of t . 

tm  sin
 

Where  = mutual flux 

 m = pick value of mutual flux 

 f 2  

Now substituting value of  in equitation of 1e we get, 
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tN

tN

dt

td
Ne

m

m

m







cos

)cos(

)sin(

1

1

11







 

mNe 1max1 
 

m

mrms

fN

N
e







1

1
1

2

2

2





 

mrms Nfe 11 44.4
 

This equitation is known as emf equitation of a transformer (Kulkarni & Khaparde 2004). 

The amount of flux and its density is determined by supplied voltage where number 

of turn and frequency are considered as constant. Because m maximum value of flux 

is flux density times the area which is constant hence, 

imm AB
 

Where m = maximum value of flux produced in the core in weber 

mB = maximum value of flux density in the core in weber/meter2 

 iA = area of cross section of core in meter2 

Also the voltage induced in the secondary winding due to mutual flux  linkage is, 

dt

d
Ne


22 

 

Similarly the induced voltage in secondary winding is, 

mrms
Nfe 22 44.4

 

Therefor the ratio of induced voltages, e1 and e2, is, 

RatioTurns
N

N

e

e
 

2

1

2

1
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At this instance, no load condition as there is no load on secondary winding, the 

current in primary wining is i0. There are two components of no load primary current 

i0, 

1) 00 cos ii   

This part is called active component. It consists of iron loss (hysteresis & 

eddy current loss) and primary winding copper loss. 

2) 00 sin ii   

This part is called the reactive component or the magnetising component. The 

alternating flux in the core is produced by this component.  

Here 22

0  iii   

 

Figure 2.3: Phaser diagram of transformer at no load (Gardner & Stevenson 2003) 

When secondary winding of the transformer is connected to the load, secondary 

current I2 flows. This current (I2) lags the secondary voltage V2 by 
2  .The 2cos is 

the power factor of the load. (Gardner & Stevenson 2003) According to Len’z law 

due to this current I2, flux 
2 is produced in the core, which opposes the flux 

produced by primary winding. 

So the net flux in the core tries to reduce. But the primary winding tries to maintain 

the flux so the primary winding draws more current from the supply and keeps the 

flux as before. Thus due to the current I2 flowing in the secondary winding, 

balancing current I’2 flows through the primary winding. This current I’2 is 180o out 

of phase by current I2. Now, two currents flow through the primary winding-I2 and 
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I0. The vector sum of both the currents is called the primary current I1. This is shown 

in figure 2.4 and 2.5 as below. 

 

Figure 2.4: Transformer on load 

 

 

Figure 2.5: Phaser diagram of transformer on load 

In actual transformer the primary winding has resistance, which is denoted by R1. 

Similarly, the secondary winding resistance is denoted by R2. (Flanagan 1992)  

Actually, both these resistances are the distributed in nature but for simplicity, these 

are shown as lumped resistance in following figure.  

The total flux produced by the primary winding does not link with the secondary 

winding but some flux complete its path through air without passing through the 

core. This is called the primary leakage flux
1L . Due to this leakage flux emf is 

induced in the primary winding which opposes the primary voltage. To account for 

this effect, it is assumed that the primary winding has reactance and the voltage drop 

occurring in this reactance is equal to this emf. (Flanagan 1992) This leakage 

reactance is denoted by 1LX . Similarly, the total flux produced by the secondary 

winding does not link with the primary winding and some flux completes the path 

through air. This is secondary leakage flux 2L . Due to this leakage flux 

electromotive force is induced in the secondary winding.  This emf opposes the 

induced emf due to the main flux. (Gardner & Stevenson 2003) This effect is 
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indicated by the secondary leakage reactance 
2LX . The figure 2.6 shows the 

resistance and reactance of the primary and secondary windings and figure 2.7 vector 

diagram. 

 

Figure 2.6: equivalent circuit diagram of a transformer 

 

Figure 2.7: Transformer phaser diagram for lagging and unity power factor 

 

2.10 Types of transformers 

The transformers are classified mainly depending upon the geometry of the winding 

and core. There are two main types of this classification. (i) core-type transformer 

and (ii) shell-type transformer. (Devki Energy Consultancy 2006) 

(i) Core-type transformer. The core type transformer design is shown in figure 2.8. 

The primary and secondary wining are overlapped depending on the voltage 
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structure. Such design improves leakage flux (Farzadfar 1997). Generally the low 

voltage winding are first wound and high voltage winding are wound on the top of 

LV winding. This ensures the HV winding away from core as core is earthed. 

Visually core are sounded by the coils. Such design has single magnetic/flux paths.  

Figure 2.8: Core and shell type transformers winding and core arrangements (Storr 2013) 

(ii) Shell-type transformer. The shell type transformer design are as sown in figure 

2.8. The winding configuration is same as core type. They contains five limb/legs. 

The visually coils are surrounded by the cores. In this design there are double 

magnetic/flux paths and hence it acts as low-reluctance (Li et al  2010). 

# Core type Shell type 

1 The winding encircles the core The core encircles most part of the winging 

2 The cylindrical type of coils are used Generally, multilayer disc type or sandwich coils are used 

3 As windings are distributed, the natural cooling 

is more effective 

As winding are surrounded by the core, the natural cooling does not 

exist. 

4 The coil can be easily removed for maintenance For removing any winding for the maintenance, large numbers of 

laminations are required to be removed.  

5 The construction is preferred for low voltage 

transformers 

The construction is used for very high voltage transformers 

6 It has a single magnetic circuit It has a double magnetic circuit 

7 In a single phase type, the core has two limbs In a single phase type, the core has three limbs 

Table 2.2: Differences between core and shell type transformers (Your electrical home, 2011) 

The choice of type (whether core or shell) will not greatly affect the efficiency of the 

transformer. The core type is generally more suitable for high voltage and small 

output while the shell-type is generally more suitable for low voltage and high 

output.   
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2.11 Three-Phase Transformer 

A three phase power transformer are mostly used in transmission and distribution of 

electric power. The three phase transformer can be built by building a three phase 

transformer or using bank or three single phase transformers. The primary and 

secondary winding are connected according to circuit requirement however, 

generally in                     

 

2.11.1 BANK OF THREE 1  TRANSFORMERS 

The three single phase transformer if connected in any of the three phase winding 

configuration works as three phase transformer. The widely used connections are 

                    The figure 2.9 illustrates on left three single phase 

transformer and on right a three phase transformer. The primary windings of both of 

this arrangements are in star and secondary are in delta. This makes then ideal for 

use in their place.  

 

Figure 2.9: Three single phase(left) and three phase transformer (right) 

The primary and secondary windings shown parallel to each other belong to the 

same single-phase transformer (on left). The ratio of secondary phase voltage to 

primary phase voltage is the phase transformation ratio K. Phase transformation 

ratio, K = Primary phase voltage / Secondary phase voltage. As discussed earlier in 

emf equation the phase transformation ratio is K (= N2/N1).  

 

2.11.2  3  TRANSFORMER 

A three phase transformer contains common magnetic circuit. All of its winding are 

would on core that acts as magnetic circuit. The basic three phase circuit 
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arrangement is shown in figure 2.9. The figure 2.10 contains a three phase core type 

transformer. This transformer has windings on each individual limbs but the 

magnetic circuits end in common magnetic limb. The centre limb completes the 

return flux path of each phase. The primaries as well as secondaries may be 

connected in star or delta. If the primary is energized from a 3-phase supply, the 

central limb (i.e., unwound limb) carries the fluxes produced by the 3-phase primary 

windings (Sainz et al 2004). The instatineous vector summation in ideal condition is 

always zero therefore the vector summation of flux should also be zero. Hence no 

flux exists in the central limb and it may, therefore, be eliminated. This modification 

gives a three leg core type 3-phase transformer. In this case, any two legs will act as 

a return path for the flux in the third leg. For example, if flux is   in one leg at some 

instant, then flux is  /2 in the opposite direction through the other two legs at the 

same instant. All the connections of a 3-phase transformer are made inside the case 

and for delta-connected winding three leads are brought out while for star connected 

winding four leads are brought out. 

 

Figure 2.10: Three phase transformer 

For the same capacity, a three-phase transformer weighs less, occupies less space 

and costs about 20% less than a bank of three single-phase transformers. Because of 

these advantages, 3-phase transformers are in common use, especially for large 

power transformations. A disadvantage of the three-phase transformer lies in the fact 

that when one phase becomes defective, the entire three-phase unit must be removed 

from service. The three phase circuit in which three single phase transformers are 

used the prime advantage is when a fault occurs in a winding other two phase’s 

circuit can be left in service and defective transformer can be isolated for repair. The 

only drawback is such arrangements are costly and management in terms of phase 

load balance can be challenging.  
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2.12 Three-Phase Transformer Connections 

As describer in previous two sections, three phase circuit can be built using  a single 

three phase transformer of three single phase transformers. The connection in any 

case of its primary and secondary will be same for same arrangement. The most 

widely used connection arrangements are as shown in table 2.3  

 

Table 2.3: Voltage and current ratings of common transformer winding configuration 

The primary and secondary voltages and currents are also shown. The primary line 

voltage is V and the primary line current is I. The phase transformation ratio K is 

given by;  

K=Vs/Vp=Ns/Np 

2.13 Eddie current 

The alternating flow of magnetic flux in core generates circulating current(by 

Faraday’s law) in the core. This happens as core material behaves like short circuited 

single loop of wire. This circulating current is known as Eddie current. (Flanagan 

2004) Generally any magnetic core material is made of iron material due to its good 

permeability. Iron is a good electric conductor and hence large circulating current 

will be induced.  

 

Figure 2.11: Eddy current (black) and current induced by the external magnetic field(red) 
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The magnetic field generated by circulating current counter acts the main alternating 

flux. The magnitude of circulating current depends on how strong the alternating 

magnetic flux is and the conductivity of the core material. Eddie current generates 

loss and acts as a counter efficient effect. It opposes the induced current which 

generates loses and causes the resistance in flux path. It generates heats in the core 

and reduces the efficiency. 

 

Figure 2.12: Circulating current in thick, medium and thin laminations (Elliott 2012) 

 

 

Figure 2.13: Induced Eddie current density of solid to sliced (1,2 &4) (Infolytica NDT) 

It is not possible to completely remove the Eddie current in transformer, however, its 

magnitude can be reduced significantly. The circulating current is proportional to the 

thickness of the core material (magnetic path) hence if the thickness of the core 

material is reduced (reduction of magnetic path) then the Eddie current is reduced. 

Therefore transformer core are made of lamination instead of solid core.  

The lamination loss can be predicted using two methods (Brauer et al 2000). One 

way is to use manufacturer’s datasheets. The information of eddi current loss of 

specific transformer are generally not available to users. Generally eddie current in 

normal power frequency is built using standard thin lamination for less loss. 

http://www.infolytica.com/en/applications/ex0130/
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However, for transformer that works on high frequency requires special core design 

and material to reduce loss considerably (Brauer et al 2000). 

 

2.14 Hysteresis effect 

The hysteresis in magnetic material is generated by the resistance of grains against 

the alternating flux required to magnetise the core. (Flanagan 1992) Heat in the form 

of I2R generates due to grain resistance. This heat contributes to energy loss in the 

magnetic material/ transformer. (Faiz & Saffari 2010) The rate of heat generation 

depends on the resistance and excessive heat in core is harmful to winding insulation 

we well as core lamination insulation. The hysteresis effect is inversely proportional 

the frequency, meaning decrease in frequency will cause increase in hysteresis 

losses. The transformer rated 60Hz, if operated at 50Hz will cause higher hysteresis 

losses and decreases the VA capacity of the transformer. 

Hysteresis loop (B-H curve) describes the characteristic of magnetic material. The 

figure 2.14 presents the B-H curve, 

 

Figure 2.14: Hysteresis loop/ B-H curve (NPTEL, NDT) 

This curve loop is developed by measuring flux when mmf(magneto motive force) is 

alternating at given frequency. It will follow the doted like when H, magnetic force, 

is increase for the material which has never been magnetised (no residual flux). The 

curve shows that higher the magnetic force the greater the magnetic field is. At the 

sharp tip of max H and B where most of magnetic domains are aligned is called 
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saturation point. At this point onwards any increase in magnetic force will cause very 

small amount of increase in flux density. Now if the curve is reduced zero current, it 

is apparent that the material still retains some magnetism, called residual magnetism. 

(Bronzeado 1995) On reversing the current, the flux reverses and the bottom part of 

the curve can be traced. By reversing the current again from bottom saturation point, 

the curve can be traced back to top saturation point. The result is called a hysteresis 

loop. (Flanagan 1992) A major source of uncertainty in magnetic circuit behaviour is 

apparent: Flux density depends not just on current, it also depends on which arm of 

the curve the sample is magnetized on, i.e., it depends on the circuit’s past history. 

For this reason, B-H curves are the average of the two arms of the hysteresis loop. 

 

Figure 2.15: B-H curve for selected material  
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3. Literature Review 

This section contains the relevant theory to inrush current, factor contributing to 

inrush current and finally the effect of inrush current. A number of possible 

controllable factors are included in the contributing factors. Following is the 

summary of the factor and effect associated with inrush current. 

FACTOR AFFECTING INRUSH CURRENT 

- Starting/switching phase angle of Voltage 

- Residual flux in core 

- Magnitude of Voltage 

- Saturation flux 

- Core material 

- Supply/Source impedance 

- Loading on secondary winding 

- Size of transformer 

 

EFFECT OF INRUSH CURRENT 

- High starting current 

- Voltage distortion (harmonics) 

- Sympatric inrush 

- Vibration/geometric movement of winding 

- Life of transformer 

- Protection complexity - Actual fault v/s Inrush current 

 

INRUSH CURRENT MITIGATION TECHNIQUES 

- Asynchronous switching v/s Inrush Current 

- Neutral Earthing Resister v/s Inrush Current 

- Comparison of various methods 
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3.1 Inrush current theory 

When a transformer is energised from a standard power source it draws high starting 

current which can be as high as 10 – 100 times of transformer’s rated current. This 

current will starts to decay at the rate of effective winding resistance and will settle 

down to steady state condition. The time to decay can be as long as few seconds. 

This current is known as magnetising inrush current (Naghizadeh et al 2012). 

Decay of this transient current is proportional to the series resistance of the 

transformer winding. If resistance of winding is ignored, the flux offset will never 

fall back to zero and inrush will continue.  (Chiesa et al 2010) In a real transformer, 

winding resistance will damp out the inrush. The decay time can range from a few 

cycles up to a minute depending on the transformer size and relevant design 

parameters.  

Inrush current can be divided in to three categories (Vaddebonia et al 2012):  

3.1.1 ENERGIZATION INRUSH  

Energisation inrush current results from the re-energisation of the 

transformer. The residual flux in this case can be zero or depending on de-

energisation timing.  

3.1.2 RECOVERY INRUSH 

Recovery inrush current flows when transformer voltage is restored after 

having been reduced by system disturbance. 

3.1.3 SYMPATHETIC INRUSH 

Sympathetic inrush current flows when multiple transformers are connected 

in same line and one of them is energised. Offsets inrush currents can 

circulate in transformers already energised, which in turn causes a inrush. 

It is possible to control or make the incurrent to near zero if it was possible to control 

the switching time such that the supply voltage angle matches the exact normal flux 

angle. Since the flux lags the voltage by 90o, switching of voltage should occur at 

the max value. Generally the flux in the transformer is zero (no remanent flux) and 

hence switching to voltage when it reach to max value then corresponding flux in 
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ideal condition should be near zero. This will be like ideal normal condition and 

hence the normal current will flow in the primary. (Kulkarni & Khaparde 2004) 

           

                             …3.1 

Where v = Applied voltage at primary 

 Vmax = Maximum voltage  

 t=time 

The moment ac voltage is applied to winding, emf is produced in it and it is opposite 

direction to supply voltage V. (Chen et al 2005) 

      

                    

Also, 

      
  

  
                   ...3.2 

Now, comparing equitation 3.1 and 3.2 we can write,  

    

  

  
                 

 
  

  
  

    

  
           

Integrating above equitation we get, 

   
    

  
∫            

   
    

  
             

                               ...3.3 

Where      
    

  
and C=asymmetrical component of flux 
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The core contains some residual magnetic flux in it denoted by           

The asymmetrical component of flux  

                       

Now putting value of C in equitation 3.3 we get, 

                                                ...3.4 

 

Now consider the switching instant when  =0 or       , 

(                                                    ) i.e the 

voltage is at its peak value. The flux is residual flux in the core at this instant. The 

operation of transformer is normal at this instant. 

                                       

                          

                   

Now consider the switching instant when  =       or    . In this case equitation 

is, 

                                             

                                

                    

 

Therefor the flux density is almost double. This is often referred as double fluxing, 

      . To generate flux more than normal current tends to increase exponentially 

due to saturation effect.  
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3.2 Factor affecting inrush current 

3.2.1 Starting phase angle of voltage 

The starting phase angle of voltage depends on when the transformer was switched. 

As per the equitation of inrush current,                             

           it is clear that inrush current depends on two variables, the remnant flux 

and switching angle of voltage. If the residual flux in the transformer is zero and 

switching angle is     , than final flux is, 

                               

                

         

This means normal flux will be produced and that mean normal current will be 

drawn during starting condition (no inrush current). However, if the voltage is 

switched on when     and taking residual flux to zero, the equitation of flux is, 

                                     

                      

         

 

Figure 3.1: Inrush current for twice flux (Gladstone 2004, p.14) 
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3.2.2 Residual flux in core 

In reality transformers are made of ferromagnetic material and hence they have 

hysteresis effect. This means they always have residual flux present. The figure 3.1 

shows the inrush current with respect to twice of the flux and figure 3.2 shows the 

inrush current for flux with twice and residual flux. 

 

Figure 3.2: Inrush current for twice + residual flux (Gladstone 2004, p.16) 

This means the optimum closing time so that no inrush can occur when residual flux 

is zero is when            . However, optimum switching time with residual flux 

is when the corresponding voltage angle of flux riches to the residual flux level in 

the core. According to (Ebner 2007) the equitation of optimum switching time  

ignoring CB restrike is, 

                     
 

  
      (

         

    
)                        

 

  
[      (

         

    
)   ]. 

 
Figure 3.3: The optimum switching time for single phase transformers (Ebner 2007) 
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Figure 3.4: Inrush current in first cycle v/s switching angle and residual flux (Ashrami et al 2012) 
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3.2.4 Saturation Flux 

As explained in background that saturation flux plays important part in inrush 

current magnitude. The B-H curve of the core material and design shows the 

saturation level. “The base angle of the inrush current is a monotonically decreasing 

function of the residual flux.” (Wang & Hamilton 2004). Therefore with decrease in 

saturation flux causes fundamental where increase in saturation flux causes the 

increase in DC offset and hence increase in second harmonics.  

 

Figure 3.5.1: Saturation flux v/s inrush current (Wang & Hamilton 2004) 

 
Figure 3.5.2: Effect of core saturation on secondary voltage (ElectronicsTeacher.com) 

Al-Khalifah & Saadany (2006) agrees to the dame principles. The transformer are 

generally operates in the range of 1.5 to 1.7 tesla. The inrush current of transformer 

are lower which operates close to the latter values. 
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3.2.5 Core material 

Magnetic properties are related to atomic structure. Each atom of a substance, for 

example, produces a tiny atomic-level magnetic field because its moving (i.e., 

orbiting) electrons constitute an atomic-level current and currents create magnetic 

fields. For nonmagnetic materials, these fields are randomly oriented and cancel. 

However, for ferromagnetic materials, the fields in small regions, called domains (as 

shown below), do not cancel. (Domains are of microscopic size, but are large enough 

to hold from 1017 to 1021 atoms.) If the domain fields in a ferromagnetic material 

line up, the material is magnetized; if they are randomly oriented, the material is not 

magnetized. 

 

Figure 3.6: Random orientation of microscopic fields in a non magnetized ferromagnetic material 

A nonmagnetized specimen can be magnetized by making its domain fields line up. 

The figure 3.7 shows how this can be done. As current through the coil is increased, 

the field strength increases and more and more domains align themselves in the 

direction of the field. If the field is made strong enough, almost all domain fields line 

up and the material is said to be in saturation (the almost flat portion of the B-H 

curve). In saturation, the flux density increases slowly as magnetization intensity 

increases. This means that once the material is in saturation, you cannot magnetize it 

much further no matter how hard you try. Path 0-a traced from the nonmagnetized 

state to the saturated state is termed the dc curve or normal magnetization curve.  
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Figure 3.7: Field intensity v/s change in the domain orientations. IH   

For ferromagnetic materials,   is not constant but varies with flux density and there 

is no easy way to compute it. In reality, however, it isn’t   that we are interested in: 

What we really want to know is, given B, what is H, and vice versa. A set of curves, 

called B-H or magnetization curves discussed in earlier section, provides this 

information. (These curves are obtained experimentally and are available in various 

handbooks. A separate curve is required for each material.) The figure 3.8 shows 

typical curves for various materials. 

 

Figure 3.8: B-H curves of various material. 1)Steel steel, 2) Silicon steel, 3) Cast steel, 4) Tungsten 

steel, 5) Magnet steel, 6) Cast iron, 7) Nickel, 8) Cobalt, 9) Magnetite (Steinmetz 1917, p.84) 
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Figure 3.9: Field intesity v/s Permeability and Flux density 

In core type transfors the windings are wound around each limbs. The general 

arrangement is as shown in figure 3.10.  

 

Figure 3.10: Example of core section length 

It is clear from the above figure that the lib of centre phase is shorter then remaining 

two phases. The reluctance of the core is directly proportional to the length of the 

material. Hence for the given flux density the limb of centre phase will have less 

reluctance compared to the other two limbs. 

 

3.2.6 Supply/Source impedance 

The source impedance in any power supply system is the key parameter that 

indicates the capacity of maximum current delivery. In terms of inrush current, the 

maximum current will be transferred if both source and transformer primary 

impedances are match or source impedance is higher than transformer impedance. 

However, a small transformer connected to a diesel generator set which often has 
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smaller impedance than that of transformer causes the inrush current to be limited. 

This will also cause system voltage drop which is harmful to house/office hold 

electrical and electronics equipment’s. (Seo & Kim 2008) The distance between 

supply source and transformer is also indication of longer busbars/transmission lines. 

This indicates additional resistance which contributes to damping of the current. The 

transformer away from the supply with higher line/busbar resistance has shorter 

inrush currents in duration compared to the ones which are closer to the generating 

units (Al-Khalifah & Saadany 2006) 

 

3.2.7 Loading on secondary winding 

The load on the transformer secondary side has no effect on the inrush of primary 

current. There are number of authors who claim that this is not the case. The testing 

done by [34] shows that the load (resistive or inductive) on secondary winding of the 

transformer has no influence on the inrush current of primary. “The reason for this 

feature is that when the transformer is saturated, the current peak mainly depends on 

the slope in the nonlinear zone of the saturation curve.” (Moses eta al 2010) 

 

3.2.8 Size of transformer 

The size of transformer reflects the internal transformer impedance. The larger the 

transformer the smaller the impedance it has and the smaller the transformer the 

higher the impedance it has. As mentioned in the supply/source impedance sections 

that impedance ratio of power supply system source and transformer internal affects 

the inrush current in the transformer. If the system has relatively smaller impedance 

then it will cause voltage drop and increase in inrush current and duration. The 

smaller transformer generates higher inrush current (i.e 30 times) while duration of 

inrush currents are generally smaller and decays faster (Al-Khalifah & Saadany 

2006) however, larger transformer has comparatively small inrush current but for 

longer duration. The decay time for smaller transformer (<1000kVA) is in the rage 

of 100 milliseconds while the larger transformer inrush current decay times are in 

range of seconds.  
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3.3 Effect of inrush current 

3.3.1 High starting current 

When a transformer is energised from a standard power source it draws high starting 

current which can be as high as 10 – 100 times of transformer’s rated current. This 

current will starts to decay at the rate of effective winding resistance and will settle 

down to steady state condition. The time to decay can be as long as few seconds. 

This current is known as magnetising inrush current (Naghizadeh et al 2012). This 

effect is described in section 3.1 and section 3.2.  

3.3.2 Voltage distortion (harmonics) 

Transformers power quality performance in distribution system is the key 

performance indicator. Switching due to alteration or load is continuously required 

and due to this it invites problems like inrush current which is rich of harmonics (Seo 

& Kim 2008). The figure 3.11 shows a spectrum of harmonics and their magnitude 

derived by Ashrami and others (2012).  

 

Figure 3.11: Spectrum of harmonics in inrush current (Ashrami et al 2012, p.537) 

It is clear that the second harmonics are the dominant in the inrush (Al-Khalifah & 

Saadany 2006). The main reason here is when inrush current starts it off setts in 

either positive or negative direction and instead of full wave it will be half wave. 

This means 50 x 2 = 100Hz. 100Hz is the frequency of second harmonics of which 

fundamental frequency is 50Hz. The figure 3.12 shows the harmonics distribution of 

three phases. 
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Figure 3.12: Harmonics contents of the idealised inrush current (Kulidjian et al 2001) 

When a transformer is energised, due to large inrush current, it also caused the 

voltage drop especially when transformer impedance is smaller than that of source 

impedance (Seo & Kim 2008). Such effect can be very sensitive to the some 

industrial customers and house hole/office electrical equipment. For this reason the 

calculation of inrush current, voltage drop and harmonics is important. The balanced 

three phase system the equitation of voltage drop is given by Vaddeboina et al 

(2012), 

   
 

    
  

Where Vd =voltage drop 

 m = change in load in kVA 

 S = short circuit level in MVA 

A desktop study is done by Vaddeboina et al (2012) on transformer (400kv/19kV) 

with residual flux set so that sum of three phases is zero, the voltage of source is 

414kV and source impedance of 8.5GVA. During the simulation they have 

considered worst case scenarios such as switching at 0 cross over etc. The figure 

3.13 shows that voltage shag due to poor impedance matching condition 
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Figure 3.13: Simulated RMS Voltage in kV v/s time in seconds (Vaddeboina et al 2012) 

 

3.3.3 Sympathetic inrush 

Sympathetic inrush is a flow of current on already connected transformer due to an 

inrush current of a transformer just being switched on (Kumbhar & Kulkarni 2007). 

Due to an inrush of new transformer the already connected transformer goes to 

saturation mode which is caused by asymmetrical voltage drop throughout the 

system resistances. This phenomenon makes the already connected transformer 

contribute to the inrush of the transformer just switched on. This transient interaction 

known as sympathetic interaction affects the duration and amplitude of the inrush 

current in already connected transformer and also a transformer just switched on. 

The key determining factor that causes the sympathetic inrush current is total series 

resistance of the AC supply system. The study done by (Bronzeado & Yacamini 

1995) revels that the inrush current decays slower when the transformer was 

connected with a network where other transformers are already energised. The 

problem of sympathetic incurrent gets worse when system impedance is higher that 

causes resistance to current flow and drop in voltage. The large transformers with 

small impedance make the effect worst. The long inrush and high magnitude of 

inrush current generates temporary harmonics and this effect can cause serious 

problems to power systems. The energy dissipation patterns by the system and 

saturation level reached by transformer are the two factors that determine the 

duration and impact of sympathetic inrush current and interaction.  
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Figure 3.14: Inrush currents v/s sympathetic inrush currents (Vaddeboina et al 2012) 

Sympathetic inrush current can be as high as normal inrush. Due to this effect the 

importance of transformer differential protection and other protection study for 

nuisance tripping becomes vital. T 

 

Figure 3.15: System strength v/s sympathetic reaction (Bronzeado & Yacamini 1995) 

 

3.3.5 Vibration/geometric movement of winding 

Power transformers are important and valuable assets in any plants. The failure or 

down time of this equipment costs significantly in terms of money and production 

time too. For this reason transformers are highly protected compared to other 

equipment’s in the plants. The one of the many reasons of power transformer failure 

is insulation failure which is caused by vibration and other electromechanical forces 

during starting, short circuit and normal running conditions. To account these 
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problems transformer manufacturers accounts for strong structure which holds the 

winding and core tightly (Steurer & Frohlich 2002).  

In a number of discussions it was argued that what (inrush or short circuit) is the 

worst in terms of electromechanical forces. During the discussion it was pointed that 

the short circuit last for only few milliseconds as protection system isolates the faulty 

circuit, where the inrush current last for 10s of seconds. The frequency of 

occurrences of inrush is far more than short circuit faults too. It was also discussed 

that the magnitude of current are near similar to each other when transformers are 

energised at no loads. (Steurer & Frohlich 2002) 

Transformer energised during no load exhibits large inrush current which causes 

unbalanced magneto motive forces and transformer core saturation. (Steurer & 

Frohlich 2002) This leads to large axial forces on windings. Such forces are much 

higher in the range of two - ten times compared to the forces generated during short 

circuit conditions. The key difference between the inrush current and short circuit 

current however, is the forces on secondary side of the transformer. During inrush 

condition no or very small amount of current and hence forces being generated, 

where, in short circuit condition the both sides of the windings are equally(or 

according to % ratio) loaded and affected due to electro-mechanical forces.  

The equitation of the local force density in a coil is given by 

      

Where J = current density 

B = flux density 

During the inrush of current and short circuit of a transformer generates two main 

types of forces acts on the winding. These forces are square of current. 

RADIAL FORCE 

Radial force occurs during inrush current. This force tries to strength the 

winding meaning it will try to make the coil diameter bigger. This only 

happens to the primary winding or the winding being energised. However, 

during short-circuit condition the radial force in inner winding compresses 
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while outer winding, like inrush current, gets stretched. The radial forces 

during short-circuit are more harmful than that of inrush current. (Neves et al 

2011). Please referrer to the figure 3.16 for clarification.  

 

Figure 3.16: Radial forces during inrush and short-circuit conditions (Neves et al 2011) 

AXIAL FORCE 

The axial force compresses the winding towards the ground means the forces 

pushes the winding downwards. The force during inrush current is higher 

than short-circuits as flux during transformer energization is higher. (Neves 

et al 2011) The inrush current generates axial force only on the winding 

being energised however the short-circuit, as current flows through both 

windings, generates axial force on both primary and secondary windings. 

Please refer to the figure 3.17. 

 

Figure 3.17: Axial forces during inrush and short-circuit conditions (Neves et al 2011) 
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3.3.6 Protection complexity - Actual fault v/s Inrush current 

As discussed in earlier chapter, in B-H curve, to generate any flux higher than knee 

point a large amount of current is requires as core trends to saturate exponentially.  

The general equitation of inrush current that provides amplitudes of current over a 

function of time is as shown below, .(Apolonio et al 2004) 

     
√   

  
       (           

       

     )   

Where   =maximum applied voltage 

   =total impedance under inrush  

   =constant for 3 phase winding connection 

   =constant for short circuit power of network 

  =energization angle 

   =core saturation point 

  =time 

  =time constant of transformer winding under inrush conditions 

However, for the purpose of protection system design the most important factor 

remains the peak magnitude of inrush current.(Apolonio et al 2004) The much 

simplified version of equitation for peak value calculation is derived as shown 

below,  

      
√   

√        
(
         

  
) 

Where   =maximum applied voltage 

 L =air core inductance 

 R=total dc resistance 

   =normal rated flux density 
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   =residual flux density 

   =saturation flux density 

It is clear from above two equitation that the inrush current depends on mainly 

residual flux and switching angle. (Apolonio et al 2004) 

 

Figure 3.18: Sample inrush current (Kulidjian & Kasztenny 2001) 

 

Figure 3.19: Ratio of second harmonics to fundamental (Kulidjian & Kasztenny 2001) 

An algorithm developed by Aktaibe and Rahman (2004) based on differential current 

and harmonics contents in the inrush current. In his logic there are two main parts. 

The first part compares the differential currents |Id1-Id2|. These current is measured 

from the CTs installed on primary and secondary. If the difference is not zero then it 

indicates the either internal fault or presence of inrush current. The zero difference 

shows there is no fault inside the protected boundary. In second parallel part of the 

logic, the components of harmonics and their amplitudes are calculated. After the 

calculation the contents of seconds harmonic’s percentage amplitude is checked in 

the range of (0.3 to 0.6) of the components of supply frequency amplitude. If the 

second harmonic’s contents are in the given range then it indicates the presence of 

inrush current otherwise it is an internal/external fault. Finally if the outputs of both 

parts are zero than it shows there is presence of inrush current and trip will be 

prevented. However, if the outputs of both parts are 1 which shows there is an 

internal fault, the trip signal will be sent to the tripping logic/protection. 
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The algorithm (figure 3.20) developed by Hooshyar (2012) has same principle 

however, instead of calculating direct harmonics contents, the waveform correction 

scheme and odd and even part extraction methods are used to differentiate the inrush 

current in actual internal fault.  

Figure 3.20 : Flow chart to differentiate the inrush current (Aktaibe and Rahman 2004) 
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The wave form of fault current is full wave but of higher magnitude. This waveform 

will be close to sine wave. However, the waveform of inrush current is not sine 

wave. It has DC components and it is half and peaky wave. The difference is as 

shown in figure 3.21 and figure 3.22. A paper presented by Rehmati and Sanaye-

Pasand (2008) shows that transformer fault and inrush can be distinguished by 

wavelet transform.  

 

Figure 3.21: The fault current v/s inrush current waveform (Rehmati & Sanaye-Pasand 2008) 

 

Figure 3.22 : Idealised inrush current (Kulidjian & Kasztenny 2001) 

 

3.4 Inrush current mitigation techniques 

3.4.1 Asynchronous switching v/s Inrush Current 

A practical done by Rahnavard et al (2010) found that the inrush current can 

significantly be reduced by asynchronous switching operation. The result based on a 

Matlab sim-power system simulation shows that the by switching each pole circuit 

breaker at the interval of 6 milliseconds can reduce current from 5.96/-5.24 pu to 1/-
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1pu. However, this exercise can create other problems depending on the connected at 

downstream of the transformers. It was also noted that the operation can be 

expensive as exchange of line breakers were necessary.  

Asynchronous switching is turning each phase circuit breaker at separate time 

instead of same time. In start connected primary of transformer, when asynchronous 

switching takes place, during the first phase switch all current goes from first phase 

winding to neutral. (Cui 2005)This current is negative sequence current. During 

second phase switching the neutral current can be even greater than that of second 

phase as first phase also contributes to the neutral current. However, then third phase 

is energised the negative sequence current comes to zero instantly.  

 

3.4.2 Neutral Earthing Resister v/s Inrush Current 

A practical done by (Cui 2005) on transformer reveals that the optimal neutral 

resister can be derived from simulation and  is as effective as series 

resistance/voltage divider method and can significantly reduce the inrush current 

magnitude and duration. The figure 3.23 and 3.24 shows the optimum value of NER 

is 50ohm based on calculations and analysis done on 225kVA, 2400/600V, 50Hz 

3ph, YY transformer. 

 

Figure 3.23: Value of NER v/s Inrush current(p.u), duration & neutral voltage(p.u) (Hajivar 2010) 
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Figure 3.24: Inrush current v/s value of neutral earthing resistors (Hajivar 2010) 

 

The equitation derived by Xu et al (2005) for the optimum value of the resister is, 

               

Where,   =Neutral earthing resister and 

     =open circuit positive sequence reactance of the transformer 
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(Xu et al 2005) suggests that about 1 quarter of circuit breaker contact voltage and 

up to 90% reduction of inrush current can be achieved by switching the pole 

sequence as A, B & then C. 

The neutral earthing resister limits the current going to neutral which limits the 

inrush of current during first and second phase energisation.  

 

Figure 3.25: The value of neutral earthing resister and effect on inrush current (Cui et al 2005) 

 

3.4.3 Comparison of various methods 

Results of studies done by Rahnavad and et al (2010) suggest that best of time 

switching is as effective as asynchronous switching. In their study they added a 

circuit breaker and load on secondary side. In primary side of transformer a RLC 

load and this load’s circuit breaker were connected with parallel to main primary 

circuit breaker. Combinations of various switching patents were done. It was 

observed that the current can be inrush current can be reduced about five time by 

switching secondary load first, the RLC load across primary CB second and finally 
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the main primary circuit breaker. This method is derived from so called reduced 

initial primary voltage.  

 

Table 3.1: Comparison of outcome of various methods (Rahnavad et al 2010) 

 

  



Page 47  

 

4. Methodology 

This chapter contains information about the number of inrush current effects and the 

construction of the model. It describes the list of simulation scenarios and, the 

specification of an actual transformer and running data history, modelling software, 

brief on model, parameter used in model, the sketch of model and finally 

measurement techniques. The chapter basically presents the methodology of 

constructed models and simulated scenarios. 

When a transformer is energised from a standard power source it draws high starting 

current which can be as high as 10 – 100 times of transformer’s rated current. This 

current will starts to decay at the rate of effective winding resistance and will settle 

down to steady state condition. The time to decay can be as long as few seconds. 

This current is known as magnetising inrush current (Naghizadeh et al 2012). This 

effect is described in section 3.1 and section 3.2. The inrush current results in 

nusence trip of protection system, it generates second harmonics creating power 

quality issue, and added mechanical stress due to high magnetic forces generated due 

to such events and due to all of above it negatively affects the life of a transformer.  

The listed following simulation effects are based on above principle. 

4.1 List of scenarios 

- Inrush current compared to actual transformer 

This model is the base model. This model is later updated for the remaining 

simulation scenarios listed below. Here the parameters entered in transformer 

model block resemble the actual transformer. This model resembles the 

actual remaining system connected with transformer such as transformers 

connected at input and outputs, the neutral earthing transformer, the circuit 

breaker pole closing timing accuracy etc. This addition is important as the 

actual transformer’s data will be compared with simulation at results and 

discussion topic. Transformer also behaves differently when other 

components are connected with it. This simulation results when compared 

with actual data will reveal any match/mismatch and will be progressed 

accordingly.  
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- Inrush current in 3 single phase and a 3-phase transformer 

After comparing above model with actual transformer a 3 single phase 

transformer model will be created that matches all relevant power parameters 

of 3-phase transformer model. The results of 3-single phase transformer 

model simulation will be compared with 3 phase transformer model. The 

discussion and conclusion will be derived according to the findings.  

- Sympathetic inrush current 

This inrush current flows when two or more transformers are connected 

together in parallel. Sympathetic inrush flows to the transformer which is 

already energised when another new transformer on same parallel line is 

energised. Due to inrush on new transformer the remaining connected 

transformer will feed the necessary current (as impedance goes down). This 

effect will be simulated by connecting a number of transformers in the 

system and switching a new transformer on the system. The magnitude and 

duration will be a key focus in this simulation result. 

- Sequential phase energisation (with/without NER) 

As listed in literature review the inrush current depends on two key 

parameters, the pole switching time and residual flux. In large transformer it 

is difficult to control/remove residual flow in the core. Hence the only low 

cost practical controllable option is the pole switching time. The switching 

time can be easily adjusted in many circuit breakers. This simulation which 

reduces the inrush current will be carried out by phase of supplying source 

voltage at several instant. Here optimum switching time will also be 

recommended from the derived  results.  
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4.2 Modelling package 

SimPowerSystem is specially designed Simulink block library that has all necessary 

power system components. This system was developed by Hydro-Quebec of 

Montreal. “SimPowerSystem models are assembled as a physical system. Models are 

connected by physical connections that represent ideal conduction paths. This 

method of modelling being physical and schematic it is easier to understand while at 

backend the system automatically constructs the differential algebraic equations 

(DAEs) that characterize the behaviour of the system and integrates with the rest of 

the model”. (Mathworks NDT) 

 

4.3 Measurement techniques 

The three phase voltage and current is measured using a VI meter as modelled 

below. The Fast Fourier Transformation reveals the harmonics contents and 

magnitude. The time of inrush current decay is also noted. 

 

Figure 4.1 : Three phase V, I and IFFT scope 

 

4.4 Existing arrangement  

The existing power system arrangement is as described in figure 4.3. A 592MVA, 2 

pole, 50Hz synchronous machine rated 20kV p-p terminal output connected to a 

600MVA transformer known as generator transformer through a GCB. The HV side 

of Generator transformer is connected in star and directly grounded. This transformer 

steps ups the generator voltage to 500kV. The power station load is supplied via a 

11kV, 70MVA unit transformer which is connected between generator circuit 

breaker and generator transformer. Generator gets its field power from stator 
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terminal via an AVR and three single phase 
  

√ 
     transformer rated 2.2MVA. 

Generator is star connected and neutral is grounded via a neutral earthing 

transformer and 5.6Ohm resister.  

 

Figure 4.2 : Simplified one diagram of actual system arrangement 
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4.5 Actual data sourcing 

High speed data is be sourced from the IDM-Hathaway unit. The device has already 

captured varieties of different data from various system disturbances to new start and 

shutdown event etc. This data from the date file will be converted to appropriate file 

format to import in to Matlab simulation program.  

IDM (HATHAWAY) 

IDM-Hathaway is electrical fault recorder. It is a well-known brand in large 

electric power stations. This recorder in the event of any system disturbances 

captures the high speed data triggered according to user defined settings. 

“The product, when coupled with the Qualitrol Hathaway Replayplus 

software package, provides a powerful platform for the acquisition, analysis 

and reporting of data from power systems.” (Hathaway, NDT) 

SAMPLE DURATION AND RATE 

The existing IDM unit is set to capture 128 samples per cycle for fast data 

capture. This high speed recorder captures the data for 6 seconds. The 

settings are done so that it starts recording 1 second pre event and 5 second 

post event. The second inbuilt recording function is slow speed type. This 

recorder captures the data at 10 samples per cycle. This data is continuously 

being recorded however, due to memory issues the data after 3 months gets 

over written. 

 

4.6 Model subsystems & parameters 

 Following is base model built during this semester to get general concept of what 

are the possible obstacles and issues. The data in table 4.10 three phase power 

transformer block is actual data of the 600MVA transformer as discussed in section 

4.4. The key parameter is hysteresis data. This data of the existing transformer is not 

available. However, about 5 year back the same capacity spare transformer from 

different manufacture has been bought. Some hysteresis data were available however 

they were incomplete. Enquiry was done to the manufacturer for the actual hysteresis 
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curve however the curves were unavailable due to confidentiality issue. Therefore 

instead of using user defined curves, here a standard more widely referred in 

Matlab’s  curve is used by selecting the transformer as saturable transformer.  

The following are the key components of the models that can be used in a subsystem 

however, for simplification they are left on the main system.  

Circuit Breaker Timer 

The circuit breaker timer was created to simulate the circuit breaker turning on times. 

The low voltage side of the transformer was switched on at half second interval and 

the high voltage side of the circuit breaker was switched on at two seconds interval. 

Figure 4.3 : Circuit breaker timing circuit 

The circuit breaker timer system as shown in figure 4.3 was used in model. This 

system runs with the main model and when running it generates step up input from 0 

to 1 by Step2 block. This sends the trigger signals to Relay1 and Relay2. The relay 1 

has 0.5 seconds on delay timer in series and Relay2 has two seconds on delay timer 

in series. Both of this relays at definite time send on trigger signals to dedicated 

circuit breaker via data type conversation block. The data conversion block required 

to match the data signals between the timer and circuit breaker. The GCB1_Switch 

sends trigger signal to the circuit breaker which is located at the input (low voltage 

side) of the transformer and the GTCB2_Switch triggers the circuit breaker located 

the output (high voltage side) of the transformer.  
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Transformer Input model  

The input model described in figure 4.4 provides the energy to low voltage side of 

the transformer. This model consists of a three phase generator, V/I sensor, 

excitation transformer, three phase isolated circuit breaker and a unit transformer.  

Figure 4.4: Transformer output system 

The three phase synchronous generator generates 20kV voltage and is connected to 

three phase isolated circuit breaker via a V/I_Meter block. The isolated circuit 

breaker resembles the actual plants isolated air circuit breaker. They all get the relay 

signal at the same time however, since they are physically/mechanically isolated 

from each other the actual contact time varies in order of up to 10 milliseconds in its 

healthy state.  

 

Figure 4.5: VI_Meter subsystem 

The VI_meter block senses each phase voltage and current signals and stores in 

variable which are connected to scope for analysis. For simplification, the excitation 

transformer here is represented as RLC circuit with active power 6MW, inductive 

reactive power 1MVAR and capacitive reactive power of 0.5MVAR. The excitation 

transformer also acts as initial starting load before the generator circuit breaker turns 

on. The actual rating of unit transformer is 70MVA however in actual plant the 
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transformer is only partially loaded. The unit transformer provides the energy to 

station’s local load. For actual simulation here the unit transformer is represented as 

RLC load with active power of 30MW, the inductive reactive power of 6MVARs 

and capacitive power of 2MVARs.  

Main Transformer model  

The main transformer is 600MVA, 20kV to 500kV step up transformer. It gets 

power from synchronous generator, steps up the voltage to 500kV and sends full 

output to transmission line. The transformer is delta-star grounded with saturable 

core. All units are described in per unit quantity.  

 

 

Winding 1; V1: 20,000V, R1: 0.002pu, L1: 0.08pu 

Winding 2; V2: 500,000V, R1: 0.002pu, L1: 0.08pu 

Saturation Characteristic: 0,0 ; 0,1.2 ; 1.0,1.2 

 

The details of inrush current model that matlab sim-power system has used is as 

shown below. The model consist of mainly a s function, couple of lookup tables and 

switches. 

 

Figure 4.6: Transformer hysteresis model 
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Transformer output model  

The output model described in figure 4.7 provides the energy to load from high 

voltage side of the generator transformer. This part of model consist of a HV circuit 

breaker and load that is represented by a similar size step down transformer and load 

as RLC load at both LV and HV side of the transformer.  

 

Figure 4.7: Transformer output system 

In this model, the three phase power at 500kV phase – phase voltage is transferred to 

same size transformer however in this case stepping down the input voltage from 

500kV to 20kV representing the distribution transformer of the grid. Between these 

two transformers the 500kV circuit breaker is placed to switch the load 

instantaneously to simulate the large load switching. A small line loss (10MW, 

0.3MVAR L & 0.1MVAR C) representing the transmission line loss as a RLC load 

is placed between the generator transformer and 500kV CB. A decent size RLC load 

representing large transmission line loss is represented as 60MW active power, 

3MVAR inductive and 1MVAR capacitive load. At the end of distribution 

transformer 60MW load with some inductive and capacitive load is connected. The 

reason for not connecting full load is when a generator is synchronised to grid the 

loading on it is controlled carefully and hence load is increased gradually in steps not 

instantaneously.  
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5. Result & Discussion 

This chapter contains details about each model, the results and discussion. As 

described in methodology here mainly five models are built and simulated for 

analysis of inrush current effect. The conclusion and outcome will be listed in the 

next chapter.  

The computer used here has 64bit i7-2620 CPU with 2.70GHz speed and 8GB RAM 

that runs on Windows 7 operating system. The Matlab version 7.10 (R2010a) with 

Simulink 7.5 and SimPowerSystem 5.2.1 is used. The model takes significant 

amount of processing power and time to simulate each scenario.  

The first model described in section 5.1 is a base model. It basically consist of a 

three phase generator, three phase isolated circuit breaker, the 600MVA generator 

transformer, a load breaker at output side and grid consist of another transformer and 

load. The model is simulated at 50Hz and the three phase voltage, current and 

harmonics are measured and presented on scope. The harmonics content of current 

for each second is also presented on a separate live figure. This figure automatically 

runs and updates when model is run.  

There are three stages of the switching in each model described in section 5.1 to 5.6. 

In the beginning of simulation for first 500mS only excitation transformer is in 

circuit. This transformer is represented by RLC load and hence only small steady 

state current is seen in the results. At the 500mS interval the generator 3 phase 

isolated circuit breaker is energised. Here all phases are switched at same time and 

considered no lag in stitching time. Switching this circuit breaker energises the 

generator transformer and also unit transformer. Unit transformer is represented as 

RLC load and hence it has only a small steady state component in power sharing. 

The output of generator transformer is connected to 500kV load breaker and it is also 

connected to some line loss represented as RLC load. Hence except small RLC load 

there is no significant load on the circuit.  

However, as seen in the plot on scope the large amount of three phase inrush current 

flows. This current slowly decays towards the steady state current. The magnitude of 

current depends on the hysteresis characteristic of core material and switching angle 

of applied voltage. The rate of inrush current decay is proportional to circuit 
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resistance of core material.  This large amount of inrush current will always be 

present in all three phases of the circuit as each phase is 120 degree apart from each 

other. Even if it is considered to have  no residual magnetism in core and one phases 

switches at 90deg to contribute zero inrush current for that phase, the other two 

phases will 120 deg apart and contribute to out of sync(v/f). This means there will 

always be an inrush of current in any given condition in three phase circuits.  

The inrush current decays exponentially with increase in time. As time riches to 

2000 mS, the load circuit breaker located on 500kV line is energised. This results in 

energisation of distribution transformer and supply to distribution load. This results 

in inrush current in main transformer. This current is called sympathetic inrush 

current as transformer is already energised and inrush of another transformer causes 

the inrush to the already connected and energised transformers. The magnitude of 

peak inrush current again depends on voltage switching angle, residual flux in core 

and also load connected to on secondary.  

In section 5.2 instead of one, three phase generator transformer, three single phase 

transformers are used. This is simulated to understand the effect of separate tank 

transformers on inrush current. The rating of these three single phase transformer is 

estimated to be equivalent to one three phase transformer. The inrush current results 

of this simulation seem to be almost identical to a three phase transformer. However, 

when transformer is de-energised the residual flux in each single phase transformer 

will be proportional to the switching off angle of voltage. Hence, each three 

transformer will contain different level of residual flux. The level of residual flux 

will also be proportional to phase angle, 120 degree. This means if the transformer is 

energised in proportional to remaining residual flux in core, the existing flux in core 

will match 120 degree phase angle of each voltage angle. This will result in 

minimum or zero inrush current which is not possible in one three phase transformer. 

The HV size of generator transformer which is star connected is grounded via a 

150mH reactor in section 5.3. The result simulation did not reveal any different 

results. It was expected to see reduced inrush current with addition of NER. 

The last three sections contain 90
o
 lag voltage phase lock switching system. Here 

first phase was energised when phase one voltage reaches to 90
o
. The second and 

third phases weree energised 120
o
 and 240

o
 respectively. This results in zero inrush 
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current. The following six sub section of this section contains matlab sim-power 

system model, three phase instantaneous current plot and fast furrier transformed 

plot of the three phase current.  

 



Page 60  

 

5.1 Model 1 – Three phase transformer 

 

Figure 5.1: Three phase transformer model 
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Figure 5.2: Three phase transformer model Iabc 
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Figure 5.3: Three phase transformer model FFT of Iabc 
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5.2 Model 2 – Three single phase transformers 

 

Figure 5.4: Three single phase transformers model 
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Figure 5.5: Three single phase transformers model Iabc 
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Figure 5.6: Three single phase transformers model FFT of Iabc 
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5.3 Model 3 – Three single phase transformers with NER at HV 

 

Figure 5.7: Three single phase transformers with NER model 
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Figure 5.8: Three single phase transformers with NER model Iabc 
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Figure 5.9: Three single phase transformers with NER model FFT of Iabc 
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5.4 Model 4 – Three single phase transformer with sequential switch 

 

Figure 5.10: Three single phase transformers with sequential switch 
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Figure 5.11: Three single phase transformers with sequential switch Iabc 
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Figure 5.12: Three single phase transformers with sequential switch FFT of Iabc 
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5.5 Model 5 – Three phase transformer with sequential switch 

 

Figure 5.13: Three phase transformer with sequential switch 
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Figure 5.14: Three phase transformer with sequential switch Iabc 
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Figure 5.15: Three phase transformer with sequential switch FFT of Iabc 
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5.6 Model 6 – Three single phase transformers with NER at HV and 

sequential switch                                                                         . 

 

Figure 5.16: Three single phase transformers with NER at HV and sequential switch 
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Figure 5.17: Three single phase transformers with NER at HV and sequential switch Iabc 
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Figure 5.18: Three single phase transformers with NER at HV and sequential switch FFT of Iabc
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6. Conclusion 

The contribution of transformer inrush current is affected mainly by starting phase 

angle of switching voltage and residual flux in the core. It also depends on 

magnitude of voltage, core material’s hysteresis characteristic, supply/source 

impedance and also loading on secondary side of transformer. 

The effect of inrush current are high starting current, voltage distortion/harmonics, 

sympathetic inrush current, vibration of transformer/winding, protection system 

nuisance operation. Due to all of these effects the life of transformer is reduced. 

In three phase circuit where a three phase transformer is used zero inrush current is 

not practical even if a phase is switched when phase is at its peak. This is not 

achievable due to fact that each phase is 120
o
 apart hence only one phase’s inrush 

can be made to near zero. The remaining two phases will be 120
o
 out of phase and 

hence will contribute to inrush current. 

The three single phase transformers with separate cores used in three phase circuit 

can achieve near zero inrush current if switched when voltage is at its peak. This is 

practical as each core will contain, when transformers are switched off, residual flux 

proportionate to 120
o
 difference of corresponding phase. 

The inrush current in already established transformer or systems can be effectively 

controlled by sequential switching. This is most convenient when circuit breakers are 

isolated because 120
o
 pole switching is achievable with small modification and does 

not require replacing the expensive circuit breaker. The residual flux in this system 

can be detected by detecting the switching off angle by monitoring the system 

voltage and current. The starting time of first pole is then decided based on residual 

flux in core. The second and third poles are switched at 120
o
 and 240

o
 respectively. 

As the method does not require purchasing expensive new equipment or large 

modification in system, it is the most economical solution of transformer inrush 

current mitigation.  

FUTURE WORK 

Modelling based on the system described in above paragraph (residual flux 

calculation from de-energisation time) can be considered.    
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TOPIC:   EFFECTS OF TRANSFORMER INRUSH CURRENT 
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PROJECT AIM:  To build a transformer inrush current model using Sim Power System 

(MatLab) and simulate the effects. 
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1) Research the background information for the effects of transformer inrush current 
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- Data analysis from actual large 3ph HV transformers 

2) Prepare the list of effects of transformer inrush current and their relations with 
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- three phase transformer model 
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- three single phase transformers with NER (neutral Earthing resister) at HV 

- three single phase transformers with sequential switching 

- three phase transformer with sequential switching 
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4) Set the relevant parameters and simulate the model  
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