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The acoustical output of loudspeaker systems is usually measured in the far field under anechoic conditions requiring 
a large measurement distance and special treatment of the room (absorbing room boundaries, air condition). Also, the 
measurements of directivity characteristics at sufficient angular resolution are very time consuming. The measurement 
in the near field of the sound source provides significant benefits (dominant direct sound, higher SNR, less climate 
impact) but requires a scanning process and a holographic processing of the measured data. This paper describes the 
theoretical basis of this new measurement technique and practical consequences for the loudspeaker diagnostics. 

 

1. Introduction 
Traditionally, the acoustical output and directivity of the 
loudspeaker are measured in far field (r > rfar(f)) where 
the sound pressure is in-phase with the particle velocity 
and the amplitude decreases inversely with the distance r 
from the acoustical center. Therefore, it is convenient to 
describe the sound pressure p(r) in the far field in 
spherical coordinates  
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where the origin is placed at the reference point rref 
defined at a convenient place on the surface of radiator, 
grill or enclosure, close to the supposed acoustical center. 
The reference axis nref is usually orthogonal to the 
radiators surface and the orientation vector oref usually 
points in vertical direction.   
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Figure 1 Standard coordinate system used to assess the 
far field properties of a loudspeaker system  

1.1. Far-field condition 

The minimum distance rfar(f) where the far field is 
reached varies with frequency f and depends on the 
particular geometry of the loudspeaker. Comparing the 
maximum geometrical dimension d of the loudspeaker 
with the wavelength λ=c0/f, the minimum distance rfar has 
to fulfill all of the following conditions:  

1. rfar > d  

2. rfar > λ (critical at low frequencies) 

3. rfar/d > d/λ (critical at high frequencies)  

For line arrays, sound bars and other large loudspeakers 
measured over the audio band, the minimum distance 
exceeds typically 5 m. There is significant effort 
required to ensure anechoic and constant propagation 
conditions in the air in the far field and sufficient 
suppression of the ambient noise. An anechoic room is 
the best solution to cope with wind, climate changes and 
noise but is a cost intensive and long term investment 
that cannot be moved to other locations. Measurements 
at larger distances also reveal the imperfections of the 
anechoic room such as an error (> 1dB) in the measured 
amplitude response at low frequencies (< 100Hz) due to 
the limited depth absorption material lining of the room 
boundaries. The measurement of the amplitude response 
in the far field at high frequencies can be accomplished 
with high accuracy because the positioning error has a 
minor influence and reflections can be removed by 
windowing the impulse response. However, the 
temperature of the air in the propagation path has a 
significant influence on the speed of sound c0 and the 
measured phase response at high frequencies. For 
example, an increase of the air temperature by 2 Kelvin 
over a distance r= 5 m will already generate a phase error 
of 90° at 5 kHz. Climate conditioning can control the 
mean temperature in the room but it is very difficult to 
ensure a homogenous temperature field. Thus, far field 
measurements are less suited for providing the accurate 
phase information at higher frequencies that is required 



 

 

for optimal installations of line arrays and active systems 
using beam steering.    

1.2. Angular Resolution 

The main advantage of the far-field measurement is that 
all relevant information of the 3D sound field is mapped 
to the sound distribution on a 2D surface with a constant 
distance r (radius of the sphere) from the reference point 
that only depends on two angles, latitude θ and 
azimuth ϕ. This directivity characteristic can be 
measured traditionally by turning the loudspeaker around 
the reference point rref or by using a microphone array 
placed on a sphere with the radius r. The angular 
resolution corresponds to the angular increments of the 
turntable or the angular difference between adjacent 
microphone positions. Sampling the complete sphere at 
1° angular resolution would require 64.800 single 
measurement points. In practice, the total number of 
measurement point has to be significantly reduced to 
keep the total measurement time acceptable. A coarser 
angular resolution (≥ 2°) may be sufficient for small 
loudspeaker operated at low frequencies where the 
source has low directivity, then various kinds of 
interpolation techniques can be applied to approximate 
the polar pattern. However, the same angular resolution 
may produce spatial aliasing on other loudspeakers at 
higher frequencies where nulls and lobes are not 
detected, and significant errors are introduced in the 
sound power response and other directional 
characteristics. This problem cannot be detected by post-
processing if the directivity pattern of the loudspeaker is 
unknown.  

In practice, the traditional far field measurement 
technique requires a compromise between measurement 
effort and accuracy, which depends on the experience 
and intuition of the user. There are major uncertainties 
and no objective way to assess the reliability of the 
generated data. This is an unsatisfying situation which 
can be solved by physical modeling of the sound 
radiation and by checking the consistency of the 
measured data.  

2. Spherical Wave Expansion  

The sound propagation between the loudspeaker surface 
and other external boundaries (e.g. room walls) can be 
described by the Helmholtz equation. Using spherical 
coordinates  
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the solution of the Helmholtz equation can be separated 
into radial and angular functions which form a complete 
and orthogonal set of base solution corresponding to 
spherical waves having their center in the expansion 
point rEP(f). Contrary to the standard coordinate system 
in Figure 1, the expansion point rEP(f) might be not 
directly accessible (e.g. inside the enclosure), and the 
position of this point and the orientation of angles θE(f) 
and ϕE(f) might change with frequency.      

Introducing a transfer function H(f,rE) = P(f, rE)/U(f) 
between the input signal u and the sound pressure p(t) in 
the frequency domain, the transfer function can be 
expanded into a series of base solutions weighted by 
coefficients c(f):  
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The base solution b(f,rE) uses the spherical harmonics 
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to describe the angular dependency on the latitude angle 
θE by using the Legendre function m

nP  and the 

dependency on ϕE by a complex exponential function.  
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Figure 2 Real part (above) and imaginary part (below) 
of the spherical harmonics ),( EE

m
nY  versus order n 

and suborder m   

Figure 2 shows the real and imaginary part of the 
spherical harmonics versus order n=0,1,2 and suborder 
m=-n,…,n. The zero order function describes the omni-
directional characteristic of a monopole while the first 



 

 

order harmonics n=1 describes the orientation of dipole 
in any direction.   

The radial dependency on the distance rE between point 
rE and the expansion point rEP(f) is separated in the 
Hankel function of the second kind 
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using the wavenumber k=2πf/c0, the nth-order Bessel 
function jn and nth-order Neumann function yn, which are 
plotted versus krE in Figure 3. 

Neumann function yn(kr)

jn

yn

krE

krE  

Figure 3 Bessel function jn (above) and Neumann 
function yn (below) of order n versus krE    

The Hankel function of the 2nd kind describes the phase 
and amplitude of spherical waves diverging from the 
expansion point to infinity. For large arguments of krE, 
the amplitude decreases by 1/rE and the phase varies with 
krE. For small arguments, the Neumann function yn 
becomes dominant in the Hankel function, approaching  
negative infinity at the expansion point.  

The complex coefficients Cmn(f) are the free parameters 
of the model that have to be estimated for the particular 
device under test.  

J. Angus, et. al. [9] applied the spherical wave expansion 
to loudspeaker far field data that is measured spherically, 
centered at the expansion point rEP, and coefficients Cmn 
are estimated by integrating the measured data weighted 
by the spherical harmonics on the sphere.  Alternatively, 
Lu, et. al. [13] suggested to estimate the coefficients Cmn 
by minimizing the squared error between modeled and 
measured far field data collected on any arbitrarily 
shaped closed surface around the loudspeaker [11].  

If the coefficients Cmn(f) are determined for the particular 
loudspeaker, the transfer function H(f, rE) can be 
calculated according to Eq. (3) for any point rE outside 
the scanning surface.  

3. Near-Field Measurement 

The measurement in the near field of the loudspeaker 
seems interesting because the amplitude of direct sound 
is significantly increased compared to the room 
reflections and any other ambient noise. Furthermore, the 
influence of air properties (humidity, temperature and 
wind) on the measured phase response is negligible. 
However, the near field shows a much higher complexity, 
and holographic post processing is required to generate 
the far field data.       
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Figure 4 Overview of near field measurement and 
holographic post-processing  

Figure 4 gives an overview of the near-field measurement 
that is organized as an iterative procedure. By setting up 
the scanner system, the user provides valuable 
information on the maximum size of the loudspeaker, the 
location of the reference point rref and the reference axis 
nref, which are useful initial values for the location of the 
expansion point rEP and the orientation of the angles θE 
and ϕE.   

3.1. Scanning Process 

The sound pressure distribution in the near field of the 
loudspeaker has to be sampled with small positioning 
error (< 3 mm) to ensure sufficient accuracy of the 
holographic reconstruction of the 3D sound field at high 
frequencies. Keeping the microphone at a fixed position 
requires powerful robotics to turn large and heavy 
loudspeaker over two orthogonal axes. A single 
microphone can be moved at a much higher speed using 
light and more cost effective actuators. It is also 



 

 

beneficial for scanning on multiple layers to separate the 
sound components reflected at room boundaries and at 
the gear close to the non-moving loudspeaker (sound 
field separation technique [21], [22]).    
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Figure 5 Robotics used for loudspeaker near field 
scanning in cylindrical coordinates (r, z, φ)  

Figure 5 shows a first realization of a 3D near field 
scanner in cylindrical coordinates. The loudspeaker is 
placed in a fixed position on a post while heavy loads 
(> 100kg) are supported by a crane. This design has 
almost no gears inside the scanning grid and the 
reflection on gears outside the scanning grid can be  
reduced by field separation [21], [22] at low frequencies 
and windowing of the impulse response at high 
frequencies. Multiple microphones would reduce the 
scanning time but increase the microphone requirements 
and make the calibration of the microphone position 
more critical. As a single sensor, a low cost microphone 
can be used because the distortion in the phase and 
amplitude response of the microphone will not affect the 
holographic identification of the sound field, and the 
measured frequency response can be corrected by the 
same inverse microphone transfer function.   

A second noise microphone may be placed at a fixed 
position and to repeat the measurement at the particular 
scanning point if the measured sound pressure at the first 
microphone is corrupted by ambient noise.         

3.2. Measurement Grid 

The generation of the measurement grid in the near field 
is much more critical than in the far field because the 
close distance to the acoustical center may cause spatial 
aliasing at higher frequencies while using a minimum 
number of points. Thus, the measurement grid  
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is developed iteratively by using the user input for the 
first grid G[1] and using the information from 
holographic processing of the measurement data for 
optimal placing of additional measurement points. This 
creates a non-uniform sampling grid.      

Er

EPr

E

L1

L2

L3

A1

P

A2

 

Figure 6 Iterative development of the scanning grid G[i]  

For example, Figure 6 shows a sparse sampling in subset 
L1 that is the basis for identifying an optimum position of 
the expansion point rEP(f), which is close to the acoustical 
center at high frequencies, and to identify the symmetry 
properties of the loudspeaker. This information is used to 
generate the second subset L2 of additional measurement 
points located at a shorter distance from the expansion 
point and spaced with sufficient angular resolution to 
satisfy the spatial sampling on the rear side of the 
loudspeaker. The third subset L3 of points is placed on the 
front side of the loudspeaker to identify the coverage 
angle of the main lobe at higher accuracy.     

3.3. Coordinate Transformation 

The first step in the holographic data processing is a 
transformation of the original coordinates r of all 
measurement points into coordinates  

refEPE fff rrrQr  )()()(  (7) 

which are optimal for the following parameter fitting. 
Not only the expansion point rEP(f) but also the rotation 
matrix Q(f) might vary with frequency.  



 

 

3.4. Global Parameter Fitting 

The global parameter fitting determines the optimum 
values Cmn in the parameter vector  
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by minimizing the deviation  

)),(),(),( EEmE fHfHfe rrr   (9) 

between measured and modelled transfer function, 
Hm(f,rE) and H(f,rE), respectively. 

The error for all measurement points rE of the 
measurement grid can be rewritten in matrix form:  
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The optimal parameter vector c(f)  
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can be calculating by using the pseudo-inverse of B(f) 
from a numerically robust technique (e.g. QR 
decomposition).   

3.5. Verification 

The redundancy in the measured data allows assessment 
of the accuracy of the holographic modeling of the sound 
field. The total fitting error (TFE) defined as  
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is comprised of the truncation of the power series at 
maximum order N, positioning error during scanning, 
reflections on acoustical boundaries and ambient and 
measurement noise. If the TFE(f) is smaller than -20 dB, 
the model describes the measured data with sufficient 
accuracy.    

The multi-layer error  
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checks the agreement between error e(f, rE) at the first 
point rE on the outer layer L1 in Figure 6 and the error e(f, 
r’E) at the closest point 

E'r on the inner layers {L2, L3} 

which can be found at the maximum of the scalar 
product: 
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To consider the different distances of the two scanning 
points from the expansion point the error e(f, r’E) is 
extrapolated to position rE by equation:  
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If the errors TFE and MLE are in the same order of 
magnitude, the measurement is corrupted by noise, room 
reflections or positioning errors.  

3.1. Order of Expansion 

An increase of the maximum order N would improve 
the angular resolution if the total fitting error TFE(f) is 
much larger than the multi-layer error MLE(f). This is 
illustrated in Figure 7, where the TFE(f) shown in the 
upper diagram decreases with rising order N.  
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Figure 7 Total fitting error TFE(f) in dB versus 
frequency f for 5 wave expansion with maximum order 
N.    

The wave expansion truncated after order N=10 is 
capable of modeling the 3D output above 30 Hz with 
sufficient accuracy (TFE < -20 dB). At very low 
frequencies (f < 30 Hz) the higher order terms of the 
expansion can only slightly reduce the TFE that is mainly 
caused by the poor SNR below the cut-off frequency of 
the particular device. The scanning at multiple points at 



 

 

different distances but similar directions generates a 
valuable redundancy in the data and prevents 
interpretation of measurement noise as directional 
information.  

4. Minimum Test Time   

The wave expansion in Eq. (3) of maximum order N 
contains J=(N+1)2 coefficients in vector c(f), and their 
fitting requires a larger number of measurements points 
(usually M > 1.5J) to avoid spatial aliasing and to verify 
the accuracy of the results. Although the sound pressure 
measurement in the near field of the loudspeaker 
provides a good SNR without additional averaging, the 
total measurement cycle, including positioning, will take 
more than 3 s. Thus, the scanning process dominates the 
duration of the holographic measurement. However, 
there are many ways to optimize the performance and 
speed of the measurements.    

4.1. Expansion Point 

The optimum position of the expansion point rEP(f), 
especially at high frequencies f, significantly reduces the 
total fitting error and the order N required to bring the 
TFE down to -20 dB. User information about the position 
of the tweeter is needed, or signal processing can 
automatically localize the acoustical center at the 
particular frequency f based on the measured data and 
identified wave expansion.  

The knowledge about the optimal expansion point rEP(f) 
also has consequences for the grid generation. For 
example, the grid G[1] shown in Figure 6 was created 
based on user input information, and the holographic 
processing data leads to correcting the expansion point 
and a corresponding shift of the center of the scanning 
grids G[i] with i ≥2.  

4.2. Partial Fitting 

At high frequencies, horn loaded compression drivers 
and many other loudspeakers are directive and generate 
a much smaller sound on the rear side. To assess the 
coverage angle on those devices, a higher angular 
resolution is required on the front side with θE < 90° than 
on the rear side with θE > 90°. To solve this problem, 
separate wave expansions  
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with a particular order Ni to pairwise disjunctive angular 
sets A,i of the scanning grid G={A1,A2,Ai,…} are applied. 
For example, Figure 6 shows a partition of the grid G into 
two segments on the sphere separated at angle θp = 90°: 
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The number of sampling points is much higher in set A1 
on the front side than in set A2 on the rear side. Thus, the 
estimation of the coefficients 
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with order N1 > N2 gives the requested higher resolution 
on the front side and natural interpolation on the rear side. 
Optionally, post processing can be used to merge the two 
wave expansions to a single expansion with the order N1.  

4.3. Exploiting Symmetry 

Many loudspeakers have rotational or plane symmetries 
in the geometrical shape of the radiator or enclosure,  
yielding symmetries in the sound field. This property can 
be used to reduce the number of coefficients and the 
scanning effort [7]. The operator of the scanner can 
provide useful information about the loudspeaker 
geometry explicitly by user input or implicitly by 
following general instructions on how to place the 
loudspeaker on the scanner by using the reference point 
rref, reference axis nref and orientation vector oref. After 
performing the first holographic processing based on the 
coarse grid G[1], the symmetry information can be 
checked and the internal coordinate system can be 
corrected automatically. The confirmed symmetry can be 
used to generate finer grids G[2] and G[3] that should 
have an asymmetrical structure, where the measurement 
points are interlaced on both sides of the symmetry axis. 
Mirroring this distribution to the other side will double 
the angular resolution and smooth the error caused by a 
small residual asymmetry in the field.    
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Figure 8 Relationship between the coefficients of the 
wave expansion for a single plane symmetry (1PS) at 
symmetry angle ϕs=0   

4.3.1. Single Plane Symmetry 

The most common symmetry in loudspeakers using 
multiple transducers (woofer, midrange, tweeter) is 
single plan symmetry at angle ϕE, which corresponds to 
the orientation oref in vertical direction, as illustrated in 
Figure 8.  

This symmetry generates the following relationship in 
the coefficients 
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with the complex symmetry parameter [17]  
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that generates a defined coupling between coefficients of 
the suborder m . If the symmetry axis is aligned to the 
coordinate system (ϕs=0), only the coefficients on the left 
side (m ≤0) have to be estimated, and the coefficients on 
the right side can be calculated by    
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if the following measure evaluating the single plane 
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exceeds a predefined limit value (e.g. S1PS > 0.95). 

This reduces the number of unknown parameters to 

  
2

21 


NN
J  (23) 

and the scanning effort by 50 %.  
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Figure 9 Relationship between the coefficients of the 
wave expansion for a dual plane symmetry (2PS) at 
symmetry angles ϕs =0, 90°    

4.4. Dual Plane Symmetry 

Subwoofers or other loudspeakers using a single 
loudspeaker placed symmetrically in a rectangular 
enclosure may have a dual plane symmetry as illustrated 
in Figure 9.  

In this case, half of the coefficients vanish completely 
and the most of the remaining coefficients are pairwise 
related by    

)()()( fRfCfC mmnmn     𝑚 ൌ 2𝑠 ,  𝑠 ൌ 1,2,3, … (24) 

with Rm(f) according Eq. (20). If the symmetry axes are 
aligned with the coordinate system (ϕs = 0, 90°), the 
following coefficients can be calculated by the 
relationship:  
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If the measure of the dual plane symmetry  
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exceeds a predefined limit, the total number of 
coefficients can be reduced to 
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and the scanning effort by 70 %. 
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Figure 10 Nonzero coefficients of the wave expansion 
rotational symmetry (RS)  

4.5. Rotational Symmetry 

A significant number of radiators and transducers used in 
loudspeakers have a round shape and generate a 
rotational symmetry in the generated sound field if the 
influence of diffraction on the enclosure is negligible. If 
the rotational axis agrees with θE=0, the coefficients  

𝐶௠௡ ൌ 0 𝑚 ് 0  
 

(28) 

of all asymmetrical spherical harmonics vanish, as 
depicted in Figure 10. Only N+1 coefficients have to be 
estimated if the measure of the rotational symmetry  
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exceeds a predefined limit value. This reduces the 
scanning effort by 97 %. 
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Figure 11 Non-zero coefficients of the wave expansion 
for a transducer mounted in an infinite baffle (BS) 

4.6. Baffle Symmetry 

The radiated sound pressure is doubled by a mirrored 
sound source while operating transducers in a half space 
or in a baffle, as shown in Figure 10. If the normal vector 
of the baffle equals the coordinate at θE=0 half of the 
coefficients  
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vanish. If the measure of the Baffle symmetry  
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exceeds a predefined limit value, the coefficients in Eq. 
(30) are set to zero. This reduces the total number of 
coefficients to   
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and the scanning effort by 50 %.  

Table 1 Reduction of the total number of coefficients 
and scanning effort by exploiting symmetry of the 
sound field (N=30)   

Symmetry Number of 
Coefficients  

Reduction of 
measurement 
samples 

No Symmetry 961 0 % 



 

 

Baffle Symmetry 496 48 % 

Single plane 
symmetry 

496 48 % 

Dual plane symmetry 256 73 % 

Rotational symmetry 31 97 % 

Single plan 
symmetry + Baffle 
Symmetry 

256 73 % 

Dual plane symmetry 
+ Baffle Symmetry 

136 86 % 

Rotational + Baffle 16 98 % 

Table 1 gives an example of the reduction of the number 
of coefficients and the possible saving of the scanning 
effort for modeling a complex sound field of loudspeaker 
by a wave expansion with maximum order N=30 while 
exploiting various kinds and combinations of 
symmetries.   

5. Post-Processing 

The coefficients Cnm(rEP(f), f) of the wave expansion 
identified for the particular loudspeaker are a convenient 
basis for further post-processing, presenting the results in 
a standard format and simplifying the interpretation.  

5.1. Standard Output Format 

The near field scanning and holographic processing use 
an internal, frequency depending coordinate system to 
combine higher accuracy with a minimum scanning 
effort. The coefficients Cnm(f) depending on a useful 
choice of the expansion point rEP(f), and the rotation 
matrix Q(f) also gives some benefits for the development 
of active loudspeaker systems with beam steering and 
controllable directivity. However, most loudspeaker 
engineers would prefer the presentation in a frequency 
independent coordinate system following the IEC or 
other standards as depicted in Figure 1. To express the 
transfer function H(f,r) in standard coordinates, each 
point rE has to be transformed into   

 )()()( 1 fff EPrefE rrrQr   . (33) 

It is more convenient to export coefficients C’mn of a 
modified wave expansion using the standard coordinate 
system, 
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as illustrated in Figure 1, because the frequency 
independent orientation and expansion point are identical 
to the orientation vector oref and the reference point rref. 
The coefficients C’mn(f) can be determined by generating 
virtual data on a sphere with radius a and preforming a 
similar parameter fitting as described in section 3.4. This 
expansion is only valid for distances r > a. For generating 
a minimum-sized sphere of radius a that encloses all 
points of the original scanning grid G, the required order 
N’(f) of the series in standard coordinates is usually 
significantly higher than the order N(f) of the series in 
internal coordinates. 

5.2. Total sound power 

The total sound power radiated by the loudspeaker to 
infinity can be calculated as 
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using the orthogonal properties of the spherical 
harmonics (Parseval theorem). The total sound power can 
be calculated based on the coefficients C’mn or Cmn of the 
internal or standard expansion, respectively.   

5.3. Apparent power  

A useful characteristic for investigating the radial 
dependency of the sound pressure output is the apparent 
power  
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with the nth-order wave components  
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that neglect the phase relationship between particle 
velocity and sound pressure. 
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Figure 12 Apparent sound power level (referred to 10-5 

W for 1 Vrms input) of the nth-order spherical waves and 
the total expansion at frequency f as a function of 
distance r   

Figure 12 shows the total apparent power and the 
contribution of the nth-order components versus distance 
r from the reference point. Only the monopole (n=0) 
generates a constant value because particle velocity and 
pressure are in phase. The apparent power of the higher-
order components (n>0) rises in the near field inversely 
with the distance from the reference point according to 
Eq. (5). Note that the wave expansion is a very poor 
approximation of the sound field for distances r < a.  

5.4. Far-Field limit 

The general conditions discussed in section 1.1 are only 
vague criteria for determining the region where the far 
field conditions are valid. Comparing the difference 
between apparent and real power level with a useful error 
limit of 0.5 dB is a convenient way to search for the 
critical distance rfar(f) as a function of frequency f in the 
equation    
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which considers the particular properties of the device 
under test.  

5.5. Directivity  

The directivity factor Q describes the ratio between the 
squared sound pressure value at a distance r on reference 
axis nref and the squared value of an equivalent sound 
ps(f,r) at a distance r of an omnidirectional virtual source 
generating the same sound power. This important 
characteristic can be calculated by  
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using the coefficients C’n,m of the standard expansion.  

6. Visualization  

The nearfield holographic measurement provides a lot of 
valuable information which requires appropriate visual 
means to simplify the interpretation.  

6.1. 2D Far Field Data 

The amplitude and phase response of the complex 
transfer function H(f,r), depending on a point r in the 3D 
space, can be condensed to 2D information projected on 
a sphere by considering only the angular dependency at a 
fixed distance r >> rfar. This leads to the traditional way 
of presenting far field as polar, balloon and contour plots 
as depicted in Figure 13.    
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Figure 13 Amplitude of the transfer function H(f, θ, ϕ) 
of a laptop measured at a constant distance r=1 m  under 
far field condition, visualized as a balloon plot at 
f=3kHz and as a colored contour plot versus latitude 
angle θ for two azimuthal angles ϕ=0° and 90°. 

The far field data can be easily extrapolated to any 
distance r(f) > rfield(f) where the data is accurate. It is also 
common practice to extrapolate the data to a distance 
r=1m < rfield(f) where the near field would generate a 
deviation if a measurement would be performed at this 
point. However, this method is very convenient to 
compare data and to assess the sensitivity of the 
loudspeaker.  

6.2. 3D Near field data 

The accurate evaluation of the near field data is not only 
important for personal and portable audio devices such as 
smart phones, tablets, notebooks, studio monitors, multi-
media equipment etc., but also professional loudspeakers 
where the far field limit rfar is too large for the anechoic 
room.  
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Figure 14 Amplitude and phase of the sound pressure 
distribution in the near field of a laptop at frequency 
f=3 kHz. 

The amplitude distribution of the transfer function H(f,r) 
in the near field of the device can be visualized as an 
intensity plot over a plane in x,y coordinates for a selected 
frequency, as illustrated in the left-hand side of Figure 
14. The phase distribution plotted in the same way is 
more difficult to interpret. It is more intuitive to animate 
the propagation of a steady state harmonic wave using 
both amplitude and phase information as illustrated in the 
right hand side for a selected frequency f=3 kHz. The 
complete frequency dependency of both amplitude and 
phase response can be considered by animating the 
propagating waveform of Dirac impulse over a plane in 
the near field  [10].  
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Figure 15 Amplitude and phase of the sound pressure 
distribution in a personal audio zone. 

6.3. Audio Zones 

Extracting particular features of the sound field on a 
limited surface or space as illustrated in Figure 15 



 

 

simplifies the interpretation of the measurement results. 
For example, the CEA standard 2034 [19] suggests for 
the evaluation of home consumer loudspeakers the 
calculation of 5 amplitude responses by averaging the 
sound pressure distribution on angular sections on a 
spherical surface in the far field to explain the generation 
of the direct sound and the interaction with the room. The 
IEC standard 62777 [20] defines for hand-held and 
portable audio devices personal audio zones where the 
statistical properties of the sound field are described by 
mean, minimum and maximum value as shown in Figure 
15. 

7. Conclusions 

The holographic nearfield measurement is an interesting 
alternative to the traditional far field measurement 
providing a higher angular resolution and superior 
accuracy at a significantly reduced measurement time. 
The nearfield measurement reduces the requirement on 
the anechoic conditions such as the size of the room, 
noise suppression and absorption at lower frequency 
because the direct sound is about 20 dB higher than in the 
far field. However, the near field measurement cannot be 
accomplished with conventional turn-tables or 
microphone arrays but requires a much higher integration 
of the mechanical scanning process and holographic post 
processing. An iterative processing exploits early 
information to adapt the scanning grid and orientation of 
the internal coordinate system to the particular 
loudspeaker under test. Thus the new technique 
overcomes the paradigm that the angular resolution of the 
measurement grid and directional characteristic is 
identical. This is key to dynamically minimize the 
scanning effort necessary for the loudspeaker under test 
and the particular requirements of the application. The 
dramatic reduction of measurement points compared to 
traditional far field measurements allows to scan the 
sound field with a small redundancy to check the 
agreement of the wave expansion and the validity of the 
results. The scanning of the near field of the loudspeaker 
at multiple layers with different distances to the source is 
also key for separating the direct sound radiated from the 
loudspeaker under test from sound waves reflected on the 
gear and room boundaries, which corrupts the measured 
sound pressure responses. This sound field separation 
technique [21] - [24] has the potential to generate more 
accurate results in normal rooms than by traditional 
measurements in anechoic rooms.       
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