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Gradient index (GRIN) acoustic devices have spatially inhomogeneous refractive index profile and allow 

flexible control of the propagation of acoustic waves. Previous GRIN acoustic lenses are mostly inherently 

two-dimensional designs that are difficult to be extended to all three dimensions. Besides, manually 

designing the spatially inhomogeneous structure is both time-consuming and error-prone. In this work, we 

proposed and numerically verified an automated computer-aided design tool: GRadient Index Pick-and-

Place (GRIPP) algorithm, for generating three-dimensional GRIN acoustic wave controlling devices with 

scalable and 3D printable structures. The algorithm receives as inputs a spatial distribution of refractive 

index and a pre-defined library of gradient index unit cells, and outputs a 3D model of GRIN device that is 

ready to be 3D printed. The tool enables rapid design and realization of a large variety of 3D GRIN acoustic 

devices, which can be useful in areas such as speaker system design, airborne ultrasonic sensing, as well as 

therapeutic ultrasound. 

 

 

I. INTRODUCTION 

GRIN lenses offer flexible wave controlling functions that are difficult for conventional homogeneous lenses to 

achieve 1. However, the spatial inhomogeneity of acoustic properties of GRIN lenses makes them difficult to design and 

fabrication with conventional materials readily available from nature or chemical synthesis. The emergence of sonic 

crystals and acoustic metamaterials makes possible the realizations of many theoretical acoustic GRIN designs 2-5. 

Nevertheless, two limitations of the previous design methods hinder their further applications. First, most of the previous 

designs are inherently two-dimensional and the extension to the third dimension is difficult. Secondly, the manual 

designing of spatially inhomogeneous structures are very time-consuming (especially for those designs that lack spatial 

symmetries) and often prone to human errors.  
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In this paper, we present a universal computer-aided design tool for designing three-dimensional gradient index 

acoustic devices to address the above-mentioned challenges. The CAD tool is termed as ‘GRadient Index Pick and Place 

(GRIPP)’ algorithm and it is designed to operate in LiveLink™ for MATLAB environment for the convenience of usage. 

Firstly, an analytic expression of the refractive index profile as well as a library of gradient index unit cells are fed into 

the algorithm; Secondly, the algorithm automatically discretizes the 3D space into a spatial grid with subwavelength grid 

cells; Thirdly, the algorithm loops over each grid cell and successively fill it with a unit cell that optimally matches the 

desired local refractive index. Eventually, the algorithm outputs a 3D model in the form of a STL file that can be directly 

sent to a 3D printer for fabrication. 

 

II. ALGORITHM DESCRIPTION 

We describe in this section the workflow of the GRIPP algorithm. The algorithm receives two inputs from the user: 

an expression of the continuous spatial distribution of refractive index, and a library of gradient index unit cells covering 

the required range of refractive index. As shown in Fig. 1, first, a continuous function of the three-dimensional profile of 

the refractive index ( , , )n x y z  and a library of gradient index unit cells are fed into the GRIPP. Second, the algorithm 

discretizes the continuous refractive index profile into spatial grids with a user-defined subwavelength grid cell size. 

Third, GRIPP scans through all the grid points, inquire the local refractive index at each grid point, and then search for 

the unit cell with the closest match of refractive index in the pre-defined library, and then ‘pick-and-place’ the selected 

unit cell from the library to the grid point. (The process is similar to the ‘pick-and-place’ process in the automated 

surface-mount electronic element assembly in the printed circuit board fabrication.) The code is implemented in 

MATLAB environment and LiveLink™ for MATLAB module in used to utilize COMSOL’s built-in computer-aided 

design functionality for the 3D geometry generation and STL file exporting. 
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FIG. 1. The schematic of the workflow of the GRIPP algorithm.  

 

III. AN EXAMPLE: A 2D GRIN LENS 

 Below we will demonstrate the GRIPP algorithm with an example of GRIN lens. The refractive index profile of the 

lens can be expressed as  
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where  7.5cx mm= , 2.5cy mm=  and 0 5r mm= . We define the spatial grid cell size to be 2mm, or about a quarter 

of wavelength at the interested frequency of 40 kHz. The refractive index profile of this lens is shown in the central inset 

of Fig. 1.  

 The above refractive index profile requires the refractive index to have a range between 1 and 1.7. Many unit cell 

designs are possible to achieve this moderate range, here we use as an example a series of designs shaped as 3D-cross. 

As shown in Fig. 2, the 3D-cross unit cell has three orthogonal stubs. In principle, a range of anisotropic refractive index 

can be achieved with this design with different dimensions along different directions. Since our example of a 2D GRIN 

lens has only isotropic refractive index profile, we simplify the dimensions and let 0x y za a a a= = = . We also define 

x y zd d d D= = = , where D is the size of the grid cell, so that each cell is interconnected with its adjacent cells to 

form a self-supporting lattice. The pre-defined library contains 12 unit cells that covers the range of refractive index 

between 1 and about 1.77, as shown in Table I.  
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FIG. 2. The dimensions of an example 3D-cross gradient index unit cell.  

 

TABLE I. Parameters for the employed library of the gradient index unit cell. 

Unit cell 

index a0 

Filling 

ratio n Z 

1 0.05 0.725% 1.0024 1.0131 

2 0.10 2.800% 1.0102 1.0296 

3 0.20 10.400% 1.0456 1.2249 

4 0.30 21.600% 1.1133 1.5765 

5 0.40 35.200% 1.2087 2.2369 

6 0.45 42.525% 1.2661 2.7717 

7 0.50 50.000% 1.3320 3.5503 

8 0.55 57.475% 1.3973 4.6700 

9 0.60 64.800% 1.4740 6.4654 

10 0.65 71.825% 1.5644 9.5874 

11 0.70 78.400% 1.6607 15.370 

12 0.75 84.375% 1.7719 28.242 

 
To verify the performance of the design generated by the GRIPP algorithm, we compared the simulated results 

between an ideal GRIN lens with continuous refractive index profile given by (1) and unity impedance, as well as that of 

a GRIN lens with a real structure consisting of interconnected 3D-cross cells. The control result of the ideal lens is 

shown in Fig. 3a, where the bended focus can be clearly identified. The result with the structured lens is shown in Fig. 3b 

(and Fig. 3c is a zoomed-in view of the geometry of the real structure). Excellent agreement is achieved between these 

two simulations. Minor differences between these two simulated results are likely caused by the non-unity impedance of 

the unit cells with 3D-cross structures. As shown in Table I, the impedance of the unit cells become more than 5 when 

the refractive index goes beyond 1.5. However, the gradient index design has the advantage of smooth transitioning of 

impedance difference, which essentially acts as an impedance matching network to reduce the undesired scattering 

caused by the impedance mismatch. 
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FIG. 3. The top-down view of the 3D simulation results of (a) an ideal GRIN lens (continous refractive index and unity 

impedance), (b) a GRIN lens with real 3D-cross structures (colormap is scaled to the same as (a)), and (c) is the zoomed-in top-

down view of the geometery of the GRIN lens.  

 

IV. CONCLUSION 

In conclusion, we presented here a computer-aided design tool known as GRIPP algorithm for generating 3D 

printable gradient index (GRIN) acoustic devices. An expression of the desired three-dimensional refractive index profile 

and a pre-defined library of unit cells with gradient refractive index are used as the inputs to the GRIPP algorithm, which 

then scan through the whole spatial grids, pick the unit cell with the best match and place it to the grid point. The final 

output from the algorithm is a 3D model of the structure that can be directly sent for fabrication. 

With its versatility and convenience, GRIPP algorithm would be useful for the rapid design and realization of a large 

variety of three-dimensional GRIN acoustic devices. The algorithm may be extended to applications in electromagnetics 

to design 3D antennas and lenses. 
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