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Abstract—In this paper, the use of the fast Fourier transform
(FFT) test to measure the integral nonlinearity (INL) of analog-to-
digital (A/D) converters is examined. The derived INL is a linear
combination of Chebyshev polynomials, where the coefficients are
the spurious harmonics of the output spectrum. The accuracy of
the test is examined theoretically, in simulations and in practical
devices, particularly for the critical (and typical) case when sudden
jumps are present in the actual INL. The examined methodology
appears to be very convenient when the device under test has high
resolution (16–20 bits) and a smoothed approximation of the INL
is sufficient, as the FFT test is in this case thousands of times faster
than the customary histogram test and static nonlinearity test.

Index Terms—Analog-to-digital (A/D) conversion, Chebyshev
functions, discrete Fourier transform.

I. INTRODUCTION

T HE static transfer function of an analog-to-digital con-
verter (ADC) and the associated static error [integral non-

linearity (INL)] are metrological quantities of primary interest
when designing or assessing an appliance including such a de-
vice. A well-known test method, for this purpose, is the code
density or histogram test [1]. The main advantage of this test is
its “brute force” nature, which implies the possibility of a very
high accuracy: by acquiring a sufficient number of samples, it
can measure the ADC static characteristic with (in principle) an
uncertainty as small as desired, regardless of the particular shape
of the INL. The price to be paid for the accuracy is in terms of
time, as the necessary number of samples for a given accuracy
increasesexponentiallywith the number of bits. This drawback
makes the histogram test unfeasible with low-speed, high-res-
olution ADCs (16 bits or more). For this kind of device, it is
usually convenient to use the fast Fourier transform (FFT) test,
that can be satisfactorily performed using as few as eight thou-
sand samples, regardless of the ADC resolution. One drawback
of this test is, on the other hand, that it yields a frequency-do-
main description of the integral nonlinearity, which cannot be
directly employed for assessing the uncertainty of a static mea-
surement, or for linearizing the static characteristic.

Based on these considerations, it comes to attention the idea
of deriving the ADC integral nonlinearity from the outcome
of the FFT test, as this is in principle possible by exploiting
a known theoretical property of the Chebyshev polynomials.
There are a few works concerning this issue (see e.g., [2]–[4]),
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showing that the FFT test can also reconstruct with a very high
accuracy the INL, but only when it is a sufficiently smooth
curve. There is, therefore, still much to investigate, particularly
about the test accuracy in real cases, where usually the INL isnot
a smooth curve and, on the contrary, contains a number of dis-
continuities. The present work, therefore, developing previous
results [4], presents i) a summary of the known theory con-
necting Chebyshev polynomials and static nonlinearity, ii) some
theoretical clarifications related to the specific problem of the
static nonlinearity in ADCs, iii) simulation results taking into
consideration the problem of discontinuities in the INL, and, fi-
nally, iv) experimental results on actual converters with different
characteristics.

II. K NOWN THEORY ABOUT STATIC NONLINEARITY

AND CHEBYSHEV POLYNOMIALS

A nonlinear static characteristic , when stimulated
by a sinusoidal input in the form , gives a
periodic output in the form

(1)

A simple relationship exists between the coefficientsand
the function , if this is a polynomial function. We must
use the well-known Chebyshev polynomials of the first kind

that, besides meeting the identity ,
are orthogonal with respect to the weighting function
[that is, proportional to the reciprocal of the density of the terms

]. The orthogonality makes it possible to expand a
generic in the series

(2)

where the coefficients are given by

(3)

Now, it is simple to verify that by substituting
in (1), after simple algebraic manipulations, we obtain

(4)

It is, therefore, obvious that an expansion of in the sum
of Chebyshev polynomials can be obtained

(5)
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This formula (that can be easily extended to the case of input
with nonzero phase allows one,
in principle, to measure exactly a polynomial nonlinearity via a
simple FFT test. The trouble is that, of course, the static transfer
function of an ADC is not always a polynomial. When
is not a polynomial, (5) is the best approximation of the non-
linear function in the sense that, among all the polynomials of
the same degree, it minimizes a weighted sum-squared-error.
However, this is not very helpful when one wants to knowhow
muchthe error will be in a practical case, in addition to the fact
that one is usually interested in quantities different from the sum
squared error, e.g., the maximum absolute error. Therefore, in
order to use confidently the Chebyshev polynomials theory in
ADC testing, further analysis is certainly needed, starting from
some theoretical clarifications about nonlinearity in ADCs.

III. ADC-RELATED THEORETICAL ISSUES

The nonlinear characteristic of a simple ideal ADC
has a very large number of small and equispaced discontinuity
points. A satisfactory polynomial approximation of such a
nonlinearity would require, of course, an impractically large
number of terms. In short, (5) is not directly very useful in
quantization theory: this is perhaps the reason why it has been
seldom tested in the field of ADC testing.

It must be considered, however, that determining the INL of
an ADC does not require finding a polynomial approximation of
its overall transfer characteristic , which is irreducibly dis-
continuous: the polynomial shall approximate, instead, a con-
siderably smoother function. This can be made clear by consid-
ering the simple nonlinear ADC model of Fig. 1, in which the
overall is seen as the cascade of a nonlinear function
and the ideal quantization function . All the functions

such that LSB can be equivalently
employed in the model; for example, can be a linear piece-
wise function that connects the points ( ), with the actual
and the ideal threshold levels. Now, the following are easily
seen as follows.

• Measuring the INL is equivalent1 to measuring the
function , as the actual threshold levels are given
by , where are knowna priori from the
ADC output levels.

• It is reasonable to suppose, at least as a first-order ap-
proximation, that apolynomial exists such that

[this is also justified considering
the freedom allowed in choosing ].

The above statements are illustrated by Fig. 2, that shows
the overall nonlinearity of a simulated ADC and a func-
tion such that . However, in order
to derive the smooth from the output spectrum produced
by the whole characteristic , it is necessary
that the effect of the function on the spectrum be neg-
ligible. According to well-known theory, quantization adds to

1We assume in this paper the standard definition [1] of integral nonlinearity:
inl = t � Gt � O, with G andO two constants chosen according to a
sensible criterion (e.g., minimizemax jinl j or inl ).

Fig. 1. Decomposition of the discontinuous characteristicg(x) of a nonlinear
ADC. The integral nonlinearity is actually given by the smoother nonlinear
functiong (x).

Fig. 2. Comparison betweeng s)(x)� x (thick, smooth line) and the overall
nonlinearityg(x) � x (erratic, thin line) in a simulated ADC.

a single-tone signal a very large number of small harmonics,
whose power sums up to about [5], [6]. Therefore, the
effect of is negligible if the ADC resolution is conve-
niently high and if the nonlinearity can really be approxi-
mated by a polynomial of reasonable order. Of course, the FFT
test must be performed employing a coherently sampled sine
wave, so that the harmonics produced by quantization spread
uniformly throughout all the DFT bins. In this case, the under-
lying polynomial produces a moderate number of large
harmonics, while quantization produces a “noise floor” made
of a large number of uniformly distributed small harmonics.

IV. DESCRIPTION OF THEALGORITHM TO DERIVE

THE INL FROM THE FFT TEST

The algorithm for the fast measurement via FFT test of the
INL of an ADC [fully represented by ] can be outlined in
three steps.

As a first step, apply a sinusoidal signal with the usual char-
acteristic prescribed by the IEEE Standard [1] for the FFT test,
that is

1) the peak-to-peak amplitude must be as close as possible
to, but without exceeding, the ends of the full-scale range,
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so that the ADC is fully stimulated without introducing
saturation2 ;

2) noise and spurious harmonics must have small enough
power (below the ideal quantization noise level of the ADC
under test).

The parameters of the sampling (signal frequency, sampling
frequency and duration of the sampling) must be chosen, as
usual, so that the output , has an integer
number of periods , prime relative to the number of sam-
ples (coherent sampling). The output sine wave should
also have approximately null phase. It is also important that the
signal frequency is not too high, compared with the aperture
time and the overall dynamic performance of the ADC under
test: the test is indeed aimed at measuring thestaticcharacter-
istic, avoiding the onset of dynamic effects like hysteresis.

As a second step, evaluate the FFT

(6)

and find the indexes with ,
then evaluate the coefficients

(7)

(8)

The maximum index of can be chosen so that all the har-
monics above the noise floor are included. This procedure
yieldsexactlythe coefficients of the Fourier series expansion (1)
of if the signalis coherently sampled, is a series of cosines
andis made of harmonics. As a third and last step,
find the polynomial that approximates using (5).

It must be highlighted that the zero-phase requirement on
is not essential in practice: a possible nonzero phase can

be easily nullified with a simple digital “rotation” on the real
axis of the complex harmonics given by the DFT formula (6).

A practical problematic issue is that some out-of-phase har-
monics (i.e., harmonics with nonzero sine terms, even if the
input signal and the fundamental are perfect cosines) can occur
in an actual test. While small deviations from the ideal case
(when all the harmonics are perfectly in phase) can be ascribed
to system noise, the presence of meaningful out-of-phase com-
ponents is a clear indication that the time-invariant no-memory
model of the ADC under test cannot be considered valid. In such
a situation, one should lower the sinusoidal signal frequency
(and, possibly, the sampling frequency) in order to measure only
the static portionof the dynamic nonlinear characteristic of the
device, which is the goal of the test.

V. SIMULATIONS

In order to provide some evidence of the performance of the
described test method, it is mandatory first to verify it via com-

2Using a slightly saturating sine wave does not impair the test results much,
in principle, regarding the reconstructed static characteristic (which in this case
will include, of course, the inherent saturation of the converter). Avoiding sat-
uration, however, allows one to use the same FFT test to also obtain correct
measurements of other standard figures of merit (e.g., spurious-free dynamic
range, total harmonic distortion, effective bits, etc.)

Fig. 3. FFT-test results for the first simulated ADC, reporting the true INL
(���) and the estimated one for the 8-bit (ooo), 12-bit (xxx), 16-bit (+++),
and 20-bit (� � �) case.

Fig. 4. FFT-test results for the second simulated ADC, reporting the true INL
(���) and the estimated one for the 8-bit (ooo), 12-bit (xxx), 16-bit (+++),
and 20-bit (� � �) case.

puter simulations, which allow choosing freely the static non-
linearity of the device under test. It must be expected, indeed,
that the test performance depends heavily on the nature of the
function or, more precisely, on the degree of the smoothest
possible polynomial such that .

Because of this primary observation, the test has been tried on
simulated ADCs with three different : the first without dis-
continuities, the second with three large discontinuities (about
1 LSB), and the third with five large discontinuities. Each
has been cascaded, in order to produce the overall nonlinearity,
with an ideal quantization function of 8, 12, 16, and 20 bits,
so covering a wide range of resolutions. It must be noted that
the ratio of the INL and the quantization step has been kept the
same at all resolutions; in other words, in the simulations the
maximum INL was always about 1 LSB, i.e., the magnitude that
can be actually observed in real-world converters.
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Fig. 5. FFT-test results for the third simulated ADC, reporting the true INL
(���) and the estimated one for the 8-bit (ooo), 12-bit (xxx), 16-bit (+++),
and 20-bit (� � �) case.

Figs. 3, 4, and 5 show the results of the simulated tests, com-
paring the true ( ) with the estimation made via
the 8192-point FFT test, in the case of 8-bit (ooo), 12-bit (xxx),
16-bit , and 20-bit ( ) ADC. It is obviously con-
venient to use an integer power of two number of samples to
optimize the computational performance of the FFT algorithm.
In all the simulations, only the harmonics above the noise floor
level have been considered.

In the first case, the test resulted in an 18th-degree polyno-
mial. It is evident that the obtained estimate is very accurate: the
maximum error in measuring is indeed about 0.05 LSB.
This strikingly good performance is clearly due to the smooth-
ness of . In order to really understand the advantage of
the FFT method for this case, one should think of how many
samples would be needed for the same accuracy, if a standard
histogram test were employed to test a 20-bit ADC.

The simulations relevant to the second and the third case show
that the test is more critical when dealing with discontinuities in
the static characteristic. Of course, a higher number of terms are
needed to approximate satisfactorily the INL: the method yields
a 27th-degree polynomial in the second case with three large dis-
continuities and a 33rd-degree polynomial in the third case with
five large discontinuities. More important, from these simula-
tions comes evidence that larger measurement errors are present
near the discontinuities. This is a clear consequence of the repre-
sentation of as a truncated series of orthogonal functions:
as expected from theory, the reconstructed function passes by
the midpoints of the discontinuities of the true INL and near
these jumps a clear “ripple” can be observed. The ripple, in par-
ticular, is more apparent in the last case, when the jumps are
closer each other. It can be seen, however, that the maximum
measurement error in the continuous pieces of the INL is about
0.1–0.15 LSB, which can be considered acceptable, especially
if one considers that the measurement has been achieved with
very few samples compared to the ADC resolution.

Summing up, the simulation results indicate that the FFT test
with about 8,000 samples is able to reconstruct very accurately

Fig. 6. Comparison between the results of the 8,192-point FFT-test (thick,
smooth line) and results of the histogram test (thin, erratic line) for an actual
8-bit ADC.

the INL of an ADC if this function is smooth and without dis-
continuities, while small errors occur near the jumps of the INL
if this is a discontinuous function. It is intuitive that the method
cannot be used to detect very narrow pulses or oscillations in the
INL function, but the cases reported here show that continuous
portions of reasonable size in the INL are well approximated by
the polynomial derived via the FFT test.

In real-world ADCs, however, the INL can have very different
and strange shapes and it is sensible to ask for a demonstration of
the test in some practical cases. In the next section, experimental
verifications of the method are therefore reported.

VI. EXPERIMENTAL RESULTS

Fig. 6 presents the results relevant to the first experimental
test, performed on an actual 8-bit ADC. The “true” nonlinearity
was derived performing a histogram test with a highly pure sine
wave (the same subsequently utilized for the FFT test) and with
some thousands of samples per each code bin. The figure shows
clearly that the true presents many fast variations, one of
which is particularly large ( 0.5 LSB at the input level of about
2 V). The FFT test yields an 8th-degree polynomial approxima-
tion of this curve (eight is the maximum harmonic order above
the threshold), which is clearly very close to the true and passes
at the middle points of its discontinuities.

Fig. 7 shows the results relevant to the second test, performed
on an actual 12-bit ADC. Also in this case the accurate ,
yielded by the histogram test, has many sudden variations, too
fast for a polynomial approximation (some of them are larger
than 0.5 LSB). The 19-degree polynomial yielded by the FFT
test with only 8,192 samples is, however, a very good smooth
approximation of the true and again it passes at the middle
points of the jumps.

The results obtained on actual converters, therefore, confirm
that the FFT test should not be considered at all reliable for
obtaining an estimate of themaximum staticINL, as this test
is practically “blind” to very fast variations in the nonlinearity.
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Fig. 7. Comparison between the results of the 8,192-point FFT-test (thick,
smooth line) and results of the histogram test (thin, erratic line) for an actual
12-bit ADC.

The test is instead very efficient in determining the smooth part
of the INL, which is responsible for the harmonic distortion (the
“noisy” part of the INL contributes mainly to the quantization
noise floor).

VII. CONCLUSION

From the illustrated theory, simulations and experiments it
is clear that the FFT test is incomparably faster than the his-
togram test in measuring the integral nonlinearity—especially
for high-resolution ADCs—but it has a drawback that must al-
ways be kept in mind, i.e., it gives only thebest polynomial ap-
proximation of a given degreeto the INL. Since in actual con-
verters the INL is usually very erratic on a microscopic scale
(i.e., it is in the strict sense a very-high-order nonlinearity),
the results yielded by the FFT should never be used to assess,
for example, the maximum static INL usually reported in ADC
data-sheets and in instrument specifications. The strong point
of the test is that a few thousands of samples (8,192 in the pre-
sented results) are sufficient to measure the characteristic with
small errors,regardless of the ADC resolution. It is easy to check
experimentally [4] that four to eight thousand samples are suf-
ficient if the ADC under test is not too noisy: more samples do
not improve meaningfully the test accuracy, while fewer sam-
ples make the results less repeatable.

The FFT test for measuring the INL can be, nonetheless, very
useful for a number of different uses. First, it can be very accu-
rate when the ADC has a smooth nonlinear characteristic. This
circumstance is especially likely to occur when resolution-en-
hancement techniques likedithering are used, because these
techniques usually “smear” the static characteristic. Second,
the measured polynomial approximation of the INL can be
useful for many different uses, for example to assess different
(but not less important) figures of merit like themean-squared
INL (which is related to thedistortion powerintroduced by
the ADC). Even more interesting is the possibility of using the
FFT-derived polynomial nonlinearity to implement a fast and
computationally inexpensivelinearization algorithm, in order

to minimize the distortion and maximize the spurious-free
dynamic range. Further investigations are needed to develop
these issues and, possibly, make the FFT analysis more useful
in the field of ADC and instrumentation testing.
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