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a b s t r a c t

This paper introduces a special arc spline called an Euler arc spline as the basic form for visually pleasing

completion curves. It is considered as an extension of an Euler curve in the sense that the points in the

Euler curve are replaced by arcs. A simple way for specifying it, which is suitable for shape completion,

is presented. It is shown that Euler arc splines have several properties desired by aesthetics of curves, in

addition to computational simplicity and NURBS representation. An algorithm is proposed for curve

completion using Euler arc splines. The development of the algorithm involves two optimization

processes, which are converted into a single minimization problem in two variables solved by the

Levenberg–Marquardt algorithm. Compared to previous methods, the proposed algorithm always

guarantees the interpolation of two boundary conditions.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

This paper deals with the problem of curve completion, which
is a process of completing contours beyond occlusions or across
gaps [1]. It is also known as shape completion or gap completion,
which is related to visual completion—a fundamental skill for
human vision system [2]. Referring to Fig. 1, for example, when an
object is partially occluded by others, human can automatically
fill the gap by completing its contour; when an object is illusory,
human can also consciously generate a subjective completed
boundary. However, for a computer, this is a nontrivial task.
Shape completion has wide applications in computer graphics
such as shape transition or repairing for CAD [3,4] and in
computer vision such as inpainting for objects with smooth
curvilinear shapes [1].

The process of shape completion is actually to find an optimal
curve through two specified endpoints with associated orienta-
tions, which we call point-orientation pairs. There exist many
possible curves that meet the conditions of point-orientation
pairs. The problem is under-specified despite the appeal of our
vision intuition for an optimal solution [1]. The solution really
depends on the criteria regarding what constitutes the most
‘‘likely’’ or the most ‘‘pleasing’’ curve [1,5]. In this paper we
provide a new solution by presenting an appropriate curve
representation and its associated construction algorithm.
ll rights reserved.
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1.1. Related work

Since two given points with associated orientations provide
the first order geometric Hermite data, a straightforward
approach to shape completion is to use cubic Hermite interpola-
tion [4]. Hermite interpolation is simple to construct and com-
pute, but it does not always provide satisfactory results as shown
in [3]. It is pointed out in [6] that one reason for Hermite
interpolation to produce undesired shapes is unsuitable magni-
tudes of the given tangent vectors. Therefore Yong and Cheng
present a new class of curves called optimized geometric Hermite
curves for which the magnitudes of the endpoint tangent vectors
in the Hermite interpolation process are optimized to make the
strain energy of the curves be minimized [6].

Ullman suggests several criteria for completion curves [7]. That
is, the curves should be invariant to rigid transformation, at least
differentiable once, extensible, and minimize total curvature. Based
on these criteria, he then proposes to use biarcs that minimize total
square curvature as completion curves. However, it is later found
that in many cases biarc completions have less pleasing appearance
than the cubic polynomial completions [8] and Ullman’s biarc
completion curve is generally not extensible [9]. Knuth considers
the shape representation and construction of letters or symbols in
typography from a collection of points [10], which is a problem
similar to shape completion. He proposes six criteria, somewhat
similar to Ullman’s, which the most ‘‘pleasing’’ curve through a set
of specified points should satisfy. These criteria are known as
similar transformation invariance, symmetry, extensibility, locality,
smoothness, and roundedness [10,1]. Since the last four criteria
cannot be simultaneously satisfied, Knuth gives up the extensibility
and roundedness properties but insists in the locality property,
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Fig. 1. Visual completion examples. (a) Object shape is partially missed; (c) illusory

contours; (b), (d) the results of curve completion using our method.
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which leads to a cubic spline interpolation solution. This is the base
of Knuth’s METAFONT system. However, psychological studies have
indicated that splines may not be a satisfactory primitive for shape
completion [11].

A lot of work on aesthetic curve design proposes some energy
functional and defines the curve as a solution to the problem of
minimizing the energy functional. Elastica is one of such exam-
ples, in which the energy functional is the integral of a linear
combination of the square curvature and the arc-length [12–15].
Elastica is extensible, but not scale-invariant or rounded. On the
other hand, it is argued that the energy functional capturing the
elusive nature of the ‘‘most pleasing’’ curve should penalize
curvature variation, but not necessarily curvature proper as in
Elastica. In particular, minimizing the integral of the square of the
derivative of curvature with respect to arc-length requires the
curvature to be linear in arc-length, which leads to an Euler curve.
Euler curves are also known as ‘‘Cornu spirals’’ or ‘‘Clothoid’’. They
have been used in various applications including highway and
railroad design, computer aided design, and computer arts.
2D Euler curves have been generalized to 3D such that the
curvature and torsion of the curve are linear with arc-length
[16,3] or to piecewise Euler spirals [17]. Since Euler curves are
defined by complicated transcendental functions, some work
devotes to approximating Euler curves by some simple represen-
tations such as Bézier curves and arc splines [18–22].

Kimia et al. [1] show that Euler curves are a suitable primitive
for shape completion and various practical advantages of using
Euler curve interpolation are examined. An algorithm for shape
completion using Euler curves is described, which finds the
completion curve by solving two nonlinear equations in two
unknowns involving Fresnel integrals. A biarc fitting is used for
producing an initial guess and then the algorithm performs
iteratively. Walton and Meek [23] improve the work by formulat-
ing the problem into two nonlinear equations with only one
unknown each, which gives a faster and more accurate algorithm.

1.2. Our work

This paper is inspired by Kimia et al.’s work of using Euler
curves for shape completion [1]. Psychological studies show that
Euler curves have good fit to the way that the human eyes
complete curves [11]. However, there are some drawbacks with
Euler curves for shape completion. First, due to complicated
transcendental function representation of Euler curves, it is
difficult or expensive to compute with Euler curves. In particular,
for rendering purpose, Euler curves are often approximated by
line segments or arc segments. Second, Kimia et al.’s algorithm
finds the solution by a numerical approach that minimizes the
distance between the second given point and the last point of the
Euler curve. Sometimes the numerical approach might not con-
verge or the approximate solution is not good enough. As a
consequence, the resulting Euler curve will not pass through the
second point. This will violate the aesthetics of shape completion
since human perception is sensitive to gaps. Third, Euler curves
are not compatible with nonuniform rational B-splines (NURBS)
which are an industry standard in CAD/CAM.

These limitations motivate us to explore new completion
curve models and shape completion algorithms. It is observed
by Horn [12] that in the optimal multi-arcs that approximate the
‘‘smoothest’’ curve arcs tend to be of equal length and curvature
changes more or less linearly along the curve. Therefore in this
paper, we propose a special arc spline called an Euler arc spline as
the completion curve primitive for shape completion. The Euler
arc spline consists of G1 continuous arcs of the same length with
curvature changing linearly from one arc to another. It is a good
approximation to an Euler curve. We identify and analyze the
parameters needed to specify an Euler arc spline in Section 2 and
show that Euler arc spline curves exhibit similar properties as
Euler curves. Meanwhile, Euler arc spline curves are simple for
computation, rendering and other geometric processing such as
offsetting and distance query. They are nonuniform rational
B-spline curves, facilitating the use with standard graphics
packages. Another arc spline similar to an Euler arc spline has
been introduced in [21], which is called discrete clothoid where
the first and last arcs are half the length of the others. The
approximation properties of discrete clothoid are analyzed. Parti-
cularly, if a clothoid is approximated by a discrete clothoid of n

arcs, the approximation error is of order Oð1=n2Þ. However, no
algorithm is provided to construct a discrete clothoid for shape
completion.

We also propose a curve completion algorithm using the
proposed Euler arc splines in Section 3. We reduce the construc-
tion of completion curve from two point-orientation pairs to
minimizing the sum of squares of nonlinear functions in two
unknowns, which is then solved by the Levenberg–Marquardt
algorithm. The underlying idea of our approach is to distribute the
approximate error between the second given point and the last
point of the completion curve to all the arcs and an optimization
procedure is performed to minimize the errors. Consequently, the
interpolation of two given point-orientation pairs with our
completion curve is always guaranteed, which overcomes the
drawback of Kimia et al.’s algorithm.
2. Arc splines and Euler arc splines

This section first examines the representation of a G1 contin-
uous arc spline, then introduces Euler arc splines, and identifies
parameters needed for the construction of an Euler arc spline in a
way that is suitable for shape completion. Some properties of
Euler arc splines are also analyzed.
2.1. G1 continuous arc splines

A directed arc can be uniquely defined by its starting point,
orientation angle that is a rotation angle from the positive x-axis
to the tangent direction of the arc at the starting point, an arc-
length and a central angle. If the direction of the arc is clockwise,
the central angle is negative; otherwise, the angle is positive.
Suppose there are n such directed arcs. They are connected one by
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one at the endpoints with tangent continuity as shown in Fig. 2.
Then they form a G1 continuous arc spline.

Proposition 1. A G1 continuous arc spline consists of n arcs

Ai,i¼ 1;2, . . ., n. If each Ai has an arc-length of si and a central

angle of Dyi, then the i-th arc Ai (i¼ 1;2, . . . ,n) has the following

ending point and orientation angle yi at the ending point:

yi ¼ y0þ
Xi

j ¼ 1

Dyj ð1Þ

Pi ¼ P0þ
Xi

j ¼ 1

sj

2 sin
Dyj

2

Dyj
Tðy0þfjÞ ð2Þ

where P0,y0 are the starting point and the orientation angle at P0 of

the first arc A1, fj ¼ ðyj�1þyjÞ=2�y0, and TðyÞ denotes unit vector
cos y
sin y

� �
. That is, a G1 continuous arc spline with n arcs can be specified

by P0,y0,s1, Dy1, . . . ,sn, Dyn.

Proof. Since Dyj is the central angle, yj�yj�1 ¼Dyj. Thus
yi ¼ yi�1þDyi ¼ yi�2þDyi�1þDyi ¼ � � � ¼ y0þ

Pi
j ¼ 1 Dyj.

Consider vector Pi�1Pi (see Fig. 3). Its length is the chord-length

of the arc Ai. The radius of Ai is si=Dyi. Therefore the chord-length

is 2ðsi=DyiÞ sin Dyi=2. The direction of Pi�1Pi can be obtained by

rotating Tðyi�1Þ by an angle of Dyi=2. Tðyi�1Þ can be obtained by

rotating Tðyi�2Þ by an angle of Dyi�1. We continue this and can

conclude that the direction of Pi�1Pi is obtained by rotating Tðy0Þ

by an angle:

Dyi

2
þDyi�1þ � � � þDy1 ¼

yi�1þyi

2
�y0 ¼fi:

Thus Pi�1Pi ¼ 2si=Dyi sinDyi=2MðfiÞTðy0Þ where MðfiÞ ¼ ½
cos fi
sinfi

�sin fi
cosfi
�

is a rotation matrix. Then we have

Pi ¼ Pi�1þPi�1Pi ¼ Pi�2þPi�2Pi�1þPi�1Pi ¼ � � � ¼ P0þ
Xi

j ¼ 1

Pj�1Pj

¼ P0þ
Xi

j ¼ 1

sj

2 sin
Dyj

2

Dyj
MðfjÞTðy0Þ ¼ P0þ

Xi

j ¼ 1

sj

2 sin
Dyj

2

Dyj
Tðy0þfjÞ: &

It is easy to see that for i¼ 1, . . . ,n�1, Pi and yi are also the
starting point and its associated orientation angle of the (iþ1)-th
Fig. 2. A G1 continuous arc spline curve.

Fig. 3. One arc segment in an arc spline curve.
arc. While Pi and yi depend on the coordinate system, central
angles Dyi and arc-lengthes si are coordinate system independent.

An arc spline can be represented as a NURBS curve. Now we
show how to convert a G1 continuous arc spline into a quadratic
NURBS curve. Consider arc Ai. Once we have Pi�1, Pi and Dyi, we
can represent Ai as a quadratic rational Bézier curve. To ensure
the positivity of weights, we require 9Dyi9op.

In case 9Dyi9Zp, we split the arc into two sub-arcs by
inserting a new point Pi�1=2 such that the two sub-arcs have the
same central angle Dyi=2. By some calculations, the new point
Pi�1=2 has an expression:

Pi�1=2 ¼ Pi�1þsi

2 sin
Dyi

4
Dyi

T
Dyi

4
þyi�1

� �
:

If 9Dyi9op, then the arc can be defined by a rational Bézier
curve whose three control points and weights are Pi�1,Pi�1þ

si=Dyi tan Dyi=2Tðyi�1Þ,Pi and 1, cos Dyi=2;1. Refer to Fig. 4 for an
illustration.

Summarizing the above discussion, we can design an algo-
rithm that converts the arc spline into a quadratic NURBS curve:
Input:
 G1 continuous arc-spline

Output:
 a quadratic NURBS curve
Step 1.
 Find Pi�1,Pi and Dyi for each arc using Proposition 1.

Step 2.
 Check each arc. If 9Dyi9Zp, split the arc into two sub-

arcs.

Step 3.
 Re-organize all the arcs. Suppose now we have m arcs

and they are defined by points Q0,Q1, Q2, . . . ,Qm, central
angles Dy1, Dy2, . . . ,Dym, and arc-lengths s1, s2, . . . ,sm.
The central angles are all less than p.
Step 4.
 Construct the NURBS curve with control points
Q0,Q1=2,Q1,Q3=2,Q2, . . . ,Qm

where Qi�1=2 ¼Qi�1þ
si

Dyi
tan Dyi

2 Tðyi�1Þ, weights

1, cos
Dy1

2
,1, cos

Dy2

2
, . . . , cos

Dym

2
,1,

and knot sequence
f0;0,0;1,1;2, . . . ,m�2,m�1,m�1,m,m,mg:
2.2. Euler arc splines
Definition 1. An Euler arc spline (EAS) is defined to be a curve
consisting of several arcs satisfying the three conditions: (1) the
arcs have the same arc-length; (2) the arc are joined to form a G1

continuous curve; and (3) the curvatures of the arcs vary linearly
from one arc to another.

An Euler arc spline is a special arc spline that has constraints
on arc-lengths and curvatures. It is named so because it can be
considered as an extension of an Euler curve in the sense that
each point on the Euler curve is replaced by an arc.

Consider an Euler arc spline with n arcs Ai,i¼ 1;2, . . . ,n.
Assume Ai starts at Pi�1 with orientation angle yi�1, ends at Pi

with orientation angle yi, and has curvature ki and arc-length s.
Fig. 4. One arc segment and its three Bézier control points.
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Based on the definition, the curvature can be defined by
ki ¼ asði�1Þþk1 for iZ1 where k1 and a are two constants,
called the initial curvature and curvature slope, respectively.
From ki and s, we can derive

Dyi ¼ kis¼ as2ði�1Þþk1s:

From Proposition 1, we can derive Pi and yi. That is,

Proposition 2. An Euler arc spline can be defined by six parameters:
P0 ¼ ðx0,y0Þ,y0,n,s,a and k1, from which we have

yi ¼ y0þ ik1sþ
ði�1Þi

2
s2a

Pi ¼ P0þ
Xi

j ¼ 1

2 sin
kjs
2

kj
Tðfjþy0Þ

where fj ¼
yj�1þyj

2 �y0 ¼
s2ðj�1Þ2aþð2j�1Þk1s

2 .

Moreover, there are constraints on s,a,k1,n to ensure that each
arc is not longer than a full circle, which gives �2prDyir2p.
Substituting ki into this constraint, we obtain

�2prs2aði�1Þþk1sr2p, i¼ 1;2, . . . ,n: ð3Þ

Proposition 3. For an Euler arc spline with each arc segment not

longer than a full circle, its initial curvature k1 and curvature slope a
satisfy:

�
2p
s

rk1r
2p
s

, ð4Þ

�
4p

ðn�1Þs2
r�

2pþk1s

ðn�1Þs2
rar 2p�k1s

ðn�1Þs2
r

4p
ðn�1Þs2

: ð5Þ

Proof. The proof is straightforward just by letting i¼1 and i¼n in
(3), respectively. &

Proposition 3 shows that when n increases, the range
of a decreases if s remains unchanged. If a remains unchanged,
then when n increases, s must decrease. In particular, when n goes
to infinity, s tends to zero, which implies that an Euler arc spline
converges to an Euler curve when the number of arcs goes to
infinity.

Furthermore, we have

Proposition 4. Given constants k1, a, sð40Þ, and a natural number

n satisfying 9k1s9r2p and 9s2aðn�1Þþk1s9r2p, there exists an

Euler arc spline with n arc segments having a total arc-length of

n s and curvature ki ¼ asði�1Þþk1 varying linearly in arc index i.

The Euler arc spline is unique up to a rigid transformation.

Proof. When aZ0, for all i¼ 1;2, . . . ,n, we have

�2prk1sraði�1Þs2þk1sraðn�1Þs2þk1sr2p:
0

0.5

0.5

–0.5

0
1

Fig. 5. Four types of shape of an Euler arc spline: (a) a40,k
Similarly, when ao0, we have

�2praðn�1Þs2þk1sraði�1Þs2þk1srk1sr2p:

We let the central angles Dyi ¼ kis. Then 9Dyi9r2p. If we arbitrarily
choose a starting point P0 and an orientation y0, Proposition 4 gives
the expression of an Euler arc spline satisfying the requirements. It
also shows that such an Euler arc spline is unique up to a translation
dependent of P0 and a rotation dependent of y0. &

The shape of an Euler arc spline curve can be classified into
four types depending on the signs of a and k1, which are
illustrated in Fig. 5.

In addition to having curvature change linearly from one arc to
another, Euler arc splines also have other nice properties as listed
below. These properties include or are similar to similarity
transformation invariance, symmetry, extensibility, smoothness,
and roundedness, which are required by the aesthetics of curves.
�

0

0.5

1 4
An Euler arc spline is invariant to translation, rotation, and
scaling.
In fact, suppose an Euler arc spline curve A is defined by
P0,y0,n,s,a and k1. A translation applied to A is achieved by just
applying the translation to P0. If we rotate A around the origin
by an angle f, this is achieved by applying the rotation to P0

and meanwhile updating y0 to y0þf. If A is multiplied by c,
the result is a new Euler arc spline defined by cP0,y0,n,cs,a=c2

and k1=c.

�
 The Euler arc spline defined by parameters P0,y0,n,s,a and k1

coincides with the Euler arc spline defined by Pn,ynþp,n,s,a
and �kn, where kn ¼ asðn�1Þþk1, yn ¼ y0þnk1sþ ðnðn�1Þ=2Þ
s2a and Pn ¼ P0þ

Pn
j ¼ 1ð2 sin ðkjs=2Þ=kjÞTððs

2ðj�1Þ2 aþð2j�1Þ
k1sÞ=2þy0Þ.
To prove this, we denote the first curve by rðtÞ,tA ½0,ns� and the
second one by rðtÞ,tA ½0,ns� and show that rðhsþ lÞ ¼ rððn�h�1Þ
sþs�lÞ for h¼ 0;1, . . . ,n�1 and lA ½0,s�. In fact,

rðhsþ lÞ ¼ P0þ
Xh

j ¼ 1

2 sin
kjs
2

kj
Tðfjþy0Þþ

2sin khþ 1 l
2

khþ1
T yhþ

khþ1l

2

� �

and

rððn�h�1Þsþs�lÞ ¼ Pnþ
Xn�h�1

j ¼ 1

2sin
k js
2

kj
TðfjþynþpÞ

þ

2 sin
kn�hðs�lÞ

2
kn�h

T yn�h�1þ
kn�hðs�lÞ

2

� �

where kj ¼ asðj�1Þ�kn ¼�asðn�jÞ�k1 ¼�kn�jþ1, yj ¼ pþyn�j,
and fj ¼ as2ðj�1Þ2�ð2j�1Þkns=2. Thus

rððn�h�1Þsþs�lÞ ¼ P0þ
Xn

j ¼ 1

2 sin
kjs

2
kj

Tðfjþy0Þ
1

–0.5

0
0.5

0, (b) a40,k1 o0, (c) ao0,k1 40, (d) ao0,k1 o0.
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þ
Xn�h�1

j ¼ 1

2sin
knþ1�js

2
knþ1�j

Tðfnþ1�jþy0þpÞ

þ

2sin
khþ1ðs�lÞ

2
khþ1

T pþyhþ1�
khþ1ðs�lÞ

2

� �

¼ P0þ
Xh

j ¼ 1

2sin
kjs

2
kj

Tðfjþy0Þþ

2 sin
khþ1l

2
khþ1

T yhþ
khþ1l

2

� �

¼ rðhsþ lÞ:
�
 Two Euler arc curves defined by P0,y0,m,s,a,k1 and
Pm,ym,n�m,s,a,asmþk1 coincide with the Euler arc curve
defined by P0,y0,n, s, a,k1, each in its own section.

�
 An Euler arc spline curve is at least G1 continuous.

�
 If the two point-orientation pairs lie on a circle, then there

exists an EAS interpolating the point-orientation pairs, which
coincides with the circle. This is because a circle is a special
case of an Euler arc spline with a¼ 0.

3. Curve completion algorithm

This section presents an algorithm that attempts to construct
an EAS curve to interpolate two given point-orientation pairs for
shape completion. The problem of curve completion using an EAS
can be stated as follows: Given two points PA ¼ ðxA,yAÞ and
PB ¼ ðxB,yBÞ with orientations yA and yB, find an EAS curve
consisting of n arcs that interpolates them, which is illustrated
in Fig. 6.

As discussed in Section 2.2, an Euler arc curve can be defined
by P0,y0,n, s, a and k1. For our problem, we obtain the first three
parameters immediately from the interpolation condition at one
given point: P0 ¼ PA,y0 ¼ yA. When n is specified, only s,a and k1

are to be determined. By Proposition 4, yn ¼ y0þnk1sþððn�1ÞnÞ=
2s2a. Letting yn ¼ yB gives

a¼ 2ðyB�yA�nk1sÞ

ðn�1Þns2
ð6Þ

We further need to let the last point of the Euler arc spline
curve interpolate the second point PB. Thus

PB ¼ PAþ
Xn

j ¼ 1

2 sin
kjs

2
kj

TðfjþyAÞ ð7Þ

which gives two equations for determining s and k1. Unfortu-
nately, these equations are highly nonlinear, which makes them
difficult to be solved. Kimia et al. [1] propose an numerical
method by sampling s and k1 values to find the solution. Since
usually an approximate solution is obtained, it sometimes hap-
pens that the approximate curve does not touch PB. However,
human perception is sensitive to the gap.

In this section, we present a new approach to find s and k1.
Our basic idea is that we perturb the arc-length of each arc by an
di to ensure the interpolation, which is somewhat equivalent to
distributing the deficiency between the last point of the Euler arc
spline and PB to all the arcs, and we want to find the best s and k1
Fig. 6. Shape completion with an EAS curve.
so that the perturbation amount is minimized. One advantage of
our approach is that the constructed curve always interpolates
the point-orientation pairs. Thus instead of solving (7), we search
for a solution to an optimization problem:

ðs,k1Þ ¼ arg min
s,k1

min

s:t: Pd
n ¼ PB

di

Xn

i ¼ 1

d2
i

0
B@

1
CA ð8Þ

where Pd
n is the last point of the perturbed curve. The next two

sub-sections explain how to solve this optimization problem.
3.1. Perturbation for interpolation

Suppose we have already had an EAS that may not interpolate PB.
Now we fix the central angles, and change the arc-length of each arc
to si ¼ sþdi with a perturbation di. There are many choices for di to
achieve interpolation. We determine di by solving the following
minimization problem:

min
Xn

i ¼ 1

d2
i

s:t: Pd
n ¼ PB

ð9Þ

This is a constrained optimization problem. Based on Proposition 1,

Pd
n ¼ PAþ

Xn

j ¼ 1

ðsþdjÞ

2 sin
Dyj

2
Dyj

TðyAþfjÞ:

Let

Vj ¼

2sin
Dyj

2
Dyj

TðyAþfjÞ ¼

2 sin
Dyj

2
Dyj

cosðyAþfjÞ

sinðyAþfjÞ

" #
:

By introducing Lagrangian multipliers l1 and l2, we convert the
minimization problem (9) into an unconstrained one:

min Gðd1, . . . ,dn,l1,l2Þ ¼min
Xn

i ¼ 1

d2
i þl1 Px

A�Px
Bþ

Xn

j ¼ 1

sVx
j þ

Xn

j ¼ 1

djV
x
j

0
@

1
A

8<
:

þl2 Py
A�Py

Bþ
Xn

j ¼ 1

sVy
j þ

Xn

j ¼ 1

djV
y
j

0
@

1
A
9=
;

where the superscripts ‘‘x’’ and ‘‘y’’ stand for the x- and y-components
of vectors.

To solve the optimization problem, we take the partial deri-
vatives of Gðd1, . . . ,dn,l1,l2Þ with respect to dk, and l1,l2, respec-
tively, and set the results to zero. This results in the following
equations:

@G

@dk
¼ 2dkþl1Vx

kþl2Vy
k ¼ 0, k¼ 1, . . . ,n ð10Þ

and

@G

@l1
¼ Px

A�Px
Bþ

Xn

j ¼ 1

sVx
j þ

Xn

j ¼ 1

djV
x
j ¼ 0

@G

@l2
¼ Py

A�Py
Bþ

Xn

j ¼ 1

sVy
j þ

Xn

j ¼ 1

djV
y
j ¼ 0 ð11Þ

From Eq. (10), we obtain

dk ¼�
l1Vx

kþl2Vy
k

2
: ð12Þ
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Substituting them into Eq. (11) arrives at two linear equations in
l1 and l2:

Xn

j ¼ 1

ðVx
j Þ

2l1þ
Xn

j ¼ 1

ðVx
j Vy

j Þl2 ¼ 2 Px
A�Px

Bþs
Xn

j ¼ 1

Vx
j

0
@

1
A

Xn

j ¼ 1

ðVx
j Vy

j Þl1þ
Xn

j ¼ 1

ðVy
j Þ

2l2 ¼ 2 Py
A�Py

Bþs
Xn

j ¼ 1

Vy
j

0
@

1
A

The solutions of the two linear equations are

l1 ¼
2
Pn

j ¼ 1ðV
y
j Þ

2 Px
A�Px

Bþs
Pn

j ¼ 1 Vx
j

� �
�2
Pn

j ¼ 1ðV
x
j Vy

j Þ Py
A�Py

Bþs
Pn

j ¼ 1 Vy
j

� �
Pn

j ¼ 1ðV
x
j Þ

2Pn
j ¼ 1ðV

y
j Þ

2
�
Pn

j ¼ 1 Vx
j Vy

j

� �2

l2 ¼
2
Pn

j ¼ 1ðV
x
j Þ

2 Py
A�Py

Bþs
Pn

j ¼ 1 Vy
j

� �
�2
Pn

j ¼ 1ðV
x
j Vy

j Þ Px
A�Px

Bþs
Pn

j ¼ 1 Vx
j

� �
Pn

j ¼ 1ðV
x
j Þ

2Pn
j ¼ 1ðV

y
j Þ

2
�
Pn

j ¼ 1 Vx
j Vy

j

� �2

ð13Þ

Thus we can conclude

Proposition 5. Given two point-orientation pairs ðPA,yAÞ and

ðPB,yBÞ, and also n,s,a,k1, let Dyi ¼ aði�1Þs2þkis and di be defined

by (12). Then the G1 continuous arc spline defined by PA,yA,
sþd1,Dy1, . . . ,sþdn,Dyn interpolates the two point-orientation

pairs.

3.2. Optimal arc-length and initial curvature

We have seen that the perturbations are actually functions
of s and k1. Now we want to find the optimal s and k1 such that
the sum of squares of di,

Pn
i ¼ 1 d

2
i , is minimized. In the ideal

situation, all di ¼ 0 and the curve is an EAS.

3.2.1. Bound estimation on parameters

First, the length of the arc spline curve must be greater than
the length of line segment connecting PA and PB, which implies

sZ
JPAPBJ

n
: ð14Þ

Second, substituting (6) into (5) gives

�2pr yB�yA

n
�k1sr2p: ð15Þ

Combining this with inequality (4) leads to the following bounds
on k1s:

max �2p,�2pþ yB�yA

n

� �
rk1srmin 2p,2pþ yB�yA

n

� �
: ð16Þ

Third, the combination of (15) with (4) also gives �4pryB�

yA=nr4p. Thus

nZ
9yB�yA9

4p : ð17Þ

3.2.2. Levenberg–Marquardt solver

We introduce variable transformation, Z¼ k1s. Without ambi-
guity, we denote di of (12) by diðs,ZÞ. Let fðs,ZÞ ¼ ðd1ðs,ZÞ, . . . ,
dnðs,ZÞÞT : R2-Rn be a vector function. Then we formulate our
problem as a minimization problem:

min
ðs,ZÞAO

Jfðs,ZÞJ2
¼ min
ðs,ZÞAO

Xn

i ¼ 1

d2
i ðs,ZÞ

where O¼ fðs,ZÞ : sZJPAPBJ=n,maxð�2p,�2pþðyB�yAÞ=nÞrZr
minð2p,2pþðyB�yAÞ=nÞg. This is a nonlinear least square problem.
We use the Levenberg–Marquardt (LM) algorithm to find the
solution. The LM algorithm is one of the most widely used
optimization algorithms [24,25]. It uses an effective damping
strategy that makes it be able to converge quickly from a wider
range of initial guesses.

The LM algorithm is an iterative procedure. Starting from an
initial guess for ðs,ZÞ, each iteration step replaces the current ðs,ZÞ
by a new estimate ðs,ZÞþðDs,DZÞ, where ðDs,DZÞ are the solution
to a linear system

ðJT JþmdiagðJT JÞÞ
Ds

DZ

 !
¼�JT fðs,ZÞ

with the Jacobian matrix

J¼

@d1

@s

@d1

@Z
^ ^
@dn

@s

@dn

@Z

0
BBBBB@

1
CCCCCA,

the diagonal matrix diagðJT JÞ consisting of the diagonal elements
of JT J, and the damping factor m. The damping factor is adjusted at
each iteration. If the reduction of the objective function is rapid, a
smaller value is used for m; Otherwise, if an iteration gives
insufficient reduction, m is increased [26]. The pseudocode of this
optimization is given in Algorithm 1, which is adapted from [26].
Here we heuristically set the initial estimation: s¼ 1:5JPAPBJ=n

and Z¼ 0.

Algorithm 1. (LM-Solver).
Input: A vector function fðs,ZÞ ¼ ðd1ðs,ZÞ, . . . ,dnðs,ZÞÞ and an
initial parameter estimation ðs,ZÞ.
Output: Optimal ðs,ZÞ.
Algorithm:

n’2, m’10�3

E1’10�10, E2’10�10, kmax ¼ 100

stop’false

k’0

A’JT JþmdiagðJT JÞ, G’�JT f
while ððstop¼ ¼ falseÞorðkokmaxÞÞ do

k’kþ1
repeat

Solve the equation: ðAþmdiagðJT JÞÞðDs,DZÞT ¼ G

if ðJðDs,DZÞJ2rE1Jðs,ZÞJ2) then
stop’true

else
Find a positive h such that ðs,ZÞþhðDs,DZÞAO
ðsnew,ZnewÞ’ðs,ZÞþminð1,hÞðDs,DZÞ,
fnew’fðsnew,ZnewÞ,

Jnew’Jðsnew,ZnewÞ

d¼ JfJ2
�JfnewJ

2

ðDs,DZÞðmdiagðJT JÞðDs,DZÞT þGÞ

if ðJfnewJ
2oJfJ2

Þ then
ðs,ZÞ’ðsnew,ZnewÞ, f’fnew, J’Jnew

A’ðJT JÞ, G’ð�JT fÞ

stop’ððJGJ1rE1ÞorðJfJ2rE2ÞÞ

m’m max f13 ,1�ð2d�1Þ3g

n’2
else
m’mn
n’2n

endif
endif

until ðd40ÞorðstopÞ

end while
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3.3. Algorithm

Now we are ready to summarize the curve completion algo-
rithm. Given two point-orientation pairs ðPA,yAÞ and ðPB,yBÞ as
input, the algorithm proceeds as follows:

H. Zhou et al. / Computers &648
Step 1.
Fig. 7. E

reference
Use Algorithm 1 to find the optimal arc-length s and initial
curvature k1.
Step 2.
 Use Eq. (6) to compute a.

Step 3.
 Use Eq. (12) to compute dk.

Step 4.
 If all dk are zero, we obtain an Euler arc curve defined by

PA,yA,n, s, a, k1. In case not all dk are zero (probably due to
the behavior of the numerical solver), we modify the Euler
arc curve to a G1 arc spline, which is defined by PA,yA,
sþd1,Dy1, . . . ,sþdn,Dyn where Dyi ¼ as2ði�1Þþk1s. In this
way, the output curve is guaranteed to interpolate the two
point-orientation pairs.
Table 1
Statistics for approximate errors.
Note that in the above procedure, the user is required to
specify the number of arcs. In practice, we can let the algorithm
automatically determine it. The basic idea is as follows: First, an
initial number is given as the number of arcs. We compute the
Euler arc spline interpolating the given point-orientation pairs.
Second, we increase the number of arcs by a constant and re-
compute the Euler arc spline. Third, we compare the distance
between the two Euler arc spline curves. Since the two curves
may have different arc-lengths, we evenly sample both curves,
compute the distance between two corresponding points, and use
the maximum distance as an upper bound on the distance of the
two curves. If the distance bound is greater than a given tolerance,
we go back to the second step to increase the number of arcs. This
process continues until the distance bound is smaller than the
tolerance. Then we output the curve with the larger number
of arcs.
Curve Length of the

Euler curve

Maximum error between the Euler curve and the

Euler arc spline of n arcs

n¼10 n¼20 n¼30 n¼40

Fig. 7(a) 597 37.7 12.1 3.9 0.88

Fig. 7(b) 569 33.1 8.6 1.7 0.75

Fig. 7(c) 445 26.5 10.9 4.9 0.82

Fig. 8. Curve completion for various point-orientation configurations.
4. Experimental results

This section provides experimental results to validate the
algorithm. We have implemented our algorithm using Cþþ.
The test was conducted on HP xw6600 Workstation with
2.00 GHz CPU and 3.00 GB of RAM. The testing results show that
the proposed algorithm is fast enough for realtime applications.
The running time for all the examples given in this section is less
than 0.02 s using the proposed algorithm. The rest of the section
then reports the performance of the proposed algorithm in other
aspects.

We first show that when the number of arcs increases, Euler
arc curves converge to the Euler curves, which complies the
results found in [21]. Fig. 7 shows three Euler curves (in pink
color) and their approximation by Euler arc splines (in gray) with
different numbers of arcs. All the Euler arc spline curves inter-
polate the boundary conditions. The statistics of the length of the
Euler curves and the approximation errors is given in Table 1. The
xamples of Euler curves in pink color and a series of Euler arc splines shown

s to color in this figure caption, the reader is referred to the web version of t
approximation error is computed by evenly sampling the curves
and computing the distance between the corresponding points,
and we use the maximum distance as the error. It can be seen that
the errors drop quickly as n increases. We would also like to point
out that the approximation error may better be measured by
Hausdorff distances, but Hausdorff distances are much more
expensive and difficult to compute in our case due to complicated
transcendental function representation of Euler curves.

Paper [1] has revealed that completion curves using Euler
curves are intuitive and natural. Thus our Euler arc splines are
also expected to provide intuitive and natural curve completion.
Fig. 1(b) and (d) show the results of shape completion using our
proposed method. Fig. 8 demonstrates our method with a variety
of point-orientation configurations. In Fig. 8(a), the start angle is
yA ¼�p=2 and the end angle yB changes around from p to �p. In
Fig. 8(b), yA ¼�p=2 with yB varying around from �p to �2p.

We also implement the methods of [1,23] for comparison.
In the following experiments, the starting point and its orienta-
tion are shown in red colors and the ending point and its the
orientation are shown in blue. As pointed out in Section 1.2, due
to complicated nonlinear equations in Kimia et al.’s method, it is
not rare that the numerical procedure fails to find the exact
solution, and thus the resulting Euler curve would not achieve the
interpolation condition. Fig. 9 shows the results of shape comple-
tion using Kimia et al.’s method and our method. It is observed
that Kimia et al.’s method does not produce an Euler curve that
interpolates the ending point while our algorithm guarantees the
interpolation of both endpoints. Walton and Meek’s method [23]
produces the results which are not different visually from the
results produced by our method. However, Walton and Meek’s
in gray whose numbers of arcs are 10, 20, 30 and 40. (For interpretation of the

his article.)



Fig. 11. Shape completion using Euler arc spline curves.
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method [23] has a limitation on the angle range while Kimia
et al.’s method and ours can accept arbitrary orientation angles.
Fig. 10 shows that with the same tangent vectors at the two
endpoints we can set different orientation angle values to achieve
different completions using our proposed method, which may be
useful in practice. Due to the limitation on the angle range,
Walton and Meek’s method cannot produce Fig. 10(c) or (d).

Finally, the use of Euler arc splines for shape completion is
illustrated in Fig. 11, where the constructed Euler arc splines are
overlayed on synthetic occluders. In these examples, we manually
specify the two points and the corresponding orientations, which
are the inputs for the algorithm. It is also possible to extract the
two points and the corresponding orientations by computing the
intersection between the contour and the area to be completed,
and the tangent directions of the contour. With the presence of
completion curves, better image inpainting can be achieved.
Fig. 12 shows such examples. Fig. 12(a) are three images with
occluders and their corresponding completed images by conven-
tional patch-based image inpainting. In Fig. 12(b), we perform the
shape completion first. The completion curves separate the
objects from the backgrounds and split the occluders into two
sub-regions. Then we apply image inpainting on two sub-regions
separately to allow for proper filling-in of the sub-regions. In this
way, the structure of the objects is well preserved and unneces-
sary diffusion is avoided in image inpainting, which is depicted in
Fig. 12(b).
5. Conclusion

We have described a new solution to curve completion.
The main contribution of the paper is twofold. First, we introduce
Euler arc splines as a new completion curve representation. Euler
Fig. 12. Comparison of image inpainting: (a) without shape completion, (b) with

shape completion.

Fig. 9. Comparison of our method and Kimia et al.’s method. The curves generated

by our method is shown in pink color and the curves generated by Kimia et al.’s

method is shown in black: (a) PA ¼ ð400;320Þ,yA ¼ 3:932; PB ¼ ð650;320Þ,

yB ¼ 3:494, (b) PA ¼ ð400;320Þ,yA ¼ 3:433; PB ¼ ð650;320Þ,yB ¼ 2:295. (For interpre-

tation of the references to color in this figure caption, the reader is referred to the

web version of this article.)

Fig. 10. Curve completion for the same tangent vectors but different angle values:

(a) yA ¼ 901,yB ¼�661, (b) yA ¼ 901,yB ¼�661þ3601, (c) yA ¼ 901þ3601,yB ¼�661,

(d) yA ¼ 901,yB ¼�661þ7201.
arc spline curves can be considered as an extension of Euler
curves. Similar to Euler curves, Euler arc splines have several nice
properties desired by the aesthetics of curves and meanwhile
they can be represented by NURBS curves, making them easier to
use in conjunction with existing commercial software systems.
Second, we propose an algorithm to construct an Euler arc spline
curve to interpolate two given point-orientation pairs for shape
completion. The construction is converted into a problem of
minimizing perturbations applied to each arc segment, which
can be solved by the Levenberg-Marquardt algorithm. Compared
to previous methods, our method has an obvious advantage that
it guarantees the interpolation of point-orientation pairs. The use
of the proposed algorithm has been demonstrated in image
inpainting application. We believe that Euler arc splines and the
associate curve completion algorithm can find other applications
involving shape design and processing.

Though we always find a solution for all the inputs we tried in
our experiments, theoretical analysis of existence of an Euler arc
spline for given point-orientation pairs remains an open question,
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which is worth further investigation. Also, the analysis of unique-
ness of the solution is interesting as future work.
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