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Abstract

The basic principles of Newton’s laws, and related concepts of momentum and energy and their conservation, are derived from

the electromagnetic theory. The electric and magnetic fields produced by an electric charge in uniform motion, as derived from

Maxwell’s equations, are used to find the forces the charge would exert on another charge, as measured in two inertial frames.

These force transformation relations in the two frames are extended to apply to any general physical problem involving force.

The force transformation relations are then used, together with the space-time relations of special relativity, to derive Newton’s

laws of motion applicable for velocity much smaller than the speed of light c(v << c), as well as to derive general expressions for

mass, momentum and energy, applicable for any velocity v[?]c. Further, the momentum or energy as expressed in one inertial

frame, are linearly related to the momentum and the energy expressed in another inertial frame. This result, when applied

to a closed system with no external interaction, proves the momentum and the energy to be conserved, based on the required

force-transformation relations. Fundamental and philosophical implications of the results and derivations are discussed. The

basic principles of invariant electric and magnetic charge, upon which all electromagnetic concepts of Maxwell’s equations are

founded, are recognized to be complete, general and the fundamental origin of Newton’s laws, making mechanical or material

principles theoretically secondary.
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Abstract—The basic principles of Newton’s laws, and related
concepts of momentum and energy and their conservation,
are derived from the electromagnetic theory. The electric and
magnetic fields produced by an electric charge in uniform motion,
as derived from Maxwell’s equations, are used to find the forces
the charge would exert on another charge, as measured in two
inertial frames. These force transformation relations in the two
frames are extended to apply to any general physical problem
involving force. The force transformation relations are then used,
together with the space-time relations of special relativity, to
derive Newton’s laws of motion applicable for velocity v much
smaller than the speed of light c (v << c), as well as to
derive general expressions for mass, momentum and energy,
applicable for any velocity v ≤ c. Further, the momentum or
energy as expressed in one inertial frame, are linearly related
to the momentum and the energy expressed in another inertial
frame. This result, when applied to a closed system with no
external interaction, proves the momentum and the energy to be
conserved, based on the required force-transformation relations.
Fundamental and philosophical implications of the results and
derivations are discussed. The basic principles of invariant
electric and magnetic charge, upon which all electromagnetic
concepts of Maxwell’s equations are founded, are recognized to
be complete, general and the fundamental origin of Newton’s
laws, making mechanical or material principles theoretically
secondary.

Index Terms—Maxwell’s Equations, Special Theory of Rela-
tivity, Newton’s Laws, Electromagnetic Perspectives.

I. INTRODUCTION

It has been recently established in [1]-[3] that Maxwell’s
equations [4] can be derived from basic principle of invariance
of the electric and magnetic charges, as fundamentally defined
by Gauss’ laws for the electric and magnetic fields, respec-
tively, using only the space-time relations of special relativity
[5], [6]. The principle of invariance of charge, unambiguously
defined based on a self-consistent concept of force on the
charge, using Gauss’ laws applicable across reference frames,
allows a fundamental derivation of Maxwell’s equations from
the basic charge principle. Newton’s laws that govern the prin-
ciples of the force and its resulting motion, or the principles of
momentum and energy defined using the force, as conserved
quantities, are not required in the fundamental derivation of
Maxwell’s equations.

N. Das is with the Department of Electrical and Computer Engineering,
Tandon School of Engineering, New York University, Five Metrotech Center,
Brooklyn, NY 11201.
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Once Maxwell’s equations are independently established,
they can be solved for the electric and magnetic fields in any
given problem involving charges, as seen in two reference
frames, using which the associated forces are derived. The
relationships between the solved forces in the two frames
would establish the required relativistic force-transformation
formulas in the two frames, without need for Newton’s laws.
Instead, Newton’s laws can now be derived from the estab-
lished force-transformation formulas.

Conventionally, the force-transformation formulas in special
relativity are deduced starting from the basic Newton’s laws
and principles of momentum and energy conservation, by
employing the space-time relations of special relativity [6].
This process derives the velocity-dependent functions for the
mass, momentum and energy as intermediate steps, leading
to the force transformation relations. Now that the force
transformation relations are available directly from Maxwell’s
equations, one can then essentially retrace backwards the
conventional derivations of the relativistic mechanics. Accord-
ingly, one could derive the functional forms for the mass,
momentum and energy, leading to fundamental “derivation” of
Newton’s laws and of the associated principles of momentum
and energy conservation.

In this paper, we will follow such a derivation starting
with a simple electrical problem having simple solutions from
Maxwell’s equations. Theoretical and philosophical signifi-
cance of the different results and derivations are addressed.
The fundamental nature of the electromagnetic principles, in
contrast with the basic material principles of Newton’s laws,
are discussed.

This article would be a valuable companion to another
article on fundamental electromagnetic theory presented in
this magazine [1]-[3], which introduces Maxwell’s equations
as derived from simple concepts of charge and space-time re-
lations. Understanding the electromagnetic theory with a new
fundamental perspective, in relation to mechanical concepts of
Newton’s laws as studied in the present paper, would provide
even deeper insight into the basic electromagnetic concepts,
inspiring appreciation for their broader physical significance.

II. FORCE TRANSFORM RELATIONS DERIVED FROM THE
FORCES BETWEEN TWO CHARGES

Consider two charges (Q1 = Q2 = Q) that are stationary
with respect to each other. Their fields and mutual forces are
measured in two reference frames, one (primed frame) where
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Fig. 1. Two charges, that are stationary with respect to each other, but
located at different positions in space. The fields produced by one charge
(source charge), acting upon the second charge (test charge), as seen in two
different reference frames. The primed frame is moving with a velocity V
along the z axis with respect to the unprimed frame.

the charges are at rest with respect to an observer, and the other
(unprimed frame) where the charges are moving with respect
to an observer at a constant velocity V along the z direction,
as shown in Fig.1. This is equivalent to having the individual
observer attached to the primed or the unprimed frames, who
see the other observer moving with a uniform velocity V in
the −z and +z directions, respectively. The origins of both
the frames are aligned with the location of one of the charges
at time t = t′ = 0, whereas the other charge is located at
(x′, y′, z′) in the primed frame, or at (x, y, z) in the unprimed
frame, timed at the instant t = 0 in the unprimed frame.

The two frames, moving with uniform velocity with each
other, are assumed to be naturally “unbiased” in a uniform
free-space medium. The basic invariant nature of propagation
of light in a uniform free-space, and consequently the validity
of the associated Maxwell’s equations, are only ensured across
all such equivalent, unbiased frames [1]-[3]. The invariant
nature of light to follow a straight-line path in the uniform
free-space medium, having the same magnitude of its velocity,
across all unbiased frames, would require the reference frames
to move with a uniform velocity with respect to each other,
as a necessary condition. This condition may be verified

using the space-time relations of special relativity, which were
established based on the expected special nature of light
[1]-[3]. This requirement of the uniform relative velocity is
consistent with the two reference frames we selected in the
electromagnetic analysis of Fig.1.

We will find the electric and magnetic fields produced by the
charge at the origin, moving with velocity V along z direction
in the unprimed frame. The fields seen in the primed frame is a
specific case of that in the unprimed frame, when the velocity
is substituted as V = 0 and the coordinates are changed from
the unprimed to the respective primed variables. Using these
fields due to the charge at the origin, we can find the total
force applied on the second charge at the general location
of Fig.1, for the two cases with observers in the primed and
unprimed frames. Relating the components of the two forces
F̄ ′ and F̄ would establish the required force transformation
between the frames. These force transform relations, although
derived for the specific simple situations of the two charges,
would be applicable to any physical problem involving force,
and considered fundamental relations with universal scope.

A. Derivation of the Force Fields

The electric Ē(x, y, z) and magnetic H̄(x, y, z) fields in the
unprimed frame, produced by the charge located at the origin
and moving in uniform velocity V along the z axis, are derived
from Maxwell’s equations. One simple approach is to express
the moving charge as a superposition or integration of z-
directed Fourier surface-current distributions J̃sz on a plane
parallel to the charge velocity (xz-plane, y=0).

J̄s = ẑJsz = ẑQV δ(x)δ(z − V t)
= ẑ

4π2

∫∫
kx,kz

J̃sz(kx, kz , t)e
jkxxejkzzdkxdkz ; y = 0,

J̃sz = QV e−jkzV t = QV e−jωt, k = ω
c = kz

V
c . (1)

The individual Fourier currents would produce plane waves
propagating (evanescent) in the ±y directions [7], [8], sat-
isfying proper boundary conditions across the currents at
y = 0. The plane-wave fields are one of the simple solutions
of Maxwell’s equations (in the uniform free-space medium,
observed in an unbiased reference frame).

Hz = 0 (TMz Field), ∇̄ · H̄ = 0,

H̃x(y = 0−)− H̃x(y = 0+) = J̃sz ,
'
H = (∓x̂− kx

ky
ŷ) J̃sz2 e∓jkyy ; y ≷ 0,

ky =

√
k2 − k2

x − k2
z = −j

√
k2
x + k2

z(1− V 2

c2
)

= −j
√
k2
x + k

′2
z , k

′
z = kzα, α =

√
1− V 2

c2
.

Ē = ∇̄×H̄
−jωε0

,
'
E = −Q

2ε0ky
(kxx̂∓ ky ŷ + kz(1− V 2

c2
)ẑ)

×e−jωte∓jkyy ; y ≷ 0. (2)

The total fields can then be obtained by Fourier integration
of the plane-wave fields, that maybe verified with available
expressions from physics and engineering texts [9], [10]. The
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fields at any general time t are expressed by substituting z →
(z−vt) in the respective expressions at t = 0. Further, by close
inspection of the Fourier integrals, the fields at t = 0 for a non-
zero uniform velocity V are expressed in terms of those for a
static charge with V = 0 (known, Coulomb’s fields), through
suitable substitution of variables. First, the electric fields are
expressed as follows:

Ē = 1
4π2

∫∫
kx,kz

'
E ejkxxejkzzdkxdkz =

1
4π2

∫∫
kx,k′z

'
E ejkxxejk

′
zz
′
dkx(dk′z/α) = Ē0(x, y, (z − vt)),

Ē(t = 0) = Ē0(x, y, z) = 1
α Ē(v → 0, z → z′ = z

α ,

kz → k′z = kzα, ẑ → ẑ′ = ẑα; z′ẑ′ = zẑ)

= Q

4πε0r
′3α

(xx̂+ yŷ + zẑ), r′ =

√
x2 + y2 + z′2,

Ē′(x = x′, y = y′, z = z′α) = Q

4πε0r
′3 (x′x̂+ y′ŷ + z′ẑ),

x = x′, y = y′, z = z′α. (3)

Then, the magnetic fields maybe derived from the electric
fields, by noting the relationships between their Fourier-
domain expressions above.

H̃x = −Ẽyε0V, H̃y = Ẽxε0V, H̃z = 0,

Hx = −Eyε0V, Hy = Exε0V, Hz = 0,

H̄ = H̄0(x, y, (z − V t)),
H̄(t = 0) = H̄0(x, y, z) = QV

4πr
′3α

(−yx̂+ xŷ). (4)

The special case for a stationary charge (in the primed
frame) consists of only the electric field Ē′ given by
Coulomb’s law, with a zero magnetic field H̄ ′ = 0. This may
be verified from the general field expressions in the unprimed
frame with any uniform velocity V , by simply substituting
V = 0 and changing the unprimed to the primed coordinate
parameters. Now, the forces F̄ ′ and F̄ in Fig.1, observed
respectively in the primed and unprimed frames, are expressed
using the above fields, timed at t = 0 in the unprimed frame.

F̄ (x, y, z) = QĒ +Qµ0(V ẑ × H̄)

= Q2

4πε0r
′3α

(α2xx̂+ α2yŷ + zẑ),

F̄ ′(x′, y′, z′) = QĒ′ +Qµ0(V ẑ × H̄ ′)

= Q2

4πε0r
′3 (x′x̂+ y′ŷ + z′ẑ), (5)

Fx = αF ′x, Fy = αF ′y , Fz = F ′z . (6)

B. Generality of the Force Transform Relations, Extended to
Any Physical System Involving Force

The above result (6), although is derived for a simple
problem, may be properly interpreted and extended for a
general configuration. The charge at the origin is the “source”
charge, which produces all the force fields we derived that act

upon the second charge, called the “test” charge. The same
result (6) would apply for any arbitrary location of the source
charge, as well as for any arbitrary values of the source and
test charges that may not be equal to each other. By principle
or superposition, the same final result (6) would be obtained as
well for an arbitrary spatial distribution of the source charges,
producing an arbitrary distribution of the force field F̄ (x, y, z).
Further, the result (6) requires the velocity of the test charge
to be directed along the z axis, with a magnitude equal to zero
and V as seen in the primed and unprimed frames, respectively,
only at the time of observation t = 0. The same result (6)
would be valid for any arbitrary path and velocity function of
the test charge, with any other velocity v̄(t) at times t 6= 0

before or after the observation. This is because, the force (5)
acting upon the test charge is dependent only on the location
and velocity of the test charge at the time of observation t = 0,
independent of all time-derivatives of the velocity at t = 0 or
of the velocity function v̄(t) of the test charge at other times
t 6= 0.

In summary, the force-transform relationship (6) would
work for a general force field as well as a general path or
velocity function of the test body. Considering such generality,
the above relations between the forces in the two frames may
be declared to be valid for a physical problem involving any
possible force field and any possible motion of the test body.

A force applied on a given body is meant to be an agent
to produce change in motion of the body, as time passes.
Accordingly, the amount of the applied force F̄ may be defined
as the time-derivative of certain physical quantity, called the
momentum p̄, associated with the body in general motion.
The momentum and force are vector quantities, representing
the directed, vector nature of the motion and its change.
Accordingly, the component of the force vector in any given
direction is equal to the time derivative of the component
of the momentum vector in the particular direction. For
mathematical generality, the time variation of the momentum
may be expressed in the form of a general momentum function
dependent on the position r̄, velocity v̄, acceleration ā and all
higher-order time-derivatives of the velocity.

F̄ (t)∆
dp̄(t)
dt , F̄ ′(t)∆dp̄′(t)

dt′ ,

p̄(t) = p̄(r̄, v̄, ā, ā1, ā2, . . .), p̄
′(t′) = p̄(r̄′, v̄′, ā′, ā′1, ā

′
2, . . .),

r̄ = xx̂+ yŷ + zẑ, r̄′ = x′x̂+ y′ŷ + z′ẑ,

v̄ = dr̄
dt = vxx̂+ vy ŷ + vz ẑ, v̄

′ = dr̄′
dt′ = v′xx̂+ v′y ŷ + v′z ẑ,

ān = dnā
dtn

= dn+1v̄
dtn+1 , ā0 = ā = dv̄

dt ,

ā
′
n = dnā′

dt′n = dn+1v̄′

dt′(n+1)
, ā
′
0 = ā′ = dv̄′

dt′ ,

F̄ = Fxx̂+ Fy ŷ + Fz ẑ, F̄
′ = F ′xx̂+ F ′y ŷ + F ′z ẑ,

p̄ = pxx̂+ py ŷ + pz ẑ, p̄
′ = p′xx̂+ p′y ŷ + p′z ẑ. (7)

III. DEPENDENCE OF THE MOMENTUM OF A BODY ON ITS
MOTION, DERIVED FROM THE FORCE-TRANSFORMATION

RELATIONS

The specific dependence of the momentum on the parame-
ters of motion of a body can be deduced from the fundamental
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force-transformation relations of (6), based on the space-time
transformation relations of special relativity.

Consider first a simple case with a force F̄ = Fz ẑ in
the z direction, resulting in motion with changing position
r̄(t) = z(t)ẑ and velocity v̄(t) = vz(t)ẑ only along the z

direction. Let the body at a given point be seen by a stationary
observer (unprimed frame), and another observer (primed
frame) moving with the same velocity V = vz as that of the
body at the time of observation. We will derive results for
this simple case of linear motion, based on the general force
transformation relations (6). The results for the simple motion
can be extended as well for a general motion.

A. Zero Force on a Stationary Body, and the Principle of an
Inertial Frame

For the simple case with a motion along the z direction,
consider the simplest situation of a given body in the primed
frame, placed at a given location (at the origin z′ = 0).
Due to the “unbiased” natures of the reference frame and
the surrounding free-space, which we assumed in the above
analysis to begin with, the particular body is expected to
naturally remain stationary at the specified location, with no
intrinsic bias for its movement in any one way or another.
And, this natural stationary state observed in the unbiased
reference must be maintained without any assistance of force.
Accordingly, any valid definition of force must be associated
with this basic condition. In other words, the force must be
defined such that it is zero for a stationary body observed in
an unbiased frame, as assumed in (7).

For the naturally stationary body at the origin z′ = 0 of the
unprimed frame, with no spatial motion as time progresses,
there would be no time variation of the momentum p̄′, and
therefore the associated force F̄ ′ be zero, as per the definition
of (7). However, it may be realized that such a definition
of force is to be applicable only in an unbiased frame. A
stationary body in a biased frame would instead require a force
in order to maintain its stationary position, in which case the
force definition (7) would be clearly invalid.

Accordingly, an observer attached to the reference frame,
would also naturally remain fixed at the origin of the frame
as a stationary body, without any influence of force. In
other words, the reference frame may be considered to be
naturally “free-floating” in space. In this sense, the reference
frame may be called an “inertial frame,” in reference to the
mechanical concept of inertia of the observer, with its natural
tendency to maintain its fixed position in absence of any
force. The “unbiased” nature of the frame, originally defined
electromagnetically, where light is observed to propagate in
straight lines with an invariant speed, is now explained to
be equivalent to its free-floating, inertial nature, defined in
mechanical terms. This is a fundamental understanding.

B. Position Independence of the Momentum

The above stationary body in the primed frame would be
seen in the unprimed frame with a uniform velocity V in the
z direction, having no acceleration or other time-derivatives of
its velocity. As per the force transformation relation (6), the

force Fz seen in the unprimed frame is required to be zero,
given that the force F ′z in the primed frame is known to be
zero. In other words, the body must not need any force in
order to sustain a uniform linear motion, as observed in the
unprimed frame.

Fz = dpz
dt = dpz

dz
dz
dt = dpz

dz V,
dz
dt = vz = V,

F ′z =
dp′z
dt′ =

dp′z
dz′

dz′
dt′ = 0, dz

′
dt′ = v′z = 0,

Fz = F ′z = 0, dpzdz = 0. (8)

Recall that the unprimed frame, like the primed frame, was
also originally selected to be electromagnetically unbiased.
Therefore, like the primed frame discussed earlier, the un-
primed frame may also be considered an inertial frame in me-
chanical terms. Accordingly, the above conclusion regarding
the body in uniform linear motion, specifically deduced in the
unprimed frame, may be generally stated for validity in any
inertial frame. That is, a body would maintain a uniform linear
motion in an inertial frame, without any assistance of force.

Mathematically, the above conclusion (8), derived using
(6) and (7), is equivalent to having the momentum pz to be
independent of the position z. This leaves the momentum pz
to be a function of its remaining variables - the velocity vz ,
acceleration az , and other higher-order time-derivatives of the
vz (see (7)).

C. Independence of Momentum With All Time-Derivatives of
Velocity, and Newton’s First Law

The position independence of momentum established that
a stationary body or a body with uniform velocity does not
require a force. We would like to know other possible motions,
if any, that also may not require force.

Consider a linear motion along the z axis, with a non-zero
acceleration az in the unprimed frame, having the velocity
vz = V , and all time derivatives of the velocity vz except the
first derivative (or, acceleration az = a0z), to be zero. The
associated force component F ′z and Fz along the z direction,
as seen in the two frames, defined in (7) as time-derivatives of
the momentum p′z or pz in the respective frames, must satisfy
the transform relations (6). This would require the momentum
p′z to be independent of all time derivatives of v′z .

The space-time relations of the special relativity may be
used to deduce the consequent relations for the velocity, as
well as for its time-derivatives, in the primed frame with
those in the unprimed frame. It may be shown that all time-
derivatives of the velocity v′z in the primed frame would be
non-zero functions of vz = V 6= 0, even though only the
first time-derivative (acceleration az = a0z) of the velocity
vz is non-zero in the unprimed frame. This is due to the
non-linear nature of the relativistic relation (11) between the
velocities v′z and vz in the two frames. Further, the time-
derivatives of the velocity v′z of increasingly higher order can
be shown to be proportional to increasing exponents of the
acceleration az = a0z . The above conditions, applied with the
force transformation relations (6) in the two frames, would
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lead to the requirement of the momentum p′z to be independent
of all time-derivatives of the velocity v′z .

F ′z =
dp′z
dt′ =

dp′z
dz′ v

′
z +

dp′z
dv′z

a′z +
∞∑
n=0

dp′z
da′nz

a′(n+1)z =

dp′z
dv′z

ρ0az +
∞∑
n=0

dp′z
da′nz

ρn+1a
n+2
z ,

a′nz =
dn+1v′z
dt′(n+1)

= ρna
n+1
z ; a′0z = a′z =

dv′z
dt′ ,

ρn(vz = V 6= 0) 6= 0, n ≥ 0,

Fz = dpz
dt = dpz

dvz
az , az = a0z = dvz

dt ,

anz = dn+1vz
dtn+1 = 0, n ≥ 1,

F ′z = Fz ,
dp′z
da′nz

= 0, n ≥ 0. (9)

In the above derivation, the Fz is expressed proportional
to the az , with no dependence on higher exponents of the az .
The Fz expression may be viewed as a power-series of the az ,
with only one term involving the first-exponent of the az . On
the other hand, the F ′z is expressed as a power-series of the az ,
involving all exponents of the az . The expressions of F ′z and
Fz must be equated, as required by the force transformation
relations (6). This would require the individual terms in the
power-series expressions of the F ′z and Fz , with different
exponents of the az , to be equated. Given that the coefficients
ρn can be shown to be non-zero for all n ≥ 0, as discussed
in the following section, the above process leads to requiring
the momentum p′z to be independent of all time-derivatives of
the velocity v′z .

The above process maybe similarly repeated for a linear
motion along the z axis with a non-zero acceleration anz ,
n = N > 0, in the unprimed frame, having the velocity vz = V ,
and all other time derivatives of the velocity vz except the
(N + 1)−th derivative (or acceleration aNz), to be zero. In
this case, it may be shown by extending (11,12), that the n-th
time-derivative of the velocity v′z in the primed frame would
be zero for all orders n < (N + 1), but would be non-zero
functions of vz = V 6= 0 for all orders n ≥ (N+1), even though
only the (N + 1)−th time-derivative (acceleration aNz) of the
velocity vz is non-zero in the unprimed frame. Further, the
n−th time-derivatives of the velocity v′z of increasingly higher
order n ≥ (N+1) can be shown to be proportional to increasing
exponents of the acceleration aNz . The above conditions,
together with the primary result (9) for N = 0, applied with
the force transformation relations (6) in the two frames, would
lead to requiring the momentum pz to be independent of all
time-derivatives of the velocity vz .

Like the position independence of the momentum deduced
earlier, the independence of the momentum with all time-
derivatives of the velocity is also a significant deduction from
the electromagnetic theory. This leaves the momentum to
be dependent only upon the velocity. Using the definition
of force in (7), this means that a non-zero force would be
required only when the velocity of a massive body is changed.
In other words, a stationary body would remain stationary,
and a body in uniform motion would maintain the uniform
motion, without any force, whereas an accelerating body

would certainly require a non-zero force. However, any change
in the acceleration would not require any additional force. This
is Newton’s first law of motion, although the first law does not
specify that higher-order time derivatives of velocity beyond
the first derivative (acceleration) do not require additional
force. This aspect is implied only through Newton’s second
law, to be derived in the following.

D. Functional Dependence of the Momentum with Velocity

As explained above, the momentum function pz is left
with the velocity vz as its only valid variable. The functional
expression of pz with the variable vz can be deduced from the
above result (9), by using the expression of ρ0 derived from
the space-time relations of special relativity.

Fz = F ′z ,
dpz
dvz

= ρ0
dp′z
dv′z

= 1
α3

dp′z
dv′z

= 1

(1−v
2
z
c2

)
3/2

dp′z
dv′z

,

pz(vz) =
m0vz

(1−v
2
z
c2

)
1/2

, m0 =
dp′z
dv′z

∣∣∣∣
v′z=0

= dpz
dvz

∣∣∣
vz=0

, (10)

x′ = x, y′ = y, z′ = z−V t
α , t′ =

t−zV/c2
α ,

v′x = vxα
(1−vzV/c2)

, v′y =
vyα

(1−vzV/c2)
, v′z = vz−V

(1−vzV/c2)
,

dt′ = α(dt), dv′x = dvx
α , dv′y =

dvy
α , dv′z =

dvz
α2 ; vz = V, vx = vy = v′x = v′y = v′z = 0,

dv′z
dt′ = ρ0

dvz
dt = α−3 dvz

dt ; ρ0 = α−3. (11)

Relations between the higher order time-derivatives of the
velocity v′z in the primed frame and the acceleration in the
unprimed frame can be similarly obtained by further differen-
tiating the above relations between the velocities in the two
frames. This would provide the expressions for all other ρn,
n > 0, which are non-zero functions of vz = V as we needed
in the above derivation (9).

a′nz =
dn+1v′z
dt′(n+1)

= ρn(dvzdt )
n+1

= ρna
n+1
z ,

ρn(vz = V, v′z = 0) = (2n+ 1)!!( V
c2

)
n
α−(n+3),

(2n+ 1)!! = (2n+ 1)(2n− 1)(2n− 3) · · · (1). (12)

E. Expressions in the Small-Velocity Limit, and Newton’s
Second Law

Note that we have “derived” the expression (10) for the
momentum component pz , as a function of the velocity com-
ponent vz , starting from Maxwell’s equations. In the limit of
a small velocity, the expression of momentum in (10), and the
associated force defined in (7), would take the form of New-
ton’s second law. In the small-velocity limit, the momentum
is shown to be proportional to velocity, with the constant of
proportionality m0 recognized as the rest mass. The force,
defined in (7) as the time-derivative of the momentum, is
therefore equal to the rest mass times the acceleration (time-
derivative of the velocity), in the small-velocity limit. This
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is the most basic mechanical formula constituting Newton’s
second law [11] of motion for a body of constant rest mass
m0. Accordingly, we have “derived” Newton’s second law of
motion, from the electromagnetic theory based on Maxwell’s
equations. This is a significant development.

pz(vz) =
m0vz

(1−v
2
z
c2

)
1/2

, pz(vz → 0, vz << c) = m0vz ,

Fz = dpz
dt =

d(m0vz)
dt = m0

dvz
dt = m0az ; vz << c,

pz(vz) = m(vz)vz =
m0vz

(1−v
2
z
c2

)
1/2

,

m(vz) =
m0

(1−v
2
z
c2

)
1/2

. (13)

F. Relativistic Mass

In consistency with the momentum expression in the small-
velocity limit, which we deduced above to be the product of
the velocity vz and the rest mass m0, the general expression
of the momentum pz(vz) in (10) may also be expressed as
a product of the velocity vz and a general mass term m(vz).
This new mass term, as shown in (13), is a function m(vz) of
the velocity vz of motion, unlike a fixed mass m0 assumed in
Newton’s law. Further, this velocity-dependent mass, referred
to as the relativistic mass, would increase indefinitely as the
velocity vz increases approaching the speed of light c. We
have succeeded to derive the required velocity function of the
relativistic mass, directly from Maxwell’s equations.

The same dependence of the relativistic mass, as a function
of the velocity vz for the linear motion along z, is extended in
the following to apply as well for a general motion along any
arbitrary path, where vz may be substituted with the magnitude
v of the general velocity vector v̄.

G. Generalization to Motion in the Three Dimensions

The above derivations assumed a simple linear motion along
the z axis. The direction of motion along the z axis for the
simple motion is an arbitrary choice. Similar results would
work as well for a motion along any general direction. Accord-
ingly, the result in (10) may be used to relate the magnitude
of a general momentum function p̄(v̄) to the magnitude of
the velocity vector v̄. The small-velocity limit for the general
case would be an extension of the equivalent limit (13) for
the simple case. Further, consistent with the small-velocity
limit, the general momentum vector is also directed along the
velocity v̄.

The momentum vector in the general direction can then be
decomposed into its individual components px, py and pz in
the x, y and z directions, respectively.

p̄(v̄) = m(v)v̄, p(v) = m(v)v =
m0v

(1−v
2

c2
)
1/2

,

m(v) =
m0

(1−v
2

c2
)
1/2

,

p̄(v̄) = mv̄ = m(vxx̂+ vy ŷ + vz ẑ) =
m0(vxx̂+vyŷ+vzẑ)

(1−v
2

c2
)
1/2

,

px =
m0vx

(1−v2/c2)1/2
, py =

m0vy

(1−v2/c2)1/2
,

pz =
m0vz

(1−v2/c2)1/2
, v2 = v2

x + v2
y + v2

z , (14)

pz(vz) = m0vz , px(vx) = m0vx, py(vy) =

m0vy ; vx, vy , vz << c,

p̄(v̄) = pxx̂+ py ŷ + pz ẑ =

m0(vxx̂+ vy ŷ + vz ẑ) = m0v̄; v << c,

m0 = dpx
dvx

∣∣∣
v=0

=
dpy
dvy

∣∣∣
v=0

= dpz
dvz

∣∣∣
v=0

= dp
dv

∣∣∣
v=0

. (15)

We derived the above general expressions (14) for the
momentum components, starting with a simple motion along
the z direction. This derivation explicitly satisfied the required
transform relationship (6) only between the force components
Fz and F ′z , for the simple case, which led to relating the mo-
mentum pz to the velocity vz in (10), also for the simple case.
The results were then generalized to (14) for velocity along an
arbitrary direction by reorienting the velocity axis, from which
the expressions for the individual momentum components for
the general case were decomposed. The required transform
relationships (6) between all three force components, for
the general case, were expected to be implicitly satisfied by
the final expressions of the momentum components of (14),
through the followed process of generalization and coordinate
reorientation. This is a theoretically simple, valid approach.

However, the expressions for the individual momentum
components in (14) for the general case may also be explicitly
verified to satisfy the required transform relationships (6)
for all three force components. This is possible by first
differentiating the momentum components in (14), expressed
in the two frames, with respect to the individual velocity
components. The results are then used in steps similar to (9)
to relate respective force and momentum components using
the space-time relationships (11), leading to verification of the
force transform relations (6).

H. Energy Expression Derived From the Force and Momentum

Now, let us derive the expression for the energy of a moving
body, adopting the conventional definition of energy used in
the Newtonian mechanics. The derivation would make use
of the momentum expression we established above. At this
point, we do not question any reasoning behind the choice of
the definition of energy. The definition is likewise introduced
in the Newtonian mechanics, without any justification for
its special form. It is simply expected without “proof” that
the conventional energy definition would provide a useful
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conserved quantity, which is one of the foundational principles
in the Newtonian mechanics. The validity of definition of the
energy used, and the proof of its conserved nature, will be
addressed in the section IV-B.

dW = F̄ · ds = dp̄
dt · ds = dp̄ · v̄ =

vxdpx + vydpy + vzdpz (16)

=
m0(vxdvx+vydvy+vzdvz)

(1−v2/c2)
3/2

=
(m0/2)d(v2)

(1−v2/c2)
3/2

= d(
m0

(1−v2/c2)
1/2

)c2 = (dm)c2,

W =
∫ (m0/2)d(v2)

(1−v2/c2)
3/2

=
m0c

2

(1−v2/c2)
1/2

= mc2. (17)

The incremental energy dW is shown to be equal to the
incremental mass dm times c2, which now establishes the basic
mass-energy relationship W = mc2, derived directly from
Maxwell’s equations. Accordingly, all forms of energy and
mass may be treated in equivalent terms using (17). This would
allow mechanical treatment of general systems which may in-
clude conventional massive bodies as well as electromagnetic
radiation. Any exchange of energy and momentum between
the conventional bodies and the radiation may be implemented
using concepts of electromagnetic field-mass/energy and field-
momentum [12].

IV. ENERGY AND MOMENTUM CONSERVATION IN A
CLOSED SYSTEM

A. Momentum-Energy Transformation Relations in the Two
Frames

Let us express the momentums (14) in two inertial frames,
moving with velocity V with respect to each other along the
z direction. This is possible using the space-time relations
(11) of special relativity. The momentums in the unprimed
frame can now be linearly related with those in the primed
frame in terms of the energy expression of (17) in the
primed frame. Using symmetry of results between the two
frames, similar relationship between the momentums in the
two frames and the energy in the unprimed frame can be
obtained by interchanging the primed and unprimed variables,
and replacing V with −V .

p̄ =
m0v̄

(1−v
2

c2
)
1/2

, p̄′ =
m0v̄
′

(1−v
′2
c2

)
1/2

,

px = p′x, py = p′y , pz =
p′z+m′V

α =
p′z+W ′V/c2

α ,

p′z = pz−mV
α =

pz−WV/c2

α , (18)

vx =
v′xα

1+v′zV/c2
, vy =

v′yα
1+v′zV/c2

, vz =
v′z+V

1+v′zV/c2
,

(1− v2

c2
) = (1−

v2
x+v2

y+v2
z

c2
) =

α2

(1+v′zV/c2)
2 (1−

v′x
2

+v′y
2

+v′z
2

c2
) =

α2

(1+v′zV/c2)
2 (1− v′2

c2
), α = (1− V 2/c2)1/2. (19)

The energy expression of (17) in the unprimed frame can
also be similarly related to that in the primed frame in terms
of the z directed momentum in the primed frame. Similar
relationship in terms of the momentum component in the
unprimed frame can also be obtained by interchanging primed
and unprimed variables and replacing V by −V . This is by
symmetry of results between the two frames.

W = mc2 =
m0c

2

(1−v
2

c2
)
1/2

, W ′ = m′c2 =
m0c

2

(1−v
′2
c2

)
1/2

,

W =
m0c

2(1+
v′zV
c2

)

α(1−v
′2
c2

)
1/2

=
m′c2(1+

v′zV
c2

)

α =
(W ′+p′zV )

α ,

W ′ =
(W−pzV )

α . (20)

B. Concept of Energy as a Conserved Parameter

The transformation relation (6) simply requires that a given
body with no external force, as observed in any one inertial
frame, would also be observed with no external force in any
other inertial frame. However, the body could consist of an
arbitrary number of internal parts, having general forces of
interaction and relative motion between them, but with the
sum of all the forces equal to zero. Therefore, the above simple
condition (6) needs to be consistently expanded to require that
any such set of zero-sum forces to be as well measured with
the same zero-sum condition in all the inertial frames. This
would be independent of the constitution of the individual parts
and the nature of their interacting forces.

Now, consider a system with all its individual forces added
to zero, as seen by an inertial frame (primed frame). As
discussed above, the system would also be seen with the zero
total force in the unprimed inertial frame, which is moving
with a uniform velocity V along the −z axis with respect to
the primed frame. Although the total force is zero, the system
is free to undergo any change of state of its individual parts,
produced due to the forces of interactions between the parts.
This would be characterized by change of velocity, momentum
and energy of the individual parts.

Based on the basic definition of force (7), having the total
force zero would mean that the total change of momentum ∆p̄

and ∆p̄′ of all constituent parts of the system, over any time
interval, would also be zero. Given the required momentum
expressions of (14) and their relationships (18) in the two
frames, it would additionally require the energy of (17) to
be conserved (∆W ′ = ∆W = 0).

∑
F̄ ′ = 0, ∆p̄′ = 0;

∑
F̄ = 0, ∆p̄ = 0,

∆px = ∆p′x = 0, ∆py = ∆p′y = 0, ∆pz = ∆p′z = 0,

∆pz =
∆p′z
α +

(∆W ′)V/c2
α = 0, ∆W ′ = 0;

∆p′z = ∆pz
α − (∆W )V/c2

α = 0, ∆W = 0. (21)

This is a significant result, which proves that the energy, as
conventionally defined in the Newtonian mechanics using the
incremental form (16), is in fact conserved in a system with



8

zero total force. The conservation of energy for a zero-force
system no longer needs to be accepted as a foundational me-
chanical principle, without proof, simply based on theoretical
and observational success of the principle. Conversely, if we
are looking for a useful scalar parameter to be conserved in a
system with zero total force, then the conventional definition of
energy (16) (written in incremental form) is now theoretically
proved to be one such conserved quantity. Other possible
expressions of the energy one might think of may not succeed
to maintain the desired energy conservation, consistent with
the force transform relations (6) and special relativity.

C. Momentum Conservation in a Closed System, and New-
ton’s Third Law

Now consider a system physically contained inside a definite
volume of space, identified with an entirely closed surface
boundary, with no interaction with the external free space
across the boundary surface. And, this is the case as seen by
any inertial observer (primed and unprimed frames). The non-
interaction condition across the closed boundary may be char-
acterized in terms of no flow of energy, or its mass equivalent
as per (17), across any part of the boundary. Accordingly, the
total energy or equivalent mass would remain constant inside
the system (∆W = ∆W ′ = 0). This assumes that no energy or
mass can spontaneously appear or disappear at any locaation
inside the closed system, without a definite trace of flow of
the energy occurring across the closed boundary surface.

Under the above condition, it may be shown from (20) that
the total momentum pz , p′z inside the closed system in each
frame would remain unchanged (∆p′z = 0 = ∆pz). The choice
of the z direction is arbitrary in the above discussion of the en-
ergy conservation in the closed system. Therefore, component
of the momentum along any direction, or equivalently the total
momentum vector, would remain unchanged (∆p̄ = 0 = ∆p̄′).
This is the principle of momentum conservation in a closed
system.

Further, because the total momentum would remain un-
changed, the total of all forces in the closed system would
be zero, as per the definition of force in (7). Equivalently,
every force in the closed system would be balanced by a
counter reaction force that is equal in magnitude but oppositely
directed. This is Newton’s third law of motion. We have now
proved Newton’s third law from the electromagnetic theory
and special relativity.

∆W = ∆W ′ = 0, ∆W = ∆W ′
α +

V∆p′z
α = 0, ∆p′z = 0,

∆W ′ = ∆W
α − V∆pz

α = 0, ∆pz = 0, ∆p̄′ = ∆p̄ = 0,

∆p̄′ = 0,
∑
F̄ ′ = 0; ∆p̄ = 0,

∑
F̄ = 0. (22)

It may be noted, that the two results (21) and (22) are
mutually complementary to each other. That is, the condition
of zero total force, or equivalently the conservation of total
momentum, would require the total energy to be conserved.
And conversely, the conservation of the total energy would
require the total momentum to be conserved, as well as the
total force to be zero.

D. Conservation of Total Energy and Momentum in the Uni-
verse

Consider the entire universe, which in principle contains
all physical space there is, and therefore does not have any
other external space across which any energy or mass can be
exchanged with. Accordingly, the entire universe is in principle
a closed system. Therefore, as per the above deductions, the
total momentum as well the energy in the entire universe
must be conserved, with every possible force in the universe
balanced by an opposing force of equal magnitude, at all times.
This is the universal principle of conservation of energy and
momentum.

V. DISCUSSION: BASIC CONCEPTS OF
ELECTRO-MAGNETIC CHARGE AND SPACE-TIME

SUPERSEDE NEWTON’S LAWS

We have succeeded to derive all basic mechanical principles
of Newton’s laws from Maxwell’s equations. Further, we
known that Maxwell’s equation can be established [1] directly
from the basic principles of electric and magnetic charge and
their invariance, using only the space-time concepts of the
special relativity. Accordingly, the principles of the electric and
magnetic charge and the space-time relativistic transformation
relations, constitute a complete set of basic rules or laws to
govern the electrical as well as mechanical characteristics of
the nature.

In other words, we have established that the basic concepts
of electro-magnetic charge and space-time are complete, which
“supersede” all mechanical principles making them redundant.
This interpretation may at first seem counter-intuitive. This
is because we come to be educated about the mechanical
principles first, which are more instinctively experienced as
we come in contact with our physical world on a daily basis.
Based on the mechanical principles, we are then gradually
educated about more advanced principles of the electrical
or magnetic forces, and their associated fields. This learning
process leads to a common impression that the mechanical
principles that are academically established first must be
independent of, and therefore fundamentally supersede, the
more advanced electromagnetic principles we learn later on.
As we now understand, this impression is misleading.

The mechanical principles are introduced based only on our
common-sense faith in Newton’s laws without any objective
“proof”, by essentially relying on our everyday experiences
and experimental observations. Although the electromagnetic
principles, in the form of Maxwell’s equations, are established
later based upon these mechanical principles, with deeper
insights we come to understand that the electromagnetic prin-
ciples could be more fundamental. The governing basic princi-
ples of invariant electric and magnetic charges are recognized
to be complete and minimal, and the underlying mechanical
concepts will now have to be constrained in order to be
consistent with the fundamental electromagnetic concepts.
These constraints provide the desired “proof” or explanation
for Newton’s laws and the associated momentum and energy
conservation, which no longer have to be accepted only on
faith in their agreement with experimental observations and



9

common-sense experiences. This is a significant, new scientific
view.
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