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1. Introduction
This document is an attempt to make the most important results of nonsubtractive dither 
theory plausible while using only very basic mathematics. In section 2, the most important 
results of nonsubtractive dither theory are summarized. In section 3, they are more or less 
explained. This document is definitely not meant as a proof or derivation of anything, see 
references [1] up to and including [6] if you are interested in the real mathematical proof.

The document is only about nonsubtractive dither, as subtractive dither is almost never used 
in audio. Subtractive dither means that the dither is subtracted again somewhere after 
quantization. For example, you could make a recording with an ADC that gets dithered with 
pseudorandom noise, generate the same pseudorandom sequence at playback, convert it to 
analogue and subtract it from the main DAC's output. It has its theoretical advantages, no 
noise penalty and no noise modulation, but it's just too inconvenient to be used a lot. An 
exception will be made for Anagram Technologies 'Sonic Scrambling', this will be discussed 
in appendix A with lots of guesswork as the details of their technique are not known to me.

Other techniques that will not be discussed are dithering with coloured noise or with low-
discrepancy sequences. These are very useful for image processing, but again not used a lot 
for audio, as far as I know. Noise shaping a dithered quantizer is usually more effective, see 
[7] and [8], but it is a completely separate topic that is outside the scope of this document.

2. Summary of some results of dither theory
When a signal needs to be rounded off to integer multiples of some quantization step, as 
happens in analogue to digital converters or when digital signals need to be rounded off to 
some smaller wordlength, this results in distortion, particularly for small signals. For example,
suppose the signal is 0.5 + 0.5 sin(2πft), rounding it off to integers will change the sine wave 
to a square wave, as illustrated in figure 1.



Figure 1: Small 1 kHz sine wave (0.5 + 0.5 sin(2 π 1000 t)) and the same rounded to integers

A way to get rid of the most annoying artefacts of quantization or requantization is dithering 
[1], [2], [3], [4], adding a small noise signal at the input of the quantizer1. The total error of a 
dithered quantizer has a mathematical expectation (ensemble average) and a standard 
deviation that are independent of the signal when the dither has the following characteristics 
[1]:

A. The dither must have a two-LSB peak-to-peak value and a triangular probability density 
function2

B. It must be independent of the signal to be quantized.

For a quantizer that is used inside a feedback loop, requirement B implies that:

C. The dither samples must be independent of each other.

There are some special cases where requirement C does not apply, such as loops with integer 
coefficients. See references [3] and [4] for details.

With dither according to requirements A, B and C, the power spectral density of the rounding 
error becomes white and independent of the signal. When the quantizer is embedded in a 
noise shaping loop, the power spectral density at the noise shaper output is shaped according 
to the noise transfer function, but it is still continuous, without any tones, and independent of 
the signal. This makes the round-off error sound like (white or coloured) background noise 
rather than like a very unpleasant kind of distortion.

The efficacy of dither has been grossly over- and understated in some literature, ranging from 
'dither makes quantization essentially linear' to 'dither only works on steady-state signals such 

1 Scientists believe that dither-like phenomena play a role in processes as diverse as the periodicity of ice ages 
and the operation of the mammalian auditory system, the inner hair cells being dithered by the Brownian motion 
of the fluid in the cochlea. See reference [9] for more information.
2 At least this is the option with least noise; in general you have to add two or more random signals with uniform 
distribution of 1 LSB peak-peak each. Adding precisely two of these signals results in triangular dither.



as sine waves and not on musical transients'. A non-subtractively dithered quantizer is neither 
linear nor affine, because the quantization error is statistically dependent on the signal. For 
example, when the input to the quantizer is 12.25 LSB, for any kind of non-subtractive dither, 
the quantization error will always be n - 0.25 LSB with integer n. When the input to the 
quantizer is 13.31 LSB, the quantization error will be n - 0.31 LSB with integer n. Hence, the 
probability distribution of the quantization error is always dependent on the input signal, even 
though the average and the standard deviation can be made independent of it.

Claiming that dither only works on steady-state signals is equally incorrect. This 
impression may have been left by some early articles on dither that for simplicity showed the 
effect on sine waves or on constant input signals; the later, more general, articles are often 
difficult to read because of their advanced mathematical content (such as large numbers of 
high- or even infinite-dimensional Fourier transforms). In any case, it is perfectly possible to 
calculate the effect of dithering over an ensemble of independently dithered quantizers that all
quantize the same musical transient.

3. Heuristic story to make it plausible

3.1. Correcting the expectation (ensemble average) with rectangular 
dither

Suppose you want to round some real number to an integer. A fractional number can always 
be written as the sum of an integer part and a fractional part, n + f where n is an integer and 0 
≤ f < 1. The same holds for irrational real numbers, except that you can't call f the fractional 
part anymore.

When f ≥ 0.5, the number gets rounded up to n + 1, so the round-off error is 1 - f. When f < 
0.5, the number gets rounded down to n, so the error is -f.

Suppose you add a random variable d (as in dither) that's uniformly distributed on -0.5 ≤ d < 
0.5 to the number n + f before rounding. As 0 ≤ f < 1 and -0.5 ≤ d < 0.5, the sum of f and d 
will be in the range -0.5 ≤ f + d < 1.5. When -0.5 ≤ f + d < 0.5, then n + f + d will be rounded 
down to n and when 0.5 ≤ f + d < 1.5, then n + f + d will be rounded up to n + 1.

Hence, when -0.5 ≤ f + d < 0.5, the difference between the dithered and rounded number n 
and the original number n + f will be -f and when 0.5 ≤ f + d < 1.5, the difference between the 
dithered and rounded number n + 1 and the original number n + f will be 1 - f.

As d is uniformly distributed with -0.5 ≤ d < 0.5 and 0 ≤ f < 1, the probability of f + d being 
greater than or equal to 0.5 is precisely f. For example, when f is 0, f + d must always be less 
than 0.5. When f is almost 1, f + d is almost always at least 0.5. When f is 0.43, f + d ≥ 0.5 
when d ≥ 0.07. Hence, f + d ≥ 0.5 when d is in the range from 0.07 to 0.5, which is 43 % of 
the interval from -0.5 to 0.5.

As a result, when you have a large number of quantizers (ensemble of quantizers) with 
independent dither generators all rounding off the number n + f, there will be a fraction f of 
them rounding off the number to n + 1 and the rest to n. The ensemble average, also known as
the mathematical expectation, will therefore be n + f. This means that there is no systematic 
error anymore, the error due to rounding off has changed into a random error.



When there is a discrete-time signal (that is, a series of sample values) to be rounded off and 
each sample gets its own d, the error is also random over time and will sound like noise. 
Hence, the distortion due to round-off errors has been changed into noise.

The exact same result can be obtained with rounding down and dither with 0 ≤ d < 1. This 
may sometimes be easier to implement.

A uniform probability distribution on some interval can also be called a rectangular 
probability distribution, hence the title of this section.

3.2. Getting rid of noise modulation with triangular dither
The dither of section 3.1 changes distortion into noise, but the noise gets modulated by the 
original signal. For example, suppose the signal consists of a constant number with a 
fractional part f = 0, that is, an integer that gets repeated all the time. Adding dither with -0.5 ≤
d < 0.5 will then always result in a sum n + f + d that gets rounded to n. The output signal will
therefore be constant at n and have no noise.

When f = 0.5, half the samples will be rounded to n + 1 and half to n. When at random half the
samples are rounded to n + 1 and half to n, there is noise.

Like the round-off error in section 3.1, the noise level is dependent only on the fractional part 
f of the number, not on the integer part n. This fractional part can be randomized by adding 
yet another uniformly distributed signal -0.5 ≤ d2 < 0.5 to n + f before doing all the things that 
were described in section 3.1. That is, n + f + d2 can again be written as the sum of an integer 
part int(n + f + d2) and a fractional part n + f + d2 - int(n + f + d2), which is f + d2 mod 1. This 
fractional part is uniformly distributed over the interval from 0 to 1.

For example, when f = 0, n + f + d2 will be uniformly distributed between n - 0.5 and n + 0.5. 
If n - 0.5 ≤ n + f + d2 < n, the integer part will be n - 1 and the fractional part will be n + f + d2 
- (n - 1) = f + d2 + 1 with 0.5 ≤ f + d2 + 1 < 1. If n ≤ n + f + d2 < n + 0.5, the integer part will be
n and the fractional part will be n + f + d2 - n = f + d2 with 0 ≤ f + d2 < 0.5. All in all, the 
fractional part of n + f + d2 can be anywhere between 0 and 1 and all values are equally 
probable.

Similarly, when f = 0.6,  n + f + d2 will be uniformly distributed between n + 0.1 and n + 1.1. 
If n + 0.1 ≤ n + f + d2 < n + 1, the integer part will be n and the fractional part will be n + f + 
d2 - n = f + d2 with 0.1 ≤ f + d2 < 1. If n + 1 ≤ n + f + d2 < n + 1.1, the integer part will be n + 1
and the fractional part will be n + f + d2 - (n + 1) = f + d2 - 1 with 0 ≤ f + d2 - 1 < 0.1. All in all,
the fractional part of n + f + d2 can again be anywhere between 0 and 1 and all values are 
again equally probable.

As the noise level depends on the fractional part of the input signal of the dithered quantizer 
of section 3.1, randomizing that fractional part will remove the signal dependence of the noise
level.

All in all, when you add two independent random signals uniformly distributed from -0.5 to 
0.5 to the signal n + f before rounding it, you get rid of distortion and noise modulation. The 
probability distribution of the sum of two uniformly distributed random signals is triangular, 
hence this is known as triangular dithering.



3.3. High-order dither
It is shown in reference [1] that the so-called third and higher moments of the total error are 
still dependent on the signal with triangular dither. Adding k independent uniformly 
distributed random signals to the signal before rounding it makes the first k moments of the 
total error independent of the signal, but the noise level gets higher and higher as k is 
increased. (Assuming that the quantization error without dither is uniformly distributed over 
one quantization step, which is not necessarily true, the RMS value of the total error increases
with a factor of √(k + 1) with kth order dither.)

It is often claimed that only the first two moments matter for audio and that making 
the first two moments independent of the signal makes the dithered quantization error 
indistinguishable from real additive noise. I'm not so sure about that anymore since 
conducting a listening test on diyaudio.com, see [10]. Still, the participants, Mooly and PMA, 
did not have a preference for real additive noise over triangularly dithered quantization errors,
so the conclusion that triangular dither suffices for audio still stands.

According to the central limit theorem, the probability density function of the sum of k 
independent uniformly distributed random variables approaches a Gaussian distribution as k 
increases, and it actually does so pretty fast. The standard deviation of the sum increases with 
the square root of k. Hence, Gaussian noise with an RMS level greater than a few quantization
steps is imperfect but pretty good dither, as its distribution is quite close to that of k 
independent uniformly distributed random variables. Normal analogue circuit noise is usually 
Gaussian, so analogue circuit noise can be used as imperfect but pretty good dither for an 
analogue to digital converter if it is large enough compared to the quantization steps (which 
can be the case for high-resolution SAR ADCs, but is almost never the case for the coarse 
quantizers of sigma-delta ADCs).

3.4. Statistical independence
There is no way to make the quantization error completely statistically independent of the 
signal with nonsubtractive dither, as was explained in section 2. For example, when the input 
signal is 12.25 LSB, for any kind of non-subtractive dither, the total error will always be 
n - 0.25 LSB with integer n. When the input signal is 13.31 LSB, the total quantization error 
will be n - 0.31 LSB with integer n. Hence, the probability distribution of the error is always 
dependent on the input signal, even though the average and the standard deviation (and any 
number of higher moments) can be made independent of it.

3.5. Example: 24 bit signal to 16 bit signal
Rounding (requantizing) a 24 bit signal to a 16 bit signal with triangular probability density 
function dither can be done as follows:

-Generate two independent 8 bit random numbers per sample
-Add them to the 24 bit sample value, and correct for offsets if needed. (When you use a 
signed and an unsigned random number and later use truncation, there is no offset to correct.)
-Take some precautions to clip everything properly if the added dither should cause an over- 
or underflow
-Throw away the lower eight bits of the sum
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Appendix A. Sonic scrambling
Anagram Technologies uses a technique called sonic scrambling where a differential signal is 
made by driving two DACs with opposite signals, but with the dither in phase. The idea is that
the dither then largely cancels in the differential output, as it mainly causes a common-mode 
disturbance.

That is, an interpolating filter produces an interpolated large-wordlength signal. Its opposite is
calculated, the very same dither signal is added to the interpolated signal and its opposite, 
both are requantized, and one is sent to the positive DAC and the other to the negative DAC.

https://linearaudio.net/sites/linearaudio.net/files/03%20Didden%20LA%20V13%20mvdg.pdf


A.1. Half dither with ideal DACs
Assuming ideal DACs and ideal subtraction, an interesting property of this technique is that it 
can work with half the normal dither level.

For example, suppose we use a rectangular dither signal d that is uniformly distributed on 0 ≤ 
d < 0.5, add it to the signal n + f and its opposite -n - f, and round down (floor) the results.

When  0 ≤ f < 0.5, the sum n + f + d will always be greater than or equal to n and smaller than 
n + 1 and will therefore be rounded down to n. However, -n - f + d will be greater than -n - 0.5
and smaller than -n + 0.5 and can therefore be rounded down to -n - 1 or to -n. When f is close
to 0.5, it will almost certainly be rounded down to -n - 1 and when f is 0, it will always be 
rounded down to -n. When f is 0.23, there is a 46 % chance that it will be rounded down to -n 
- 1.

When  0.5 ≤ f < 1, the sum n + f + d will be greater than or equal to n + 0.5 and smaller than n 
+ 1.5 and can therefore be rounded down to n or to n + 1. When f is 0.5, it will always be 
rounded down to n and when f is close to 1, it will almost always be rounded down to n + 1. 
When f is 0.73, there is a 46 % chance that the sum will be rounded down to n + 1. 
Meanwhile, -n - f + d will be greater than -n - 1 and smaller than -n and will therefore always 
be rounded down to -n - 1.

Therefore, even though the dither was uniform from 0 to 0.5 rather than 0 to 1, the 
mathematical expectation of the difference between the outputs of the two quantizers, and 
hence of the DACs if they are ideal, will be proportional to n + f:

When  0 ≤ f < 0.5:
mathematical expectation of the differential output is n - (-n - 2 f) = 2 n + 2 f

When  0.5 ≤ f < 1:
mathematical expectation of the differential output is n + 2(f - 0.5) - (-n - 1) = 2 n + 2 f

Actually subtracting the outputs of two N-bit DACs gives you a total of 2N + 1 possible levels. 
If you would apply a half-LSB offset to the requantizer of one of them and not to the other, 
they would together form an (N + 1)-bit DAC. It is therefore understandable that half of the 
dither that a single DAC would need can suffice.

A.2. Large dither to randomize dynamic non-linearity errors of non-ideal 
DACs

Ideally, adding some random integer to d won't change the differential output voltage, as both 
the positive and the negative DAC output signals change by the same amount, assuming the 
DACs aren't driven into clipping. (I have the strong suspicion that adding a random integer 
multiple of 1/2 to d also won't change anything, but I have not checked that.) Although d will 
need to have a fractional part to properly dither the requantization as discussed in section A.1, 
to keep the calculations simple, we will pretend in this section that d is an integer.

Real-life DACs will have so-called integral and differential non-linearity and gain errors. To 
keep things simple, I will only consider differential non-linearity and gain errors.

When the input to a DAC is k, its output signal should be kG, where G is a gain factor. When 
the positive and negative DACs have gain errors and differential non-linearity, their output 



signals will be kGp + εp(k) for the positive DAC and kGn + εn(k) for the negative DAC. Each 
DAC has a different G to show that their gains are not exactly the same. The ε's show that 
there is some extra error that depends on the DAC and DAC code. I will assume that these 
extra errors are independent of each other.

Suppose the positive DAC gets an input code n + d and the negative DAC gets a code -n + d. 
The difference between their outputs will then be:

(n + d)Gp + εp(n + d) - ((-n + d)Gn + εn(-n + d)) = n(Gp + Gn) + d(Gp - Gn) + εp(n + d) - εn(-n + 
d)

The following subsections will deal with a couple of special cases.

A.2.1. Gain error not taken into account, d = 0
If there were no gain error, Gp = Gn = G, and d would be 0, the differential output would be 
2nG + εp(n) - εn(-n), so the sum of the desired signal and two error terms due to differential 
non-linearity that depend on the sample value n. Suppose you would play a small periodic 
signal with a period time that's an integer number of sample periods. Every time you play a 
certain sample value of the periodic waveform, you get the associated error εp - εn. The error 
will therefore also be periodic and can be expressed as a Fourier series. That is, it causes 
harmonic distortion.

A.2.2. Gain error not taken into account, d random integer
If there were no gain error, Gp = Gn = G, and d would be some random integer, the differential
output would be 2nG + εp(n + d) - εn(-n + d), so the sum of the desired signal and two error 
terms due to differential non-linearity. Suppose you would play a small periodic signal with a 
period time that's an integer number of sample periods. Every time you play a certain sample 
value of the periodic waveform, you get a different error εp - εn because d will be different. 
The error will therefore be randomized and sound more like noise and less like distortion.

When d can take on a huge number of different integer values and the ε's are independent with
zero mean, the error for each value of n will average out and get quite close to 0. When d can 
only have a few values, the averaging out won't work so well. For example, when there is a 
sample n = 23 in the periodic waveform and d can only be -2, -1, 0 and 1, εp(n + d) will 
randomly switch between εp(21), εp(22), εp(23) and εp(24). As there are only four εp's to 
average out, they will not average out as well as when there had been 100 of them.

All in all, distortion due to differential nonlinearity is partly converted into noise and this 
works better as the range of dither values is increased.

A.2.3. Gain error taken into account, d random integer
The full expression for the differential output signal is n(Gp + Gn) + d(Gp - Gn) + εp(n + d) - 
εn(-n + d). Clearly, the term d(Gp - Gn) that represents imperfect noise cancellation due to gain 
errors results in a noise floor that increases as the range of values for d increases. One 
therefore needs to make a compromise between the conversion of differential non-linearity 
errors from distortion to noise (A.2.2) and a noise floor increase.



A.3. Using dynamic element matching / mismatch shaping / data-
weighted averaging

In section A.2, distortion due to differential non-linearity was partly converted into noise by 
adding a random integer part to the dither. It would be nicer if this noise could predominantly 
be put outside the audio band. As the Anagram Technologies DAC uses oversampling, the 
obvious place to put it is above the audio band. This is vaguely similar to the dynamic 
element matching and mismatch shaping techniques used for multibit sigma-delta modulators,
though I don't know if any of them are directly applicable, nor if Anagram Technologies uses 
any of those. 
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