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Compensating Current  
Feedback Amplifiers in 
Photocurrent Applications
By Jonathan Pearson

Introduction
Historically, current feedback amplifiers (CFA) have not been the 
first choice for use as transimpedance amplifiers (TIA) due to their 
relatively high inverting input currents and inverting input current 
noise, which can be at least an order of magnitude larger than that 
of a comparable voltage feedback amplifier (VFA). Additionally, 
many system designers are unfamiliar with CFAs, so they’re less 
comfortable using them. The fact remains, however, that CFAs 
are quite easy to use and can outperform their VFA counterparts 
in applications that require high gain, low power, low noise, wide 
bandwidth, and high slew rate. One of their main benefits is that 
the loop gain of an ideal CFA is independent of its closed-loop gain, 
thus allowing the CFA to deliver excellent harmonic distortion 
and bandwidth performance irrespective of its closed-loop gain. 

Due to their very low input bias current and input current noise, 
FET-input op amps are often given the highest consideration for 
TIA applications, particularly those that use low output current 
devices, such as photoelectric elements, as the input current 
source. While FET-input amplifiers do excel in many of these 
applications, their speed can be insufficient in systems that require 
faster performance. Thus, CFAs are increasingly being used as 
TIAs in faster systems that can tolerate more noise.

This article deals with how the parasitic capacitance of a 
photodiode or other light-to-current transducer affects a CFA 
operating as a TIA, and how to properly compensate the amplifier 
for this capacitance. Some introductory material regarding CFA 
operation is provided, as well as occasional parallels between CFA 
and VFA analyses. Analysis of the “noise gain” of VFA circuits or 

“feedback impedance” of CFA circuits is not used. Instead, classical 
feedback theory using loop gain is used to avoid difficulties 
incurred when moving between current and voltage domains (loop 
gain is always a dimensionless quantity) and because the theory 
itself presents Bode plots that are straightforward and easy to use.

Current Feedback Amplifier Basics
An ideal CFA has zero input impedance—a dead short across 
its inputs—because the negative feedback signal is a current. In 
contrast, an ideal VFA has infinite input impedance because its 
feedback signal is a voltage. The CFA senses the error current 
flowing in its input and develops an output voltage equal to Z times 
the input current, where Z represents the transimpedance gain. 
The direction of the error current is defined to produce negative 
feedback. Similar to A in a VFA, Z approaches infinity in an ideal 
CFA. Figure 1 shows the basics of how an ideal CFA could be 
configured as a TIA to transfer the current from an ideal current 
source to its output voltage.
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 Figure 1. Ideal CFA used as a TIA. 
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The closed-loop gain of this TIA can be expressed as
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Equation 1 shows that as Z approaches infinity, the TIA gain 
approaches its ideal value of RF. As Z approaches infinity, the 
error current, ie, approaches zero, and all of the input current flows 
through RF. The loop gain is seen as Z

RF

 in Equation 1. 
 
Unfortunately, ideal CFAs do not exist, so practical devices 
use the next best thing: a unity-gain buffer across their inputs. 
A current mirror reflects the error current to a high-impedance 
node where it is converted to a voltage, buffered, and fed to the 
output, as shown in Figure 2.
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Figure 2. Practical CFA with unity-gain buffer used as a TIA.

As long as Ro = 0, the closed-loop gain is the same as that given in 
Equation 1. When Ro > 0, the closed-loop gain becomes

















+
+

=

Z
RRR

i
v

OF
F

o

1

1
(2)

 
and the loop gain is Z

+ RR OF

.

 
TIA Design Using Practical Components
Photodiode and other photoelectric devices exhibit a parasitic shunt 
capacitance proportional to the device area. When Ro = 0, this 
capacitance is fully bootstrapped, so it has no effect on the closed-
loop response. In a real CFA, Ro > 0, and the parasitic capacitance 
influences the response, potentially causing the circuit to become 
unstable. In addition, like the open-loop gain, A, in a VFA, the 
magnitude of Z in a real CFA is large at low frequency and rolls 
off with increasing frequency, and the phase shift lags more with 
increasing frequency. To first order, Z(s) can be characterized with a 
single dominant pole at s = p and dc transimpedance of ZO, as shown 
in Equation 3. High frequency poles in Z(s) will be considered later. 
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The circuit in Figure 3 includes the parasitic capacitance, C, and 
the transimpedance, Z(s). Note that the CFA’s inverting input 
capacitance can be absorbed into C.
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Figure 3. Practical CFA-based TIA including  
parasitic capacitance. 
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Equation 4 is derived by performing KCL at the inverting input. 
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The error current, ie, is
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Combining Equation 4 and Equation 5 produces the following result 
for the closed-loop TIA gain of the circuit in Figure 3:
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The loop gain is evident in Equation 6 and is given by
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The loop gain contains two poles, a low-frequency pole at s = p and 
a high-frequency pole at

( )CRR
s
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−= . When Ro<< RF, the  

 
parallel combination of RF and Ro can be approximated by Ro. 
The two poles present a stability problem when the high-frequency 
pole occurs at a frequency where the magnitude of the loop gain 
is greater than 0 dB. When Ro and C are small, the parasitic pole 
occurs at a frequency higher than the crossover frequency, and 
the amplifier is stable. This is generally not the case in most TIA 
circuits, however, so we must find a way to compensate for the 
inverting input parasitic capacitance.

Adding a Feedback Capacitor (a Brief Digression)
A CFA with a single-pole transfer function, as given in Equation 3, 
is stable with any value of feedback resistor because the lagging 
phase shift around its feedback loop is limited to –90°. The 
secondary poles of real CFAs will introduce significant phase lag 
at high frequencies, however, which places a practical limit on the 
minimum value of RF to ensure stability (45° is often the minimum 
acceptable phase margin). From here on, Z(s) will include a high-
frequency pole at s = pH, along with the dominant pole s = p.

To ensure that the feedback impedance does not go to zero, 
common advice says that we shouldn’t use a feedback capacitor in 
any CFA circuit. It’s not that simple, however, since the feedback 
capacitor introduces phase shift, in addition to magnitude changes. 
This section looks at what happens when a feedback capacitor 
is added to a CFA-based TIA, omitting the parasitic input 
capacitance for the moment. Adding a feedback capacitor, CF, 
across the feedback resistor, RF, in the circuit shown in Figure 2 
produces a pole and a zero in the loop gain. ZF is defined as the 
parallel combination of RF and CF:
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If RF in Equation 2 is replaced with ZF, then the closed-loop gain 
is as expressed in Equation 9.
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The loop gain is then 
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The loop gain has a dominant pole at s = p and a high-frequency pole 
at s = pH from Z(s). In addition, it has a pole at 
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and a zero at 
FFCR

s 1
−= due to the added feedback capacitor. 

In the Bode plot, the zero due to CF occurs at a lower frequency 
than the pole due to CF because the zero frequency expression 
contains RF in the denominator, and the pole frequency expression 
contains (Ro||RF) in the denominator. The Bode plot for one 
possible CFA-based TIA with CF (Equation 10) is shown in 
Figure 4.
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Figure 4. Bode plot of CFA-based TIA with feedback 

The zero produces increasing magnitude and leading phase shift 
with increasing frequency, which can, in some situations, be a 
good thing from a stability standpoint. In the system modeled 
in Figure 4, however, the zero pushes out the point where the 
loop gain crosses 0 dB, and the pole at pH causes the magnitude 
asymptote to drop at –40 dB/decade beyond crossover. The dashed 
blue line shows the loop gain without CF, using Equation 2 and 
the two-pole version of Z(s), as expressed in Equation 11.
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Figure 4 shows that the amplifier is stable without CF but develops 
stability problems when CF is added. The plot in Figure 4 does 
not completely preclude the use of a feedback capacitor, as this 
particular Z(s) is not representative of all CFAs and actual resistor 
and capacitor values are not used, but it does show that the high-
frequency pole limits how much feedback capacitance can be 
safely applied. Figure 4 also shows that any amount of feedback 
capacitance could be safely added to a hypothetical CFA with 
a single-pole transfer function and that adding the feedback 
capacitance would extend its closed-loop bandwidth. 

Using the Zero Due to CF to Cancel the Pole Due to the Parasitic 
Capacitance
Now that the effect of adding CF to a CFA is understood in a general 
sense, it can be shown that CF can be safely used to compensate for 
the parasitic shunt capacitance of an input current source.

The closed-loop gain of the circuit in Figure 3 is indicated in 
Equation 6. In order to see what happens to this circuit when a 
feedback capacitor is added, RF can be replaced by ZF in Equation 6, 
similar to what was done to develop Equation 9, where ZF is defined 
in Equation 8. The circuit is shown in Figure 5.
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Figure 5. Practical CFA-based TIA with CF used to  
compensate parasitic capacitance.

The closed-loop gain of the circuit in Figure 5 is given in 
Equation 12
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from which the loop gain can be determined to be
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The zero due to CF in Equation 13 is the same as the zero  
in Equation 10, but the pole due to CF has moved from  
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The addition of C to CF allows the pole position to be moved to 
match the zero position, thus canceling out the pole due to the 
parasitic capacitance, C, of the input current source. Setting the 
pole frequency due to CF and C equal to the zero frequency due to 
CF in Equation 13 yields Equation 14:
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Equation 14 shows the simple formula to calculate the value of 
CF, which cancels the pole in the loop gain due to the parasitic 
capacitance, C, in the TIA shown in Figure 5. With this perfect 
pole-zero cancellation, the loop gain reverts back to its original form 
with dominant and high-frequency poles as in Equation 11. The 
closed-loop gain can now be expressed as shown in Equation 15.
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The main difficulty encountered when using Equation 14 is 
determining Ro, which can be variable, and is not always specified 
in CFA data sheets. The pole-zero cancellation does not need to be 
exact, however, as long as the slope of the loop gain plot is reasonably 
close to –20 dB/decade as it passes through 0 dB. Equation 14 shows 
that CF decreases linearly with Ro due to the increasing bootstrapping 
that occurs as Ro approaches 0, where C becomes fully bootstrapped 
and the required CF equals 0. Equation 14 can also be expressed in 
a matched time constant form as RoC = RFCF. The matched time 
constant form of Equation 14 bears a strong resemblance to the 
result obtained when compensating VFAs for parasitic summing 
node capacitance: RGCG = RFCF, where RG is the VFA gain resistor 
and CG is the capacitance across RG, which is usually the parasitic 
summing-node capacitance. There is, however, a price to pay for this 
benefit. While adding CF stabilizes the TIA, it also introduces a pole 
in the closed-loop gain at 

FFCR
s 1

−=
, as can be seen in Equation 12  

and Equation 15. The closed-loop gain described by Equation 15 can 
be thought of as two cascaded systems with their transfer functions 
multiplied together. The first system has the leftmost factor in 
Equation 15 as its transfer function and has dimensions of ohms. 
The second has the rightmost factor in Equation 15 as its transfer 
function and is dimensionless.

The response of the second system is governed by the loop gain 
and can be modeled by a first-order transfer function as long as 
the loop gain magnitude crosses 0 dB at –20 dB/decade. Basic 
feedback theory shows that if this roll-off condition is met, the 
closed-loop gain magnitude of the second system is approximately 
unity when the loop gain magnitude is >>1, and follows the loop 
gain magnitude when the loop gain magnitude is <<1. The 3-dB 
point in the closed-loop gain occurs at the frequency where the 
loop gain magnitude crosses 0 dB(if the slope is a little faster than 

–20 dB/decade, some peaking will occur in the closed-loop response 
near the 0-dB crossover point). In a stable amplifier, the second 
system can, therefore, be approximated as a first-order, low-pass 
filter with unity gain in the pass-band and cutoff frequency equal 
to the frequency, where the loop gain magnitude crosses 0 dB. The 
transfer function of the first system is the reciprocal of the feedback 
factor and has a simple first-order, low-pass response with a dc value 
of RF and corner frequency of 

FFCRπ2
1 .

Intuitively, the additional pole due to CF makes sense because 
the output voltage is developed by current flowing through the 
feedback impedance, which decreases with increasing frequency. 
The pole forms where the reactance of CF is equal to the value of RF. 
This same situation occurs in VFA-based TIAs that use feedback 
capacitor compensation. The closed-loop bandwidth can, however, 
be broadened somewhat by cautiously decreasing CF from the 
value calculated in Equation 14, moving the pole frequency out, 
and reducing phase margin, but this must be done experimentally.
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Simulation Data
To test this result, a simple simulation model for a CFA was 
developed with Zo = 1 MΩ, p = –2π (100 kHz), pH = –2π (200 MHz), 
Ro = 50 Ω, and RF = 500 Ω. The magnitude of the loop gain is 
found by taking the magnitude of Equation 11 with these values.
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which equals 1 at approximately f = 145 MHz.

The loop gain phase shift at 145 MHz is given 

126
200
145tan

100
145tan 11 −≈








−








−=∠ −−

MHz
MHz

kHz
MHzCwithoutGainLoop F ,  (17)

resulting in approximately 54° of phase margin, which is a reasonable 
place to start for a basic CFA with no parasitic capacitances. 

Figure 6 shows the simulation of the response of this model to a 
1-ns rise time current step input.

Figure 6. Basic TIA step response with no parasitic 
capacitance (20 ns/div).

The response is clean, with minimal ringing—just what would be 
expected with 54° of phase margin. The step response of the same 
amplifier with 50 pF of parasitic capacitance added between the 
inverting input and ground is shown in Figure 7.

 

Figure 7. Step response with 50 pF of capacitance 
between inverting input and ground (20 ns/div).

The vertical scale in Figure 7 is the same as it is in Figure 6, but the 
trace was moved down one division to accommodate the ringing. 
The excessive ringing is clear, and this amplifier clearly has a phase 
margin problem. 

The amplifier can be stabilized by adding a feedback capacitor 
determined by Equation 14, which is calculated to be 5 pF. Figure 8 
shows the results when the 5-pF feedback capacitor is added.

Figure 8. Step response with pole/zero cancellation 
using 5-pF feedback capacitance (20 ns/div).

The bandlimiting due to the pole in the closed-loop gain is 
evident. The loop gain 0-dB crossover for the original amplifier 
was determined to be 145 MHz, which corresponds to a time 
constant of approximately 1.1 ns in a first-order system, and 
the RFCF time constant is 2.5 ns (note that the loop gain 
magnitude roll-off rate is a little faster than –20 dB/decade 
at the 0-dB crossover since the phase margin is less than 90°, 
but the first-order, closed-loop model is a reasonably accurate 
approximation). Using the model of two cascaded systems as 
described above, the aggregate time constant of the cascaded 
systems can be estimated to be the root-sum-square of the two 
time constants (the input current source 10% to 90% rise time 
of 1 ns corresponds to an effective sub-ns time constant that is 
short enough to ignore), or approximately 2.7 ns, which looks 
about right for the response shown in Figure 7. 

Reducing CF to 3 pF reduces the phase margin somewhat and 
increases the closed-loop pole frequency, speeding things up 
as shown in Figure 9.

Figure 9. Step response with 3-pF feedback capacitance 
(20 ns/div).

It’s clear that some experimentation may be necessary to get the 
best value for CF. Other factors such as load capacitance, board 
layout, and variations in Ro also factor into the selection of CF.

Conclusion 
With the increasing interest in the use of CFAs as TIAs, it is 
important to understand how to compensate for transducer 
capacitance on a CFA’s inverting input and why the compensation 
works. This article uses classical feedback techniques to develop 
a simple scheme that adds a single feedback capacitor in parallel 
with the feedback resistor to compensate for the inverting input 
capacitance. The feedback capacitor introduces an undesired 
pole in the closed-loop response, but the capacitor’s value can 
be empirically adjusted from the calculated value to reduce the 
pole’s band-limiting effect. 
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