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vidual values may be useful in adjusting, for example,
transient response and bandwidth.

Linear algebraic equations also result when an addi­
tional zero is added. The equations have the form

aU(zl + Z2) + a12(7Tl + 7T2) = k1

a21(zl + Z2) + ad7Tl + 7T2) = k2.

V. CONCLUSIONS

An algebraic synthesis method based on measure­
ments on the inverse root-locus plot has been presented
here. The method differs from others chiefly in that it
results in an open-loop transfer function containing pre­
scribed poles. It can further meet specification of
velocity constant K •.

As presented, the method requires that the poles of
Gop(s) be real. This restriction results from the fact that
we can always make a segment of the real-axis part of
the inverse root locus. Complex open-loop poles would
require not only the condition that gain K be equal to
the same value at each, but would also require assurance
that the inverse root locus pass through the designated
points. More work is needed here to remove the real­
pole restriction.

The method, when applied to systems with as many as
four poles, yields linear algebraic equations. The linear­
ity will be lost for higher-order systems unless more con­
straints like the one on K. are invoked. More work is
needed to determine conditions leading to linear algebra
for higher-order systems.
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gree of accuracy. If, however, (as in most cases), the
system is complex or has a large number of components,
it is preferable and more reliable to define the transfer
function on the basis of test results. This is done, for
example, in the case of an electrical network as shown
in Fig. 1, by imposing a sinusoidal voltage of known
magnitude and frequency at the input end of the net­
work, and measuring the magni tude and phase of the
output voltage. Thus, for the example of Fig. 1, we
could define the input and output voltages as:

(J; = I e;: sin (wt + <Pj) (1)

respectively. The transfer function of the electrical net­
work shown, defined as the output-per-unit input would
be defined by two functions, namely:

a) the amplitude ratio Eo(w)jE;(w) , and
b) the phase shift cf>o(w) -cf>;(w) = Acf> (w) , both of

which vary with frequency.
In the case of the simple electrical network shown in

Fig. 1, the functions Eo(w)jE;(w) and tJ.cf>(w) can be
easily obtained by established analytical methods.
However, if the circuit were elaborate, experimental
techniques would be found more convenient and relia­
ble. In such case, the functions would be known 111

graphical form only as shown, for example, in Fig. 2.

Summary-The mathematical analysis of linear dynamic sys­
tems, based on experimental test results, often requires that the fre­
quency response of the system be fitted by an algebraic expression.
The form in which this expression is usually desired is that of a ratio
of two frequency-dependent polynomials.

In this paper, a method of evaluation of the polynomial coefficients
is presented. It is based on the minimization of the weighted sum of
the squares of the errors between the absolute magnitudes of the
actual function and the polynomial ratio, taken at various values of
frequency (the independent variable).

The problem of the evaluation of the unknown coefficients is re­
duced to that of the numerical solution of certain determinants. The
elements of these determinants are functions of the amplitude ratio
and phase shift, taken at various values of frequency. This form of
solution is particularly adaptable to digital computing methods, be­
because of the simplicity in the required programming. The treat­
ment is restricted to systems which have no poles on the imaginary
axis; i.e., to systems having a finite, steady-state (zero frequency)
magnitude.

INTRODUCTION

I N the mathematical treatment of linear dynamic
systems, it is usually quite advantageous to deal in
the frequency domain rather than the time. In such

cases, the behavior or "response" of the system to sinus­
oidal inputs over a band of frequencies must be known.
If the dynamic system under consideration is a simple
one, this characteristic of the system, or "transfer func­
tion", may be obtained analytically to a reasonable de-

* Revised manuscript received by PGAC, November 3, 1958.
t Space Technology Labs., Los Angeles, Calif.

and

(Jo = Ieo I sin (wt + <Po), (2)
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Multiplying both sides of equation (Sb) by D(w):

The numerical difference between the two functions
G(jw) and F(jw) represents the error in fitting, that is

Fig. i-Simple electrical network showing input and
output terminals.

t(w) = F(jw) - G(jw)

N(w)
= F(jw) - --.

D(w)

(Sa)

Sb)

D(wMw) = D(w)F(jw) - lV(w). (6)

The right side of (6) is a function of real and imagi­
nary terms, which may be separated to give:

w
-'
<0
Z
<1
W

'"<1:r
ll. D(w)t(w) = a(w) + jb(w) (7)

FREQUENCY where a(w) and b(w) are functions, not only of the fre-
Fig. 2-Frequency response characteristics of a dynamic system. quency, but also of the unknown coefficients A;. and B •.

The magnitude, or absolute value of this function is:

Let us now define E as being the function given in
(9), summed over the sampling frequencies Wk. Thus:

The unknown polynomial coefficients A. and B. are
now evaluated on the basis of minimizing the function
E. [It is this property which characterizes the proposed

To further the mathematical analysis of such a sys­
tem, it becomes desirable to fit the curves of Fig. 2 by
an algebraic expression of form suitable for further
treatment. The preferred form is that of the ratio of
two frequency-dependent polynomials, namely

. A o+ A,(jw) + A 2(jw)2 + A 3(Jw)3 +
G(jw) = , (3)

Bs + B,(jw) + B 2(jw)2 + B 3(jw)3 + ...
this form being amenable to linear transform methods
of solution. In the following section, a procedure is de­
scribed which leads to a G(jw) of the above form pos­
sessing a certain minimum property.

THEORY

For convenience in the manipulation of the ensuing
work, (3) is rewritten in the following forms:

I D(w)e(w) I = Ia(w) + jb(w) I
= ya2(w) + b2(w) .

Then, at any specific value of frequency:

rn

E = L [a2(wk) + b2(Wk)]'
1:=0

(Sa)

(8b)

(10)

(3c)

(3a)

(3b)

.. ) + }w(A , - A SW 2 + A.w4 - ••• )

... ) + jw(B, - B sw2 + B.w4 - ••• )

(A o - A 2w2 + A 4w 4 -
G(jw) = -------------------­

(B o - B 2w2 + B 4w4 -

a + jw(3

(J' + jWT
N(w)

=--
D(w)

1 This "restriction" is merely a matter of convenience. It does
not affect the function in any manner; that is, it is not a restriction
in the literal sense of the word.

with the restriction that Eo be equal to unity.'
Suppose now that the function F(jw) is used to desig­

nate the "ideal" function; i.e., one which represents the
data exactly. FUw) will then also have real and imagi­
nary components which would coincide exactly with the
values indicated by the experimental curve; i.e.,

F(jw) = R(w) + jI(w). (4)

G(jw).] To do so, we first proceed to rewrite (10) in the
following form:

m

E = L [(RklTk - WkTkh - ak)2
k~O + (WkT1;Rk + (J'kh - wk,Bk)2 ] (11)

making use of (3b) and (4).
Following the accepted standard mathematical pro­

cedures, (11) is now differentiated with respect to each
of the unknown coefficients Ai and Bi, and the results
set equal to zero.
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(JE m
- = I: - 2(ukRk - WkTkh - ak) = 0
(JAo k=O
aE m
- = I: - 2Wk(WkTkRk + ukh - Wk{3k) = 0
(JAr k-O
(JE m 2
- = I: + 2Wk(ukRk - WkTkh - ak) = 0
(JA 2 k~O

39

(12)
m

I: - 2Wkh(ukRk - WkTkh - ak) + 2WkRk(WkTkRk + (Tkh - Wk{3k) = 0
k=O
m

I: - 2Wk2Rk(C1kRk - WkTkh - ak) - 2Wk2h(WkTkRk + ukh - Wk{3k) = 0
k~O

In the resulting equations, the terms involving the
unknown coefficients may be isolated by alluding to the
following linear transformations:

since

Bo = 1

Eqs. (12) may thus be rewritten as:

m m
L + Ao - a/ + RkUk' + wkhB r - wkhTk' = L: R k
k=O· k=O
m m

L: Wk 2(A r - (3k') + wkhuk' - Wk 2Rk(Br - Tk') = I: wkh
k=O k-O
m m

L Wk2RkC1/ + Wk3Ik(B l - Tk') + Wk 2(A o - ak') = L: Wk 2Rk
k=O k=O
m m

L: -Wk4Rk(B r - Tk') + wk3IklJ"k' + Wk4(A r - B k') = L: wk3Ik
k=O k=O

(13a)
(13b)

(13c)

(13d)

m

L: wkh(A o - 0'/) - Wk2Rk(Ar - /3k') + Wk 2(Rk2 + I k2) (B r - Tk') = 0
k-O

i: Wk2Rk(Ao - ak') + Wk3h(A
l - (3k') + Wk 2(Rk2 + h 2)u/ = i: Wk 2(Rk2 + h 2)

k~ ~o

m

L: Wk3h(A o - ak') - Wk 4Rk(A r - (3k') + Wk 4(Rk2 + h 2)(Br - Tk') = 0
k=O
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Each of (14) will contain terms which are functions of
the unknown coefficients, and terms which are known.

To condense the notation before expanding the above
equations, the following relationships are defined:

m

s, = L WkhRk
k~O

m

r, = L wkhlk
k~O

m

u, = L Wk h(R
k2 + h 2) .

k=O

Substituting these relationships into (14) and sepa­
rating the coefficients, we obtain the following set of
equations:

(15)

(16)

(17)

(18)

AOAO - A 2A2 + A 4A4 - AeAe + + BITI + B~2 - BgTg - BS4+ B 5T5 + = So

A IA2 - AgA4 + AeA6 - A7AS + - B IS2 + B 2Tg+ BaS4 - B4T5 - BaS6 + = T I
A OA2 - A~4 + A4Ae - AeAs + + BITg+ B~4 - B gT5 - BSe+ B6T7 + = S2

A 1A4 - AgAe + AeAs - A 7AIO + - BrS4 + B2T5 + BaSe - B4T7 - BaSs + = T g

.
AoTI - A IS2 - A 2Ta+ AaS4 + A 4T6 - ••• + B IU2 - B gU4+ B5U6 - B7US + = 0
AoS2 + AlTa - A 2S4 - A aT6 + ASe+ ... + B2U4 - B4U6+ BeUs - BgU10 + = U2
AoTg - A IS4 - A 2T5 + AaSe + A 4T 7 - ••• + B 1U4 - BgUe+ B5US - B7U 10 + = 0

Or, in matric notation:

(19)

(M)· (N) = (C)

where

(20)

(AO 0 -A2 0 1\4 TI 52 -Ta -54 T6 • ••
t
!O A2 0 -A4 0 ... -S2 T g S4 -T5 -Se
lAo 0 -A4 0 A6 T g S4 -T5 -S6 T 7! ~

0 A4 0 -Ae 0 . . . -S4 T 5 Se -T7 -Ss· ••
, .

(M) = (2la)
T I -S2 -Tg S4 T 5 • •• C2 0 -C4 0 Ue · •.
S2 T g -S4 -T5 Se .. 0 0'4 0 -0'e 0

T g -S4 -T5 Se T 7 • •• U4 0 -Ue 0 Us :» •

l:



Fig. 3-Frequency response characteristics of a dynamic system with
a transfer function given as:

Levy: Complex-Curve Fitting 41

- 80

c
'"- 40 "
il:

00

"Q
40 .~

120

80

10 zo 404
Frequency w in Rad!Sec

I
\

Phase Angle......- '"""
I \-- '1\ \- --- I

'"
\

I 1\
'\ \

/ <, '\

/ ----......:
~1agnl~u~e_ ~

~ , ,

,

8

o
0,1 o.z 0.4

4

12

10

(21c)

So

T1

S2
Ta

(C) = i~
(U21

[0

1959

and

Ao

Al
A2

Aa

(N) (21b)

B1

B 2

Ba

The numerical value of the unknown coefficients may
thus be obtained from (20) once the matrices (21a)­
(21c) have been evaluated.

1 +jw
F(jw) = ----7'----:-_:_

1+ 2(0.5){~ +G~Y

EXAMPLES

Example 1) Consider the frequency response func­
tion shown in Fig. 3, representing the dynamic charac­
teristics of an arbitrary system. The frequency function
from which the curve was drawn is:

2 In most cases, the order of the polynomial expression G(jw) can
be determined from a consideration of the slopes of the magnitude
curve, and the phase angle. See J. G. Truxal, "Control System Syn­
thesis," McGraw-Hill Book Co., Inc., New York, x.v., pp. 350­
375; 1955, and G. ]. Thaler and R. G. Brown, "Servomechanism
Analysis." McGraw-Hill Book Co., Inc .. New York. N.Y., pp. 243­
249; 1953.

3 This procedure does not have to be followed for every problem
if the equations are programmed for digital computer solution.

B o = 1.0000

B, = 0.10097

B 2 = 0.010031.

A o = 0.99936

Al = 1.0086

A 2 = - 0.000015983

k Wk
magrii- phase

Rk t,tude angle

0 0.0 1.00 0 1.00 0.000
1 0.1 1.00 5 1.00 0.090
2 0.2 1.02 10 1.00 0.177
3 0.5 1.12 24 1.02 0.450
4 0.7 1.24 31 1.05 0.630
5 1.0 1.44 39 1.10 0.900
6 2.0 2.27 51.5 1.41 1. 78
7 4.0 4.44 50.5 2.82 3.42
8 7.0 8.17 28 7.23 3.82
9 10.0 10.05 - 6 10.00 -1.00

10 20.0 5.56 -59 2.85 -4.77
11 40.0 2.55 -76 0.602 -2.51
12 70.0 1.45 -82 0.188 -1.43
13 100.0 1.00 -84 0.091 -1.01

TABLE I

Rk = (Magnitude at Wk) Xcos (phase angle at Wk)
h = (Magnitude at Wk) Xsin (phase angle at Wk).

By evaluating the function G(jw) using these coefficients,
it will be observed that the curve of Fig. 3 is fitted well
within reading accuracy for the range O::;w::; 100 rad/
second, as required.

The problem of non-minimum phase systems is con­
sidered in the following example.

Example 2) Consider the frequency response func­
tion illustrated in Fig. 4. It is a graph of the function

2) Evaluate the A's, S's, T's, and U's. 3) Substitution
in (20) gives five equations with five unknowns, which
can be readilv solved for each of the unknowns (A's and
B's).

For this example, the numerical evaluation of the co­
efficient from (20) was carried out to eight significant
figures, to reduce the effect of computing errors. The
results thus obtained are given to five significant figures
as follows:

(23)

(22)

71.0 0 -71.2 T1 S2

10 /..2 0 -S2 Ta

(M) 71.2 0 -/..4 Ta S4 I'T 1 -S2 -Ta U2 0

S2 Ta -S4 0 U4 J

r rSo
Al T I

(J:V) = A 2 (C) S2

IBI 0

lB2 ,U2)

1 + (jw)
F(J'w) - -------­

1 + O.I(jw) + 0.01(jw)2

Table I presents the arbitrary values selected from Fig.
3, to be used as inputs to the program.

The function chosen for the curve-fitting process is:

. Ao + A1(jw) + A 2(jw)2
G(Jw) = 1 + B1(jw) + B 2(jW)2

This choice is indicated by the general shape of the
curves" presented in Fig. 3. The procedure for the nu­
merical evaluation of the unknown coefficients is now as
Iollows-" 1) Define the matrices (M), (N), and (C).
Thus, for this example, they take the following form:
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Fig. 4-Frequency response characteristics of a dynamic system
with a transfer function given as:

1 -j",
F0"w) = --_........:..._--

1 + 2(0.5)j", + (j",)2
10 10

Table II presents the values derived from Fig. 4, and
used as inputs to the digital program.

The function chosen for the curve-fitting process was
the same one as before, namely that given by (23).

The numerical evaluation of the coefficients was car­
ried out to eight significant figures, as before. The re­
sults are presented to five significant figures as follows:

(25)

B« = 1
B, = 0
B 2 = O.

1
PUw) = :­

JW

A o = 1

Ai = 0
A 2 = 0

k "'k I Rk t,

0 0 1 0
1 0.1 1 0
2 1 1 0
3 10 1 0
4 100 1 0

TABLE III

To obtain the representation of FUw) , we merely divide
GMUw) by the same factor used to convert F(jw) to
FM(jw). Thus, in this case,

as before, the results are as follows (see Appendix I) :

If we choose

representing a pure integrator with unit gain. At w = 0,
the magnitude of the function F(jw) is undefined. If this
function, or its representative graph, were multiplied
by (jw)1, a new function F"fUw) would be obtained,
whose amplitude ratio is unity, and whose phase shift
is also a constant, equal to zero degrees. The inputs to
the digital computer would now be as presented in
Table III.

poses a restriction on the types of frequency response
functions that can be fitted. This restriction is such that
the frequency response function must represent a system
which has a finite zero frequency gain; i.e., no poles at
the origin. The function may, however, have zero roots;
i.e., zeros at the origin. The obvious alternative, if one
wishes to apply this method to a function which has an
infinite gain at zero frequency, is to modify the function
by multiplying it by (jw)n, 1t being large enough to re­
duce the absolute magnitude of the function at zero
frequency to a finite value.

Consider, for example, the transfer function

(24)

-40

-240

-80 ~
c
c

-1l0 ":
~c

-160 <:
""~

-lOO t

o

-280
100

1 -jw
P(jw) - ------=---­

1 + O.l(jw) + 0.01(jW)2

TABLE II

0.1 0.2 0.4 I 2 4 10 20 40
Frequency t.:I in Rad/Sec

r-- t--.

0
r----.. Phase Angle

"r-.. / \
<, ,

\
8 <, I \

N \

,\.
I \ \

4 I \

'" 1\2 "
!\.1agni~d~_

~ ... '\ ... ......
0 "'t-
2

12

k "'k
magni- phase Rk t,tude angle

0 0.0 1.00 0 1.00 0.000
1 0.1 1.00 - 6.5 1.00 -0.113
2 0.2 1.02 - 12.5 1.00 -0.220
3 0.5 1.12 - 29.5 0.975 -0.550
4 0.7 1.24 - 39.0 0.963 -0.780
5 1.0 1.44 - 51.0 0.905 -1.12
6 2.0 2.27 - 75.0 0.588 -2.20
7 4.0 4.44 -102.0 - 0.925 -4.34
8 7.0 8.17 -136.0 - 5.87 -5.69
9 10.0 10.05 -174.0 -10.00 -1.05

10 20.0 5.56 -233.5 - 3.31 4.46
11 40.0 2.55 -253.0 - 0.724 2.44
12 70.0 1.45 -261.0 - 0.227 1.43
13 100.0 1.00 -263.5 - 0.113 0.993

These values also represent the graph of Fig. 4 well
within reading accuracy, and for a frequency range well
beyond that indicated or required.

DISCUSSION

1) Probably the most essential factor which must be
realized in the application of this method is that it irn-

2) The method of complex-curve fitting as presented
in this paper would correspond to a least-squares fit if
IDew)I were a constant. In its indicated form, however,
the method may be described as a "weighted least­
squares fit," the weighting function being ID(w) 1 2•

Due consideration to (Sa) will show that the error
IfeW) I generally tends to assume a relative maximum
when ID(w) I is in the neighborhood of its minima. How­
ever, a local minimum in ID(w) I corresponds to a local

Au = 0.99741

Ai = - 0.99483

A 2 = - 0.000020400

B» = 1.0000

Bs = 0.099607

B 2 = 0.0099847.

1 1 1
G(jw) = GM(jw) X ~ = 1 X ~ = -;- .

JW JW JW
(27)
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In terms of its minors and of the characteristic deter­
minant, we therefore obtain:

maximum in IF(jw) I. This, therefore, implies that for a Then:
given value of w, the magnitude of the error is nearly
proportional to the magnitude of the function. In gen-
eral, this "restriction" is not of consequence. If it is,
however, the error can easily be reduced by selecting a M =
greater number of sample points in the critical region of
the curve.

3) In the process of evaluating the coefficients Ai and
Bi, one of them can be assigned an arbitrary numerical
value. The author chose to define the coefficient B o as
unity. This choice, however, is not restrictive, and its
selection is left to the discretion of the reader. If a differ- C =
ent choice is made, (15) should be appropriately modi-
fied.

Bo == 1

B = IMal = 0
1 IMI

I M 15 1 E 1
B=--=-=OIMI E 2 •

AO 0 -A2 0 A2
0 A2 0 -A2 0

A2 0 -)-\4 0 A4
0 -A2 0 (A2 + E 1) 0

A2 0 -A4 0 (A4 + E 2)

Ao

0

A2
0

(A2 + E 1)

A = IMul =1
o IMI

I M 12 1Al = --- = 0
IMl

I M 13 1 E 1
A 2 = ---= - = 0

IMI E 2

F(jw) = 1

ApPENDIX I

If a frequency response function such as

is to be analyzed, it will be noted at the outset that the
characteristic determinant is equal to zero. This leads
to an indefinite solution.

A simple expedient which may be used in this case is
to modify the values by some small quantity E, arid
then consider the limit as E approaches zero.

Thus, in this case, let

So = Ao

S2 = A2

S4 = A4

U2 = A2 + E 1

U4 = A4 + E 2

T 1 = T« = O.

In the above, A 2 and B 2 can be made equal to zero
since the magnitudes of E 1 and E 2 are arbitrary and
can be assigned such values that E1«E2, thus making
the ratio E1/E2 as close to zero as need be.


