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ABSTRACT

Understanding the properties of close-in phase noise is crucial for analyzing the effects of low-frequency, colored noise on
the frequency stability of electrical oscillators. This paper shows these properties are distinctly different from those of far-
out phase noise, which are commonly studied in the literature. Unlike far-out phase noise, the spectrum of close-in phase
noise caused by several uncorrelated noise sources is not the same as the sum of the phase noise spectra caused by indi-
vidual sources. Furthermore, in the absence of colored noise, this spectrum is not necessarily Lorentzian as generally
believed. We show that the phase noise spectrum of a periodic signal with zero cycle-to-cycle jitter is always Lorentzian

and demonstrate the appearance of 1/f 4 phase noise due to a Lorentzian noise source. We also study two methods for sup-
pressing the effects of low-frequency, colored noise on phase noise: signal symmetrization and noise-source switching.

We show that the suppression of 1/f 3 phase noise in single-ended ring oscillators is due to switching and not because of
symmetrization. Symmetrization is effective only for the noise sources which are constantly “on”, such as the tail current
source in differential ring oscillators. These findings provide effective guidelines for designing low-phase-noise oscilla-
tors.
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1. INTRODUCTION

Despite its practical importance in communications, the formal definition of phase noise remains a matter of controversy.
At least two distinct definitions are introduced by various authors. One of these definitions involves the power spectral

density (PSD) of phase1, the other one is based on the PSD of the signal itself2. The choice of definition is irrelevant at
large offset frequencies (hereafter referred to as far-out phase noise) because the PSD of phase can be approximated by the

PSD of the signal at far-out frequencies3. However, the numerical value of phase noise at small offset frequencies (the
close-in phase noise) strongly depends on the definition. Furthermore, as we will see shortly, depending on which defini-
tion we use, some well-known properties of the far-out phase noise, such as the superposition of phase noise, can be vio-
lated at close-in frequencies.

“Close-in” is defined at small offset frequencies, where the phase noise spectrum does not have a 1/f 2 shape. The analysis
of phase noise at these frequencies is usually more complicated than that of the far-out phase noise mainly because close-
in phase noise is, by definition, affected by low-frequency colored noise, such as generation/recombination noise and 
noise. 

The analysis of close-in phase noise is often regrettably avoided in the literature on the ground that phase-locked-loops,
which are used in most communication systems, suppress the phase noise at small offset frequencies. However, with the
emergence of submicron MOSFETs with 1/f-noise corner frequencies on the order of 100MHz, close-in phase noise can
have a noticeable effect on the overall performance of future communication systems. Furthermore, a deep understanding
of phase noise demands its characterization at all offset frequencies.

*rnavid@stanford.edu; phone: 1 650 725-6078; fax 1 650 725-7731; http://www-tcad.stanford.edu/~rnavid

1 f⁄



In this paper, we focus on the characteristics of close-in phase noise of electrical oscillators and show that these character-
istics are distinctly different from those of far-out phase noise. In order to perform a rigorous analysis of these characteris-
tics, we study, in Section 2, the formal definitions of phase noise. We then use a simple, practical relaxation oscillator to
study the properties of close-in phase noise. The output of this oscillator is represented by an oscillatory square-wave sig-
nal. Since such a signal can also represent the output of a limiting amplifier fed by an arbitrary oscillatory signal, its phase
noise properties hold generally for any periodic signal. In Section 3, we present the analytical formulation of the phase
noise of this oscillator first in the absence of colored noise and then in its presence. Using these formulations, Section 4
discusses various properties of close-in phase noise as well as various ways of suppressing the effect of low-frequency,
colored noise on phase noise. This discussion provides useful insight about the frequency stability of electrical oscillators
and practical guidelines for designing low-phase-noise oscillators.

2. THE FORMAL DEFINITION OF PHASE NOISE

An electronic oscillator is responsible for generating a periodic signal with a stable oscillation frequency. In an ideal oscil-
lator, this frequency would remain constant over time. In a real oscillator, however, the frequency of oscillation is modu-
lated by electronic noise, present in all real systems. Because of this electronic noise, the oscillation frequency randomly
fluctuates with time. These frequency fluctuations degrade the performance of the system in which the oscillator is used. 

To evaluate the performance of a communication system in the presence of noise, we need to characterize the frequency
fluctuations of its oscillator. This characterization can be performed using time-domain or frequency-domain analysis and
different measures can be defined correspondingly. From a practical point of view, the best measure is the one that best
facilitates the performance assessment of the communication system. Thus, depending on which kind of system is under
consideration, different measures of frequency instability will be favorable. One instability measure, often referred to in
the literature, is phase noise. Its formal definition is, however, still a matter of controversy. In this section, we first present
the existing definitions of phase noise as a measure of frequency instability. We then discuss the effect of frequency insta-
bility on the performance of various types of communication systems. In light of this discussion, we choose an appropriate
definition of phase noise for our study.

2.1  Existing definitions of phase noise
Figure 1 shows an ideal periodic square-wave signal along with a real signal, which has nonzero frequency instability. The
nominal oscillation period for this signal is denoted by To. In the presence of noise, the real value of the duration of period

at the ith period is a random variable denoted by Ti. For stationary oscillators, the expected value of this random variable
is independent of i and, by definition, is the nominal period of oscillation. Demir et al. explain the properties of stationary

oscillators2. The duration of the ith half-period of oscillation is denoted by τ i. Thus

. (1)

We define jitter in the ith period, ∆Ti, as the difference between the actual and the nominal duration of this period,
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Fig. 1. Real and ideal waveforms for a rectangular oscillatory signal with parameter definitions.
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. The period jitter, , is the variance of ∆Ti. For a stationary oscillator, this is independent of i. The cycle-

to-cycle jitter, , is defined as the expected value of ∆Ti∆Tj. This is normally only a function of i-j and not of i or j

alone. Similarly, we define half-period jitter and half-cycle-to-cycle jitter as the variance of ∆τi and the expected value of

∆τi∆τj, respectively. In most practical situations, having  for all (i-j)’s provides enough information for the character-

ization of frequency instability in the time domain.

The characterization of the frequency instability in the frequency domain is more complicated and is based on the defini-

tion of phase noise. At least two distinct definitions are used by various authors: one based on the PSD of the phase1 and

the other based on the PSD of the signal itself2.

According to the first definition, phase noise is the PSD of the phase. The main advantage of this definition is that it keeps
the phase noise independent of the amplitude noise. However, this choice of definition also generates some mathematical

and practical difficulties. For example, phase is not a stationary variable and its PSD is mathematically undefined*.
Although it is possible to define a generalized PSD for phase, this would complicate the already involved mathematics for
two reasons. First, the total power of the generalized PSD would be infinite, making it impossible to normalize. Second,
the generalized PSD would grow without bound around zero frequency. Such an ill-behaved function is hard to work with,
especially when close-in phase noise is of interest. 

According to the second definition, the phase noise is the PSD of the signal itself, normalized to the total signal power.
Using this definition, the phase noise can be calculated analytically and is a well-behaved function around zero offset

frequency2,4. However, the PSD of the signal is then a function of both jitter and amplitude noise.

It has been shown that the behavior of phase noise at large offset frequencies is independent of the choice of definition3.
At small offset frequencies, however, these two definitions provide significantly different values for phase noise. To
decide which definition is more appropriate for a specific application, we first need to study the effect of frequency insta-
bility on the performance of communication systems.

2.2  Phase noise in communication
RF communication systems normally require an accurate time reference because of their multi-user nature. In these sys-
tems, several users share the same communication channel, necessitating modulation/demodulation of the messages. Reli-
able modulation and demodulation is highly dependent upon the accuracy of the frequency of the oscillators used in these
systems. On the other hand, in high-speed digital communication systems, the necessity of having an accurate time refer-
ence stems from the desire to reach higher data rates. In both cases, the frequency instability of the carrier or clock
degrades the performance of the system. However, because of the different nature of these systems, different sets of tools
are required to assess performance.

Figure 2 shows a typical RF communication system. The desired signal and an interfering one are located at ωRF and

ωRF+∆ω respectively. Note that the presence of a high-power interfering signal is the result of using the same transmis-
sion media for several users. This interfering signal is multiplied by the local oscillator signal in the mixer. Thus the noise
of the local oscillator is modulated by this interfering signal and appears at the output of the mixer. At the output of the
mixer, the noise power at IF is proportional to the magnitude of the PSD of the local oscillator signal in the vicinity of
ωLO+∆ω. Since the IF signal power is proportional to the total power of the local oscillator at the output of the mixer, the

degradation of the signal-to-noise ratio due to phase noise is proportional to the phase noise of the local oscillator if we
adopt the second definition of phase noise. Therefore, the performance assessment of RF communication systems is
greatly simplified if we adopt this definition.

*Note that phase can be made stationary if it is kept between 0 and 2π. We do not consider this interpretation of phase here.
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In high-speed digital communication systems, the frequency instability of the clock increases the bit error rate. The bit
error rate in these systems is solely a function of jitter and is independent of amplitude noise. Since the amplitude noise
affects the PSD of the signal but not that of phase, it might seem that the first definition of phase noise is more convenient
for these systems. However, the analysis of bit error rate in communication systems is most easily performed in the time
domain. Consequently, the choice of the definition of phase noise is of little importance for these systems.

The second definition of phase noise also facilitates experimental work. The measurement of the PSD of the signal using
a spectrum analyzer is a routine measurement procedure. On the other hand, the process of measuring the PSD of phase is
usually much more involved. Furthermore, as we will see in the next section, the analytical calculation of the PSD of the
signal is relatively straightforward. 

The comparison of the two definitions of phase noise reveals that defining the phase noise as the PSD of the signal nor-
malized to the total power facilitates its measurement and analytical calculations and is usually more helpful for assessing
the performance of RF communication systems. The main drawback of adopting this definition is that the amplitude noise
affects the PSD of the signal. The effect of this amplitude noise can usually be suppressed using a limiting amplifier and
should be distinguished from effects of jitter, which are impossible to suppress. To circumvent this problem, we need to
perform phase noise analysis after taking into account the effect of the limiting amplifier. We believe that the benefits of
defining the phase noise as the normalized PSD of the signal outvalues this complexity and use this definition.

3. ANALYTICAL FORMULATION OF PHASE NOISE OF RELAXATION OSCILLATORS

In this section, we present the analytical formulation of the phase noise of the signal shown in Fig. 1. This signal can rep-
resent the output of a relaxation oscillator as well as the output of an arbitrary oscillator after passing it through a limiting
amplifier. Thus, many of the phase noise properties of this signal are general and applicable to all kinds of oscillators. We
first introduce a relaxation oscillator whose output can be represented by the signal given in Fig. 1. We then present the
analytical formulation of phase noise due to white noise and low-frequency colored noise. Unless otherwise stated, our
formulation assumes that the signal of Fig. 1 is generated by the simple relaxation oscillator shown in Fig. 3. This assump-
tion does not affect the generality of the final results. The formulations presented in this section will be used in the next
section to discuss the properties of close-in phase noise.

3.1  Formulation of jitter
The relaxation oscillator of Fig. 3 is composed of a Schmitt comparator in an RC feedback loop. The details of the opera-

tion of this oscillator are explained elsewhere5. In this paper we assume that the output of this oscillator has a duty cycle
of fifty percent.
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Fig. 2. The front-end of a typical RF receiver.
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For the analysis of jitter and phase noise of this oscillator, we assume that the only noise source of the system is in, which
is in parallel with the resistor (the comparator is noise-free). The jitter is the result of the uncertainty of the capacitor volt-
age at the end of each half period, which is in turn the result of the resistor noise. The value of the capacitor voltage at the
start of each half period is a deterministic variable because the comparison levels v1 and v2 are assumed to be noise-free.

We define the series of random variables ∆vi to characterize the uncertainty of the capacitor voltage at the end of the ith

half-period. These random variables as functions of the noise source and circuit parameters are given by5

,

where we have approximated the duration of the ith half-period by its nominal value. Using this equation, we can calcu-
late the fluctuation properties of ∆vi’s:

,

.

The random variable ∆τi characterizing the fluctuations of the duration of the ith half period is merely ∆vi divided by the

slope of the capacitor voltage at the transition time5. Consequently, we can write the half-cycle-to-cycle jitter as

, (2)

where Si is the slope of the capacitor voltage at the end of the ith half-period (a signed number). Evaluation of this integral

is possible only after knowing the fluctuation properties of in. 

3.2  Formulation of phase noise generated by white noise

In the case of white noise, , where inw is the amplitude of the single-sided PSD of the white

noise source. Equation (2) dictates that in this case the half-cycle-to-cycle jitter is zero for any . That is, the variations

of the duration of all half-periods are mutually independent. By setting  in (2), the half-period jitter is found to be

Fig. 3. (a) A typical RC relaxation oscillator. (b) The Schmitt comparator transfer function. (c) The waveform for the capacitor
voltage.

R

C

in

t

vC

v1

v2

vout

vdd

τ1 τ2

τ=RC

vC

v2v1 vC

vout

vdd

0

(a) (b) (c)
T1

∆vi
e

To

2RC
-----------–

C
-------------- e

x
RC
--------

in x
i 1–( )To

2
---------------------+

 
  xd

0

To

2
-----

∫=

∆vi 0=

∆vi ∆vj⋅ e

To

RC
--------–

C
2

----------- e

x y+
RC

-----------

in x
i 1–( )To

2
---------------------+

 
  in y

j 1–( )To

2
---------------------+

 
  xd yd

0

To

2
-----

∫0

To

2
-----

∫=

∆τ i ∆τ j⋅ e

To

RC
--------–

SiSjC
2

---------------- e

x y+
RC

-----------

in x
i 1–( )To

2
---------------------+

 
  in y

j 1–( )To

2
---------------------+

 
  xd yd

0

To

2
-----

∫0

To

2
-----

∫=

in t( )in t'( ) inwδ t t ′–( ) 2⁄=

i j≠
i j=



,

where, for simplicity, we have assumed that the slope of the waveform is the same for all falling and rising edges. Using
(1) we can calculate the period jitter as

. (3)

The variance of the duration of k consecutive periods, called cumulative jitter, is k times this number and grows linearly
with k (or, equivalently, with the total duration under consideration). This result is essential for the formulation of phase
noise presented in this sub-section. Although our proof of the linear dependency of cumulative jitter on k is limited to the
circuit of Fig. 1, it is a valid approximation if the following conditions are satisfied. First, all of the noise sources in the
system should be white, and second, all poles of the system should be significantly larger than the offset frequency at
which we calculate phase noise. 

The proof of this supposition is based on elementary circuit theory. Consider an oscillator with P state variables and,
therefore, P poles, the smallest of which is denoted by Ps. Also assume that there are several white noise sources in this

system. We select the time interval TT significantly larger than 1/Ps and much smaller than 1/∆f when  is the

offset frequency. Note that this is possible only if Ps is much larger than ∆f as required above. Since TT is much larger than
all of the poles in the system, the values of the state variables at time 2TT are approximately independent of their values at

time TT. Thus, state variables are only a function of the behavior of noise sources in the time interval between TT and 2TT.

Since these sources are assumed to be white, their behavior between TT and 2TT is independent of their behavior between
0 and TT. Thus the jitters, which are uniquely given by the value of the state variables at the end-points of the cycles, are

mutually independent for different TT-long intervals of time. For a total time of kTT the total cumulative jitter grows lin-

early with k and is k times the cumulative jitter in each of these intervals. The distribution of jitter inside each of these
time intervals is insignificant for the phase noise at ∆f because TT is much smaller than 1/∆f. We can then assume that the
distribution of jitter inside each of these time intervals is uniform. With this assumption, jitter will grow linearly with time
inside each TT-long interval of time as well. Consequently our formulation of phase noise due to white noise, which is

based on the linear growth of jitter with time, is valid for all circuits that satisfy the two aforementioned conditions.

Knowing that the variance of the cumulative jitter grows linearly with time, we can analytically calculate the PSD of the

signal given in Fig. 1. This analysis is performed elsewhere6 for the Guassian distributed jitter, and it is shown that the
spectrum of phase noise around the first harmonic can be approximated by

. (4)

Equation (4) dictates that the phase noise around the first harmonic can be approximated by a Lorentzian function.

Stratonovich4 shows that the phase noise of a noisy sinusoidal signal can also be approximated by such a function. In fact,
this result is quite general and applies to any periodic signal (regardless of its shape) as long as the square root of the
period jitter is much smaller than the period and the cumulative jitter grows linearly with time. The first of these condi-
tions is satisfied in any circuit that one could practically call an oscillator. The second condition was discussed earlier.

Equation (4) shows that the far-out phase noise drops as  when  is the offset frequency. This far-out
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phase noise behavior is well-known from measurement results7 and other theoretical work3 and is independent of the
choice of definition for phase noise. The phase noise, however, becomes flat in the vicinity of the carrier. This latter result
is dependent upon the choice of definition for phase noise.

3.3  Formulation of phase noise generated by colored noise
In the presence of colored noise, the formulation of phase noise becomes complicated because the autocorrelation of the in
is no longer a delta function and cycle-to-cycle jitter can be non-zero for . In this subsection, we assume that the auto-
correlation function of colored noise is Lorentzian. The effect of 1/f noise can be captured by modeling it as the sum of
several Lorentzian sources.

The power spectral density and autocorrelation function of a single Lorentzian-shape current noise source are given by

 and , respectively, where inl is the amplitude of the single-

sided PSD at ω=0, and θ determines how fast the autocorrelation function drops with time. Using this autocorrelation
function, (2) reduces to:

and 

for any . 

The above equations can be combined with (1) to calculate the period jitter and cycle-to-cycle jitter. This calculation
shows that period jitter can be minimized by equalizing the slope of the signal at all transitions (rising and falling edges).

This result is consistent with previous findings7 and can be explained intuitively. The change in the duration of each half-
period due to noise can be compensated by the change in the duration of the adjacent half period because the fluctuation
properties of the noise source vary slowly with time, and the Si’s have different signs at the end of two consecutive half-

periods. In the fully symmetric case, , and the effect of low-frequency colored noise is greatly suppressed.

In the fully unsymmetrical case  and  is finite. Since we are usually interested in the effect of low frequency

colored noise on close-in phase noise, we have  and . The calculations of cycle-to-cycle jitter using these

relationships for the fully unsymmetrical case leads to

, (5)

where Aθ is given by 

. (6)

Equation (5) is exact only for .

Equation (5) shows that the cycle-to-cycle jitter drops in a manner similar to a Lorentzian autocorrelation function. This
result is essential for the phase noise formulation presented in this sub-section. Although our proof of this phenomenon is
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limited to the circuit of Fig. 1, it is a valid approximation if the following conditions are satisfied. First, the only noise
source of the circuit should be a Lorentzian noise, and second, the smallest pole of the system should be much larger than
the offset frequency at which we calculate phase noise. The proof is similar to the argument presented in the case of white
noise, where the cumulative jitter grows linearly with time. Thus, the formulation presented in this section is valid for all
circuits in which the smallest pole of the system is much larger than the offset frequency at which we calculate the phase
noise.

The phase noise of a signal with cycle-to-cycle jitter given in (5) is calculated elsewhere6 as

(7)

which is in fact the sum of several Lorentzian functions. Cθ, Dθ and Eθ are given by

,

,

.

In the presence of multiple independent noise sources in a system, the total cycle-to-cycle jitter will be the sum of the
cycle-to-cycle jitters generated by individual sources. It is easy to show that in this case the cumulative jitter is also the
sum of the cumulative jitters generated by individual sources. After calculating the accumulated jitter, we can calculate

the phase noise using the method presented by Navid et al6.

4. THE CHARACTERISTICS OF THE CLOSE-IN PHASE NOISE

In this section we use our phase noise formulation to discuss the properties of close-in phase noise. We first examine the
general shape of the phase noise spectrum in the presence of various kinds of noise sources and discuss the validity of
some of the generally-accepted beliefs about this spectrum. We then explain the differences between the properties of the
close-in phase noise and that of the far-out phase noise. Our analysis shows that some of the approximations, which are
valid for far-out phase noise, are not acceptable for close-in phase noise. Finally, we discuss various ways of suppressing
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the effect of low-frequency, colored noise on phase noise.

Contrary to popular belief, the spectrum of the phase noise is not necessarily Lorentzian in the absence of colored noise.
According to our formulation, the phase noise has a Lorentzian shape in the vicinity of the oscillation frequency only if
we assume that the cumulative jitter grows linearly with time. As discussed earlier, the validity of this assumption requires
that not only all of the noise sources in the system be white but also all poles of the system be significantly larger than the
offset frequency at which we calculate the phase noise. This second condition is not necessarily satisfied for circuits con-
taining only white noise sources. In fact, from a circuit-theory point of view, a colored noise source can often be recon-
structed using a network of white noise sources and noise-free electronic components. Fig 4 shows the reconstruction of a
Lorentzian noise source as an example. The reconstruction of 1/f noise sources is straightforward if we notice that a 1/f
spectrum is the sum of several independent Lorentzian sources. Using such reconstruction networks, we can start from an
arbitrary oscillatory system and replace the colored noise sources with their white-noise equivalent networks to arrive at a
system with only white noise sources. We would expect the phase noise spectrum of this system to have a Lorentzian
shape if the absence of colored noise sources were a sufficient condition for having a Lorentzian-shape phase noise spec-
trum. That is, we would expect the phase noise to be Lorentzian in all systems. However, this result is experimentally

shown to be invalid7.

The fallacy of this result can also be shown using our phase noise formulation. This formulation in the presence of colored
noise sources shows that the phase noise of a system with one Lorentzian noise source is the sum of several Lorentzian
functions. Figure 5 shows such a phase noise spectrum along with the PSD of the noise source generating this phase noise.
The numerical parameters used in this simulation are given in the inset of this figure. Note that the spectrum of phase

noise has a 1/f 4 shape at far-out frequencies.

Figure 6 shows that in the co-presence of independent Lorentzian and white-noise sources, the spectrum of phase noise

eventually returns to a nearly-1/f 2 shape at far-out offset frequencies. This result is expected because at high frequencies
the white noise eventually dominates the Lorentzian noise. This analysis is performed using the superposition properties
of cumulative jitter, as explained earlier. The numerical parameters used in this simulation are the same as the ones given
in the inset of Fig. 5.

Fig. 4. White-noise equivalent network for a Lorentzian noise source.
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sources

Fig. 6. Phase noise generated by a combination of Lorentzian
and white noise sources
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One of the generally-accepted approximations about the spectrum of far-out phase noise is superposition7. Unfortunately,
this approximation is invalid for close-in phase noise. To see this, consider the oscillator in Fig. 3 with only one noise

source . The phase noise of this oscillator is given by (4) in the vicinity of the fundamental fre-

quency. We can rewrite the noise source as . According to superposition,

the spectrum of phase noise would be the sum of the phase noise spectra generated by individual sources (with appropriate
normalization). Figure 7 shows the phase noise calculated using superposition and the directly-calculated phase noise.
This graph clearly shows that the superposition approximation is valid only for far-out phase noise and breaks down at
small offset frequencies.

Our analysis of phase noise can explain why the effect of low-frequency, colored noise on oscillators’ phase noise can be
suppressed by noise source switching. To suppress the effect of non-white noise, we need to force the cumulative jitter to
grow linearly with time. The cumulative jitter grows linearly with time if, and only if, the jitter in each period is indepen-
dent of the jitters of the previous cycles. If the system does not have a memory of the jitters induced in the previous cycles,
its phase noise will be Lorentzian and the effect of the colored noise will be suppressed. The memory of the system can be
reduced by periodically switching the noisy devices on and off. For example, the basic device physics for MOS devices
shows that switching these devices moves the relative location of the Fermi level to the trap sites responsible for 1/f noise
(Fig. 8). Thus, the trap sites that are located in the vicinity of the Fermi level during the ‘on’ state move to locations signif-
icantly higher or lower than the Fermi level due to switching and their occupancy becomes relatively deterministic during
the off time. Once the device is switched back on, its noise properties are only functions of the initial conditions generated
during the off time and are relatively independent of what had happened in the previous on-time. In effect, if we periodi-
cally switch the device on and off, it loses its memory of what had happened in the previous ‘on’ times, which means that

it will have less colored noise. The experimental data supports this suppression of 1/f noise in switched MOS circuits8,9.

This phenomenon is responsible for the experimentally-observed suppression of 1/f3 phase noise in single-ended ring

oscillators7.

Another way of suppressing the effect of low-frequency, colored noise on phase noise is symmetrization. Since low-fre-
quency colored noise sources have a rich content at low frequencies, their fluctuation properties change slowly with time.
Consequently, if we symmetrize the signal in terms of duty cycle and rise/fall slope, we can compensate for the effect of
jitter in one half-period by its effect in the other half-period. However, the symmetrization techniques can only be useful
for the noise sources which are active during the whole period. For example, this technique is effective for suppression of
the effect of the noise sources associated with the tail current source in differential ring oscillators. On the other hand, this
technique is ineffective for noise sources which are present only in half of the period such as MOSFET device noise in
single-ended ring oscillators. In this case, the symmetrization of the waveform has an insignificant effect on phase noise
because the noise of the PMOS and NMOS devices are independent, and only one of them is active in each half-period. In
single-ended ring oscillators, the symmetrization can only suppress the effect of the noise of the short circuit time during
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which both devices conduct. It is then clear that the main mechanism of suppression of phase noise in single-ended ring
oscillators is the switching effect described earlier.

5. CONCLUSION

We have studied the characteristics of close-in phase noise in ring oscillators and showed that some of the approximations
which are routinely used for far-out phase noise are not acceptable at close-in frequencies. Unlike the far-out phase noise,
the behavior of close-in phase noise is dependent upon the choice of definition between the two widely accepted defini-
tions of phase noise. We compared these two definitions of phase noise and chose the definition of phase noise as the nor-
malized PSD of the signal for this study. We then presented analytical formulation of phase noise for a square-wave
periodic signal and discussed some of its properties. These properties were shown to be general and not dependent upon
the choice of oscillator.

We showed that phase noise has a Lorentzian spectrum if we assume that the cumulative jitter grows linearly with time.
To satisfy this condition, in addition to the absence of any colored noise, the system must not have any poles at frequen-
cies comparable to the offset frequency at which we calculate the phase noise. Therefore white noise sources can, in prin-
ciple, generate non-Lorentzian phase noise spectra. In practice, however, the deviation of phase noise spectrum from a
Lorentzian shape is usually an indication of the presence of a non-white noise source because well-designed oscillators
rarely have a pole at frequencies comparable to the offset frequency at which we measure phase noise. We also discussed
the superposition approximation and showed that this approximation is valid only for far-out phase noise and breaks down
at small offset frequencies.

We showed that the suppression of the effect of low-frequency colored noise on the oscillator’s phase noise is possible by
switching the noise sources on and off periodically or by symmetrization of the waveform. In single-ended ring oscilla-
tors, the switching of transistors is the main suppression mechanism of the effect of 1/f noise on the phase noise. On the
other hand, symmetrization is most effective for the noise sources which are always on, such as the tail current source in
differential ring oscillators. These findings provide insight for efficient design of low-phase-noise electrical oscillators.
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