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The air chamber is treated as a boundary value problem which results in the solution of the wave equation 
for the general case in which the horn throat enters the air chamber in any circumferentially symmetrical 
manner. The following specific cases are analyzed: (1) the case in which the horn throat enters the air 
chamber by means of a single orifice, (2) the horn throat enters the air chamber by means of a single annulus 
of radius r and width w, and (3) the horn throat enters the air chamber in "m" annuluses of radii r•. ß .r• and 
widths w•- - -w•. The analysis reveals that the radial perturbation caused by the horn throat excites higher 
order modes. At the resonant frequencies of these modes the born throat pressure becomes zero and the loud- 
speaker does not radiate. By suitable choice of annulus radii and widths the first "m" modes may be sup- 
pressed and the corresponding nulls in the output pressure eliminated. 

N the classical analysis of the air chamber of horn type loudspeakers (Fig. 1) the assumption is made 
that all of the dimensions are small compared with 
wavelength. 1-a In many applications of horn type 
loudspeakers this assumption is justified, but in the 
case of horn type tweeters the wavelength becomes a 
small fraction of the diameter of the air chamber. In 

order to develop a theory which will accurately predict 
the high frequency performance of the loudspeaker, the 
air chamber must be treated as a boundary value 
problem. 

• W. P. Mason, Electromechanical Transducers and Wave Filters 
(D. Van Nostrand Company, Inc., New York, 1942), pp. 225-230. 

• H. F. Olson, Elements of Acoustical Engineering (D. Van 
Nostrand Company, Inc., New York, 1940), pp. 190-191. 

a B. H. Smith and W. T Selsted, Audio Eng. 34, 16 (1950). 

Since the thickness of the air chamber is negligible 
compared with the radius of curvature of the diaphragm, 
wave propagation within the air chamber will be 
negligibly different from that in a similar circular 
cylindrical cavity. The radius of this cavity is equal 
to the distance along the diaphragm from the center to 
the outer edge of the air chamber. 

THE LOUDSPEAKER AIR CHAMBER AS A 

BOUNDARY VALUE PROBLEM 

It will be assumed that the horn throat enters the air 
chamber without circumferential variations. For the 

present the axial component of velocity over the front of 
the air chamber where the horn throat enters will not 

be defined; instead it will be kept general, and called 
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306 BOB H. SMITH 

Fio. 1. Typical horn loudspeaker. The cavity between the 
diaphragm and horn throat is called the air chamber. It has the 
'same cross-sectionai area as the diaphragm and is of the order of 
0.020 of an inch thick. 

f(r). Along the diaphragm the axial component of 
velocity will be assumed sinusoidal and of amplitude u0. 
Along the outer boundary of the air chamber it will be 
assumed that the radial component of velocity is zero. 
The immediate problem is to choose a solution of the 
wave equation which will meet these boundary condi- 
tions. Mathematically the problem may be stated as 
follows: 

k--w/c, (1) 
u,=uo, z=O, Ox<rx<a, 
u•=f(,), z=l, Ox<rx<a, 
uz=0, O•<zx<l, r---a, 
• = -- V•, p= jcop•. 

The solution is 

$= ----(sinkz+ cork/coskz) 
k 

+ • 2Jo(k•r) cos7, • Z fo f(,)fo(k.r)rar, (2) ,=0 7•a J0 (P•) sin7•/ 

2 
q- • 2Jo(k,,r) 

X fo"f(r)Jo(k,r)rdr), (3) 
f•---p•'c/2,ra. '(4) 

Equation (3) is a general expression for the pressure 
in any air chamber without circumferential variations. 
It is apparent that if f(r) is a constant there is neither 
radial pressure variation nor radial velocity variation. If 
f(r) is not a constant, the third term in Eq. (3) produces 
a radial pressure variation, the magnitude of which is a 
function of frequency. Each of the terms in the series 

is a higher order mode, and the degree of excitation of 
this mode depends upon the ratio of the frequency to 
the resonant frequency of the mode. 

First, let us consider the simplest type of air chamber 
and then proceed to successively more complex types. 

THE CASE IN WHICH THE HORN THROAT ENTERS 
THE AIR CHAMBER BY MEANS OF A 

CENTER HOLE 

The quantity f(r) must be defined, and then Eq. (3) 
is applied. For the moment we will neglect viscosity 
and assume that the particle velocity is constant over 
the horn throat. (See Fig. 2.) 

Thus, f(r) may be defined as follows: 

f(r) =0, rt<rx<a. 

Equation (3) then becomes 

(s) 

at r=0 p= 

[ cojo_• 2 1 A, uo= p• 
pc At> 

(7) 

It is apparent from Eq. (7) that at the resonant 
frequency of each mode the throat pressure, p• is zero. 
Since u•= p•/pc, the throat velocity also is zero at these 
resonances, and therefore, along •= l there is no axial 
component of velocity. 

A physical picture of the wave propagation within 
the air chamber can be obtained by solving for the t•xial 
and radial velocities. The velocity potential is 

u,A • r 

"(sin• + co t• cos•)+ •,•[ cos• 

+.f2, 2J,(.r0J0( (8) - [1-- (f,,/f)']Jo•(put)k,•r, J' 
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Thus, 

u• = -----= Uo(COSkZ- cotk/coskz)+ u,A • [sinkz 
Oz klA• [ 

and 

+ • 2Y•(k.rOYo(k.r) sinkJ-l-(j'df)'])•l, 

Or 

•--- A • [ • 2Jx(k•r•) '1' 
- 4,,r,J•o•(p,,')[1-(/,,/f)•]J 

(9) 

Let f• be the resonant frequency of any one of the 
radial modes. Take the limit of the above expressions 
as f approaches fv, and the components of velocity 
become 

u, --•o sink•z(cotk•z--cotks])•---"o[1-- (a//)3, (10) 

Uo UoXp 
Equation (10) says that the axial component of 

velocity decreases linearly from that of the diaphragm 
to zero at the horn throat. Equation (11) says that a 
radial standing wave of very large amplitude is excited. 
Since the wavelength of the first few modes for practical' 
loudspeakers is of the order of 5000 times the air 
chamber thickness, it is apparent that the radial com- 
ponent of velocity at the maxima of Jx is of the order 
of 1000 times the axial velocity. Resonance can be 
visualized as a condition in which the velocity of the 
diaphragm excites only the radial mode and does not 
couple an axial component to the horn throat. 

If the particle velocity is related to the throat pressure 
using the classical lumped constant analysis, the follow- 
ing relation between diaphragm velocity and throat 
pressure is obtained: 

F .od 1 
(12) 

If this is compared with Eq. (6), it is evident that the 
lumped constant solution can be derived from the wave 
solution by neglecting the higher order modes. The 
modes with resonances in the audiospectrum are 
ordinarily not negligible since they cause nulls in the 
output pressure of the loudspeaker. 

The resonant frequencies of the higher modes are 

and the resonant wavelengths are X, = 2•'a/pd, 

X•--1.64a, M=0.896a, Xa=O.618a,•Xs=O.471a. (13) 
In order to obtain numerical values for the resonant 

frequencies, the speed of sound within the air chamber 
must first be determined. It is lower than the free space 
value of 1130 ft per second because of the viscous forces 
acting in the confined space of the air chamber. 

If the viscous forces are considered rigorously the 
problem becomes much more complex because they 
require modification of the wave equation itself. How- 
ever, it has been shown •.a that the effects of viscosity 
can be accounted for by suitably modifying the propaga- 
tion constant. This leads to attenuation and a change 
in the phase velocity of the waves. Applied to an air 
chamber the attenuation per unit length and the phase 
velocity are 

2.1721' •o• l • 

or= cl [•-ff0] db/unit length, (14) 
½'= (15) 

1+ (1/2/)[•/2wp]( 
For an air chamber with a thickness of 0.020 inches 

the attenuation and phase velocity become 1.54 db 
per inch and 0.825c at 5000 cps and 2.67 db per inch 
and 0.888c at 15 000 cps. Since the distances within 
the air chamber are small, the viscous attenuation 
only amounts to a few decibels. The change in the 
phase velocity reduces the frequency of the higher 
modes correspondingly. 

FIO. 2. Since the thick- 
ness of the air chamber is 
small compared with its 
radius of curvature it may 
be represented as a simple 
circular cavity for analyti- 
cal purposes. r• is the radius 
of the horn throat, a the 
radius of the outer bound- 
ary of the air chamber, and 
I its thickness. In this case 
the horn throat enters as a 
simple orifice. 

• See reference 1, pp. 114-120. 
s L. E. Kinsler and A. R. Frey, Fundamentals o] Acoustics (John 

Wiley and Sons, Inc., New York, 1950), pp. 238-245. 
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Fro. 3. The equivalent circuit of a horn t•e loudspeaker. 

For an aN-chamber spacing o• 0.020 bch the reso- 
nant frequencies of the first few modes are 

fz = 6940/a, f== 13 300/a, f== 20 400/a, 
f•= 28 500/•, a in bches. 

Let us now dete•ine the force exerted upon the 
diaphra• by the aD chamber. This procedure leads 
to a new equDalent circuit for the ho• type loud- 
speaker which will bclude the effects of the higher 
modes. 

The force at the diaphragm is 

F=fo 2=prdr. (16) 
From Eq. (6) the pressure is 

+ 
07) 

2rKdo(k,,r)rdr]}. (18) 
The above integral is zero. Substituting Pt from (7) 

the force becomes 

(19) 

The quantity analogous to electrical impedance, 
when the force-current analogy is used, is the ratio of 
velodty to force. If one denotes this quantity as Z and 

rearrangesEq. (19), 

Uo R• 

1-so • • kl / 

pea oa ,•=• -•- 
+j X,,-} 

1+ 

(20) 

in which 

R,•=A•/pcAo •, X•,=j•l,/A,o. 

R, and X• are the quantities used in the classical 
equivalent circuit of the horn type loudspeaker to 
represent the air chamber and horn. Equation (20) 

Fro. 4. The case in 
which the horn throat 
enters the air chamber 
as a single annulus. The 
normal component of 
velocity along the dia- 
phragm is u0. It is zero 
along the rigid boundary 
of the air chamber and 
ut at the horn throat. 

reduces to these values if the mode terms are neglected. 
The equivalent circuit of the horn type loudspeaker is 
shown in Fig. 3. 

THE CASE IN WHICH THE HORN THROAT ENTERS 
THE AIR CHAMBER BY MEANS OF A 

SINGLE ANNULUS 

Now let us consider a slightly more complex air 
chamber • (see Fig. 4). For this type of air chamber, 
f(r) may be defined as follows: 

f(r) =0, Ox<r<r•, 
f(r) =0, r•.+w<r<a, z=l, 
f(r)=u,=p,/pc, r•x<rx<r•+w•, z=l. 

Substituting these values into Eq. (3), the pressure 

• E. C. Wente and A. L. Thuras, Bell System Tech. J., 7, 140 
(1928). 
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œt- (/Jr) ) , (20 
Assuming that w is small compared with r•: 

(22) 
Any mode, the "j"th, for example, can be suppressed 

by choosing ksr• to be a root of J0. Logically, one would 
choose to suppress the first mode, and that requires 

r• = 0.628a. 

Physically, when this choice of rt is made, the pertur- 
bation of the horn throat is being placed at the node of 
the first mode, and for this reason it is not excited. If, 
however, some other unavoidable t•.rturbation should 
excite the mode, the horn throat being at the node 
would not be coupled to it. This air chamber has the 
property that it neither excites nor couples the horn 
to the suppressed mode. Therefore, it provides extremely 
good mode suppression. 

The equivalent circuit of this type of air chamber is 
the same as that for the air chamber with the horn 

coupled by means of a center hole except that K• 
takes on a new value. It is 

Jo2(k•ri) 

El- (23) 
THE CASE IN WHICH THE HORN TKROAT ENTERS 

THE AIR CHAMBER AS "M n ANNULUSES 7 

f(r)=0 if O•r<r,, r•+w•<r<r,...r•+w•,<r<a, 
f(r)=ul if ri•r•rlq-wi i=1, 2,.-.m. 

Substituting these values into Eq. (3) and integrating, 
one gets 

,• u.•l d- • Jo(k,rl)Jo(k,,r) ] I 
,-, A o It .') 

In order to suppros the "j"th mode, 

(24) 

• E. C. Wente •nd A. L. Thuras, Trans. Am. Inst. Elec. Engrs. 
53, 17 (1934). 

The first a modes can be suppressed by letting "j" 
take on integral values from 1 to m. This produces a set 
of simultaneous equations: 

A ,Jo(k,rO A,•Jo(kff•) = 0 

(25) 

A,Jo(/tj,) A.,,],(kdt,,,) =0. 

Any set of annulus areas and radii which satisfy 
Eq. (25) will suppress the first ra modes. One way of 
doing this is to choose the radii such that 

Jo(k•r,)--O i=l,...m, (26) 

i.e., choose the radii to be at the nodes of the "m"th 
mode of J0. This reduces Eq. (25) to "ra-l" equations. 
These equations can be solved simultaneously for the 
area of each annulus. For the.case of one, two, or three 
annuluses the proper radii and widths of annulus are 

for m= I, 

for m= 2, 
r•= 0.628a w• arbitrary; 

• = 0.334a r• = 0.788a, 
w• arbitrary w2= 1.004w•; 

for m= 3, 
r• = 0.238a r•= 0.543a ra= 0.853a, 

w• arbitrary w== 1.025wx wa= 1.065wv 

A physical picture of the mode suppression in multiple 
_ annulus air chamber can be obtained by considering 
the case of two annuluses. For this case the two an- 

P 

3•, // .¾• ' ! 
! 

! 

J 

Fro. 5. If two annuluses are used, and placed at the nodes of the 
second mode, the second mode is not excited. Each annulus does 
excite a component of the first mode, but the two components are 
out of phase. Thus, if the relative annulus areas are properly 
chosen the two components will cancel, suppressing the first mode. 
Such an air chamber excites neither the first nor the second mode. 
In general, '%" annuluses properly designed will suppress the 
first "•t" modes. 
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I 

FIO. 6. Air chamber number one. 

nuluses are placed at the nodes of the second mode, and 
hence, this mode is not excited. However, neither 
annulus is at the node of the first mode, and hence each 
excites a component of the first mode. The second 
annulus is at a greater radius than the node of the 
first mode, while the first annulus is at a smaller radius 
than the node. Therefore, the component of the first 
mode excited by the second annulus is out of phase 
with the component of first mode excited by the first 
annulus. The areas of these annuluses may be chosen in 
such a way that the two components of the first mode 
cancel. This is illustrated in Fig. (5). 

EXPERIMENTAL RESULTS 

The experimental work was carried on simultaneously 
with the theoretical work to serve not only as a con- 
firmation of the latter but also to indicate which factors 

were important and which were negligible. In this way 
the experimental work aided the development of the 
theory. 

The construction of the first three air chambers was 

started before the theory had been developed. As a 

Fxo. 7. Air chamber number two. r•/a equals 0.463. 

result the choice of annulus position was made according 
to the best commercial loudspeaker practice known at 
the time. The subsequent work of this investigation 
indicates that the annulus radii chosen would not 

suppress the higher modes. 
Air chamber number one (Fig. 6) had the horn throat 

entering simply--by means of a center hole. Air. 
chamber number two (Fig. 7) had a horn throat con- 
sisting of a single annulus for which r•=0.463a. In 
order to suppress the first mode, r• should have been 
0.628a. Air chamber number three (Fig. 8) had a horn 
throat consisting of two annuluses and a center hole. 
These were equally spaced except that the distance from 
the outer annulus to the outer boundary of the air 
chamber was half of the distance between the other 
annuluses. 

The frequency response curves of these air chambers 
was obtained and is shown in Fig. 9. (A machine was 

Fro. 8. Air chamber number three has a complex horn throat 
consisting of two annuluses and one center hole. The annuluses 
are not placed properly to suppress the higher modes. 

built to obtain frequency response curves automati- 
cally.) It is apparent that the output pressure does 
drop to zero (the noise level) at each of the higher 
modes. Air chamber number two shows some suppres- 
sion of the first mode. All of the modes are present in air 
chamber number three. 

The radial length of these air chambers is approxi- 
mately 1.375 inches. If the resonant frequencies of the 
higher modes are computed and compared with the 
measured values, a small discrepancy is observed. For 
example, consider air chamber number three. The 
following are the computed and measured values of the 
mode resonant frequencies: 

Computed Measured Percent 
Mode frequency frequency difference 

1 5050 5500 8.9 
2 9670 8000 17.5 
3 14 800 14 000 5.7 
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Fro. 9. Frequency response curves. Top--air chamber number one, middle---air chamber numtier two, bottom--air chamber 
number three. The nulls in the output pressure caused by the mode resonances are clearly evident at 5.5 kc (first mode), 8 kc 
(second mode), and 14 kc (third mode). Some first mode suppression is evident in number two, but the radius of the annulus is 
not correct for complete suppression. 

The difference between these quantities camrot be 
attributed to experimental error; the audio-oscillator 
was compared with a frequency standard, and the 
measured results were suitably corrected. All of the 
dimensions of the air chamber except the thickness are 
known within one percent. The air-chamber thickness 
was designed to be 0.020 inch, but the tolerance is 
about plus or minus 0.005 ind,. The tolerance might 
cause as much as a ten percent difference in the velocity 
of propagation within the air chamber and, hence, a 
corresponding error in the resonant frequency of the 
modes. However, this effect should be the same for all 
modes, i.e., if the measured value of the first mode were 
high, the second and third modes should be high also. 
The experimental work shows that this is not the case; 
the measured value of the first mode is high, while that 
of the second mode is low. 

The displacemm•t of the resonant frequency of the 
higher modes can be explained h• the following way: 
The theory assumes that the diaphragm velocity is 
independent of radius. In an actual loudspeaker it varies 
slightly with radius due to the diaphragm compliance 
and the acoustical load. Moreover, since the acoustical 
load is a function of frequency, so is the radial dis- 
tribution of diaphragm velocity. The diaphragm com- 
pliance and associated loads change the acoustical 
length of the air drambet in the same way that series 
inductance and shunt loads dmnge the electrical length 
of resonant transmission lines. In other words, these 
quantities lengthen or decrease the effective air chamber 
radius, thus displacing the resonant frequencies of the 
higher modes. 

The experimental work described thus far confirms 
the nulls in the output pressure of the loudspeaker at the 
resonant frequencies of the higher modes. In addition, 
it shows the influence of the diaphragm compliance and 
thus contributes to the theory. 

After the theoretical work was complete, it was 
decided to construct a loudspeaker in which the first 

mode would be suppressed. The diaphragm diameter 
(1.69 inches) was chosen to place the second mode at 
15.7 kc and the first mode at 8.2 kc. A sh•gle annulus 
was chosen for the horn throat and placed at approxi- 
mately 62.8 percent of the air chamber radius. 

In order for the loudspeaker to have a uniform 
frequency response up to 15 kc, the air-chamber thick- 
ness and the mass of the moving system would have 
be too small for any practical future application of the 
unit. It was decided, therefore, to allow the frequency 
response to roll off smoothly above 5 kc. Uniform 
frequency response above 5 kc can easily be obtained 
by means of a resistance capacitance equalizer in the 
amplifier. This allows the moving system to have a mass 
of 400 mg and an air-chamber thickness of 0.015 inch. 
(See Fig. 10.) 

Figure 11a shows the frequency response of the loud- 
speaker. The first mode, which would resonate at 8.2 kc, 
is suppressed, and the second mode resonates at 15 kc. 
Figure 11b shows the frequency response of the loud- 

FIO. 10. For this air chamber rt/a is 0.62 in order to suppress the 
first mode. The air-chamber radius has been chosen to place the 
second mode resonance at 15 kc. The diaphragm was spun from 
0.001 inch aluminum foil, and the voice coil consists of 25 turns 
of number 36 copper wire. The moving mass is 400 mg. 
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F[o. 11. (a). (top) The frequency response of the loudspeaker of Fig. 10. This loudspeaker was designed to have a uniform re- 
sponse up to 5 kc and to drop off smoothly until the second mode becomes effective at 15 kc. This make• possible a sufficiently 
heavy moving system to deliver a considerable amount of power. (b). (bottom) Since the response of the loudspeaker of Fig. 10 
declines smoothly above 5 kc, it may be corrected with a simple resistance capacitance equalizer (three section). This curve is the 
response of the equalizer, amplifier, and loudspeaker. 

speaker, amplifier, and equalizer; it is within plus or 
minus 3.75 db from 1 kc to 14.5 kc. 

CONCLUSION 

Treatment of the air chamber as a boundary value 
problem reveals the following physical picture. If there 
is no radial perturbation as in the case of the air 
chamber with no horn throat, there is no radial propa- 
gation and the pressure is independent of radius. When 
the air chamber is connected to a horn and the horn 

throat has smaller dimensions than the air chamber, the 
particles must move radially. This generates radial 
waves which are reflected by the outer boundary of the 
air chamber. These waves, or higher modes, become 
resonant for certain frequencies. At these frequencies 
the throat pressure becomes zero and the loudspeaker 
does not radiate. 

Any one of the modes may be suppressed by making 
the horn throat an annulus which is located at the 

node, of this mode. If it is necessary to suppress two 
modes, two annuluses are required. These annuluses can 
be located at the nodes of the second mode and thus do 

not excite it. Ead• annulus does excite the first node, but 
the excitation by the second annulus is out of phase 
with that of the first annulus. By suitable choice of 
annulus widths, complete cancellation of the first mode 
results. Thus, the first two modes are suppressed. The 
process can be carried out for any number of annuluses, 
i.e., in the general case of "m" annuluses the first "m" 
modes can be suppressed. 

The air chamber theory developed here suggests the 
following design procedure: The diaphragm size is 
selected by the power requirements of the loudspeaker. 
One then computes the frequencies of the modes 

associated with this diaphragm from Eq. (13), decides 
how many modes have to be suppressed, and chooses 
this number of annuluses. The radii of these annuluses 

are determined from Eq. (26) and the relative widths 
from the set of Eqs. (25). Next the constants of the 
loudspeaker are determined from the equivalent circuit 
(Fig. 3). For details of this last step see references 1 
and 3. The total throat area is distributed according 
to the solution of Eqs. 25. 

TABLE OF SYMBOLS 

u0 diaphragm velocity--meters per second 
•i particle velocity--meters per second 
ur radial component of particle velocity 
u, axial component of particle velocity 
p•' "n"th root of Y[(x)=0 
p pressure--newtons per square meter 
• density of air--l.21 kg per cubic meter 
c velocity of sound 
1 air-chamber thickness--meters 
a air-chamber radius--meters 

ri radius of "j"th annulus--meters 
wi width of "j"th annulus--meters 
/• coefficient of viscosity--l.84X 10 -a kg/meter sec 
o• 2•rf 
f frequency cycles per second 
X wavelength--meters 
F force newtons 

ß velocity potential 
A• area of the horn throat--sq meters 
An area of the diaphragm sq meters 
f• resonant frequency of the "m"th mode 
k=•/c 

k• = 2•rf,,,/c 
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