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When predicting and comparing the acoustical properties of horns it is customary practice to formulate 
the propagation as a one-parameter plane wave front problem. However, when particular attention is paid to 
the rapid flare near the mouth of a horn structure such as the tractrix, it also seems plausible to formulate 
the propagation on the basis of a one-parameter spherical wave front theory. By visualizing the surfaces 
of constant phase as spheres of constant radii a and the flow lines as tractrixes having a generating arm of 
length a, a one-parameter wave equation and Ricatti impedance equation may be derived. Solutions to these 
equations have been obtained by wave perturbation and by analog computer techniques. 

Axial response and throat impedance measurements are compared with theoretical calculations postulating 
first a hemispherical and then a plane piston radiation pattern. It appears that the most satisfactory explana- 
tion lies somewhere in between these two limiting cases. 

INTRODUCTION 

EVERAL years ago a basic physical study of acous- tic coupling devices was undertaken with a view 
toward gaining a better understanding of the perform- 
ance of such systems. It was hoped that with better 
understanding the performance of these devices, of 
which the well-known horn is an example, could be 
improved upon. 

Somewhat earlier Professor H. E. Hartig suggested 
that the tractrix curve looked promising as an acoustical 
horn structure. The tractrix, however, does not lie 
among the horn contours predicted by the Webster 
plane wave theory. •,2 The plane wave theory seems 
plausible provided the horn does not flare too quickly. 
The flare of the tractrix, on the other hand, varies 
along its length, being exponential at the throat and 
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finally becoming infinite at the mouth. A formulation 
of acoustic wave propagation in the tractrix horn, 
therefore, does not follow strictly the Webster theory 
although one of the requirements is that they become 
identical at distances far removed from the mouth, 
i.e., at the throat of the horn. The problem suggested 
was an investigation of the transition of sound energy 
from a plane wave form at the horn throat to a spher- 
ically symmetric form at the mouth. It was hypothesized 
that one could approximate this ideal transition by 
following the curve of a tractrix. 

In the following a formulation of the propagation on 
the basis of a one-parameter spherical wave front theory 
is discussed. It is not the purpose of this study to 
develop a more generalized horn theory but rather to 
present other avenues of approach to horn design and 
to develop techniques for handling the propagation 
problems encountered. 

PROPAGATION THEORY 

The geometry of the tractrix horn is shown in Fig. 1, 
where the horn structure is taken as a figure of revolution 
about the X or principal axis. The tractrix coordinate 
• represents the distance from the origin of coordinates 
to the intercept of the generating arm with the principal 
axis. An equation for the tractrix curve in the XY 
plane is written in parametric form as 

Fro. 1. Geometry of the tractrix horn and analogous 
electrical transmission llne. 
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X=t•-a tanh t•/a (1) 
Y = a sech t•/a, 

where a is the length of the generating arm. 
A one-parameter formulation of the propagation 

theory proceeds on the assumption that the flow lines 
are tractrixes with a generating arm of length a and 
the surfaces of constant phase are spherical sectors of 
constant radii a. Hence, a is also the radius of the horn 
mouth and forms a convenient design parameter. 
Moreover, the equipbase contours are orthogonal to 
the flow lines and may be represented in the X¾ plane 
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by the family of circles, 

(•- X)•+ I•= a'. (2) 

In the acoustic horn, Fig. 1, these spherical equi- 
pressure contours, visualized as moving from right to 
left, then represent outgoing waves. Thus, wave motion 
may be expressed in terms of one-parameter g under 
steady-state excitation. 

It is convenient to visualize acoustic wave propaga- 
tion in horns as analogous to electromagnetic wave 
propagation along a nonuniform transmission line. 
Since acoustic energy losses along the horn are small, it 
is expedient to neglect the added complications caused 
by dissipation either to the side walls or in the gas. It 
turns out for the low range of frequencies, Fig. 2, and 
for the horn dimensions used in these studies that 

reduction in axial response due to boundary-layer vis- 
cosity and heat conduction losses at the side walls is 
less than one-half decibel. This estimate is based upon 
loss perturbation calculations similar to those discussed a 
by the writer involving attenuation in uniform tubes. 
Hence, neglecting losses, the schematic representation 
of the analogous transmission line is shown in Fig. 1, 
where the series acoustic inductance per length L and 
the shunt acoustic capacity per unit length C can be 
calculated from the physics and geometry and ex- 
pressed as 

L=po/S 

C= S (1 q- tanhr)/2pod, (3) 
where S= 2•ra•(1-- tanhr) is the sector area, and r=•/a 
is a dimensionless variable. In the above p0 is the mean 
density of the gas and c is the velocity of sound in a 
"free-field." Consequently, expressions for the equations 
of motion for harmonic excitation of angular frequency 
o• and under the added assumption of negligible losses 
take the form 

dp/dr= --jcoaLU, 

-i.,aCp, (4) 
where p the excess acoustic pressure and U the volume 
velocity are both assumed constant over S. The dissipa- 
tionless one-parameter wave equation for the tractrix 
horn is calculated from Eq. (4) and expressed in the 
form 

p"+ (S'/S)p'q-k•a • p=0, (5) 
2 

where k=oo/c, and the prime indicates differentiation 
with respect to the variable r. 

One can obtain the essential information needed 

for our calculations by looking for traveling wave 
solutions to Eq. (5). In the interest of expressing 
these solutions in closed form one resorts to wave 

perturbation calculations. Thus, further approxima- 

a R. F. Lambert, J. Acoust. Soc. Am. 25, 1068 (1953). 
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Fro. 2. Comparison between measured and 
calculated axial response. 

tions must be made. While rigor is certainly sacrificed, 
comparisons between theoretical impedance calculations 
and experimental measurements show that the approxi- 
mations can be made quite good. They are at least 
accurate enough to predict general performance char- 
acteristics. A better idea as to the exactness of the 

perturbation calculations is obtained by comparing 
them with exact solutions to the Ricatti impedance 
equation for the tractrix horn obtained by analog 
computer techniques. It turns out that the wave 
perturbation approximations become poorer the lower 
the ratio of horn mouth dimensions to wavelength of 
the radiation. 

In the usual manner we seek solutions to Eq. (5) 
of the form 

p= W/SI= A (r)•4-iotr)/S«, (6a) 
where 

W//q-K•W=O (6b) 
and 

(l+t•nhr) d X•=k•a •' - -(S'/2S) •-- (S'/2S). (6c) 
dr 

In Eq. (6a) the minus and plus signs indicate wave 
motion in the positive and negative r directions, 
respectively. 

If Eq. (6a) is to be a solution to Eq. (5), then the 
amplitude A and the phase 0 must satisfy the following 
relations 4 

0"/0' + 2• '/• =0 
and 

O'•=K"q-A"/A. (7b) 

Equation (7a) is integrable in closed form, and its 
solution may be expressed as 

•0' = •:•(•4, (8a) 

where K• is a constant of integration. The value of this 
constant is calculated from asymptotic solutions to 
Eq. (5), i.e., for distances far removed from the mouth 
of the horn. It turns out that the asymptotic form of 
Eq. (5) is identical with the Webster equation for an 

, 

* V, Salmon, J. Acoust. Soc. Am. 17, 199 (1946). 
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8 

TRACTRIX HORN 

PROPAGATION PARAMETER CHARACTERISTICS 

Ka=15 

• .._.._• Kit• 

Fro. 3. Characteristics of the propagation parameter K(r) 
for various values of Ka. 

exponential horn of flare constant 1/a. Solutions s to 
the asymptotic equation are well known. One calculates 
for the tractrix horn 

A•'O '= (k•'a •'-- 1)L (8b) 

However, solutions to Eq. (7b) are not so easy to 
find. The complexity of the calculation depends upon 
the analytical form of K, where A and 0' are related by 
Eqs. (8a), (8b). In the present case the expression for K, 
Eq. (6c), has a limiting value of E(keae+«)/2• « at r=0 
and approaches (k•ae-1) t as r approaches infinity, 
Fig. 3. We note that even at high frequencies, i.e., 
kea•>>l, K is not a slowly varying function of r. 

At this point in the analysis one may resort to any 
one of several wave perturbation methods. The choice 
is largely a matter of convenience. Probably the best 
known are the WKB 6 and the Liouville ? methods. 

A first approximation to the phase constant 0' can 
be obtained by examining Eq. (7b) and imposing the 
condition that 

b b b 

(9) 

where b is the normalized length of the horn. This 
condition yields 

•'= IC•dr (10) 

as an approximate value for the phase constant. For a 
tractrix horn of length b= 3.25, one calculates 

0'= E.852 (k•a •- 1)+0.1 (11) 

The cutoff parameter of the horn /•ca is calculated 
from the condition O'=0. One calculates from Eq. (11) 
that/•ca= 0.895, a value to be compared with a theoret- 

s p.M. Morse, Vibration and Sound (McGraw-Hill Book 
Company, Inc., New York, 1948), pp. 265-85. 

s j. C. Slater and N.H. Frank, Introduction to Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 1933), 
p. 346. 

? S. A. Schelkunoff and M. C. Gray, Bell System Tech. J. 27, 
350 (1948). 

ical cutoff parameter kca= 1 for the asymptotic expo- 
nential horn. 

To the order of approximation used in deriving Eq. 
(10) the amplitude A, Eqs. (8a), (8b), is constant. 
However, comparisons between throat impedance val- 
ues calculated from this first-order solution and im- 

pedance values obtained from an analog computer 
solution to the Ricatti impedance equation indicate 
that the approximation, A =constant, is not very accu- 
rate. Let us formulate the Ricatti equation for the 
tractrix horn and see just what considerations are 
involved. 

The impedance looking toward the mouth end of 
the horn is given by the ratio 

Z= p/U =j ( kapoc/S) pip'. (12) 

By substituting Eq. (12) into Eq. (5) and after some 
manipulation one arrives at the first-order differential 
equation 

z'-- (S'/S)z-j(ka/2poC •') (S'/S)z•-jkapoc=O, (13) 

where z-ZS is the specific acoustic impedance. 
Equation (13) is the Ricatti equation for the tractrix 
horn whose general solution may be written 4 in terms of 
A and 0 in the form 

z = Rq- jX= kapoc[O'coth (jOq-•) 
1--'' (14) 

where the reflection constant •i is evaluated at the 
mouth of the horn from the relation 

i = coth -t (15) 

and z(0) is the impedance loading the horn. The 
propagation parameters A and 0 appearing in Eqs. 
(14) and (15) must satisfy Eq. (7) .for all r. 

In an effort to obtain better agreement as between 
the theoretical and Reeves analog computer (Reac) 
calculations, the writer endeavored to obtain more 
accurate perturbation solutions to Eq. (7b). It seems 
reasonable that a first approximations to O' can be had 
by simply setting 0'= K. One then recalculates O' and A 
to any degree of approximation desired by iteration. 
Thus, to a first approximation 

0'=K; (16a) 

A'/A = --«K'/K. (16b) 

By calculating A"/A from Eqs. (16a), (16b) and 
substituting this result into Eq. (7), one obtains a 
second approximation to the propagation constants, 
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namely, 

and 

0'=[ 3(K'/• 1 • (17a) 

A' 1 0 '• 
..... (17b) ß 

A 2 0' 

Throat impedance characteristics calculated from 
Eqs. (14), (15), (17a), (17b), (19a), and (19b)are shown 
in Fig. 4. The agreement between the Reac calculations 
and the perturbation calculations will be noted. No 
attempt was made to carry the perturbation to a higher 
degree of approximation because of the difficulty in- 
volved in calculating the phase 0. 

A comparison between propagation measurements 
and wave perturbation calculations based upon the 
foregoing theory is discussed in the following section. 

DISCUSSION 

In order to obtain performance data on the tractrix 
horn and to check the validity of the one-parameter 
spherical wave front theory, several horn structures 
were tested under steady state excitation and for several 
baffle mountings. The details of acoustical measure- 
ments on single and multicell horn structures are de- 
scribed in a companion paper. 8 

To facilitate theoretical calculations, axial response 
measurements were taken with the horn mounted in a 

very large baffle. For all practical purposes the baffle 
may be regarded as being infinite. Preliminary measure- 
ments were made to establish the certainty of the 6-db 
reduction in rms pressure amplitude per doubling of 
distance. It turned out that the geometry was satisfac- 
tory for frequencies above 200 cps. 

After examing both axial and polar response data on 
the single cell structure it was concluded that neither 
hemispherical nor plane piston radiation laws would 
fit the experimental pattern satisfactorily. However, 
in almost any event these distributions probably 
represent limiting cases. Consequently, it is instructive 
to compare semiempirical radiation calculations with 
the actual measurements. In all response measurements 
constant current was applied to the voice coil terminals 
of the driver unit. 

In Fig. 2, axial response characteristics calculated for 
hemispherical and plane piston radiation patterns are 
compared with the measured data. These data are 
plotted versus the frequency-geometry parameter 
ka= 2•ra/X, where X is the wavelength of the radiation. 
The theoretical response is calculated by equating 
output power at the horn mouth to input power at the 
throat neglecting losses. The input power is calculated 
under the added assumption of constant throat velocity 
and using measured values of throat impedance, 

8 A. O. Jensen and R. F. Lambert (following paper), J. Acoust. 
Soc. Am. 26, 1029 (1954). 

Fig. 4. The data in Fig. 2 are corrected for the response 
of the W. E. 640A microphone and its associated 
electronic equipment as well as the response of the 
W. E. 555 driver unit. This comparison of the data 
suggests that the horn radiation response lies somewhere 
in between these two limiting cases. 

In another endeavor to gain a better understanding 
of the coupling at the horn mouth and to check the 
accuracy of the wave perturbation calculations, throat 
impedance measurements were taken in the frequency 
range ka equals 1 to 10. In Fig. 4(a), theoretical throat 
impedance values calculated on the assumption of 
hemispherical radiation are plotted together with 
experimental measurements. Theoretical calculations 
are shown for both wave perturbation and Reac 
solutions to the Ricatti equation. In Fig. 4(b) the 
same comparisons are made for a plane piston radiation 
impedance. 

The Ricatti equation was adapted to the Reac by 
substituting z= z•+jz• into Eq. (13) and separating 
into real imaginary parts as follows' 

z•'= - (1 q- tanhr) (1 -- ka/poCZ2)Z• (18a) 

z2'= - (lq-tanhr)[z2q-ka/2p0c(z•-z2•)]q-kap0c. (18b) 

-' Z "•.•?' SINGLE CELL TRACTRIX HORN THROAT IMPEDANCE CHARACTERISTICS 
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;r•eee .... WAVF' I:•RTURSATION SOLUTION -- 
:_,,:.. I " 

•,c 
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t•c 

$,_.,,.// _w SINGLE CELL TRACTRIX HORN THROAT IMPEDANCE CHARACTERISTICS 
PLANE PISTON LOAD 
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KA 

(b) 

Fro. 4. Comparisons between measured and 
calculated throat impedance. 
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These equations were then solved simultaneously on 
the computer. 

Measurements of input impedance at the throat 
end of the horn, Fig. 4, reveal the presence of reflected 
waves. These reflections imply impedance mismatches 
at the mouth giving rise to resonances in the horn 
structure. One designs a horn to eliminate as far as 
possible serious mismatch over the useful frequency 
range. The question now arises as to the nature of 
the impedance loading the horn. An exact calculation 
of horn radiation impedance even for simpler geometrics 
is a problem which has never been solved. It was 
decided after a few preliminary runs on the Reac to 
limit the choices of z(0) to a hemispherical cap and an 
equivalent plane piston load. The frequency character- 
istic of the radiation impedance for these two limiting 
cases is well known and expressions for z(0) may be 
written 9 as 

z h (0) = poC/(1 q- 1/jka) (19a) 

and 

zv(0 ) = p0c{ [-1 -- 2J1 (2ka)/2ka-]-Jr-i2K1 (2ka)/(2ka) 2 } 
(19b) 

for the hemispherical cap and plane piston loads, 
respectively. 

The general agreement as between the Reac solution 
and the measurements will be noted. The hemispherical 
load, Fig. 4(a), seems to predict about the correct 
number of resonances. However, agreement at the 
lower frequencies is not as good as in the case of a 
plane piston load, Fig. 4(b). In Fig. 4(b) the over-all 
agreement seems to be somewhat better, although there 
do exist discrepancies over finite ranges at higher 
frequencies. 

The agreement as between the Reac and wave 
perturbation calculations is also to be noted. These 
theoretical calculations are for all practical purposes 
identical save for frequencies in the immediate vicinity 
of cutoff. Such results develop confidence in the sound- 
ness of the techniques outlined above for handling 
propagation problems and perhaps may point the way 
toward better understanding and better design. 

Reference 5, pp. 332-33. 

SUMMARY 

Experimental measurements of axial pressure re- 
sponse and throat impedance are presented and 
compared with theoretical calculations neglecting 
losses for a single cell tractfix structure over the 
frequency range ka equals ! to 10. These comparisons 
reveal that the horn radiation pattern lies somewhere 
in between a hemispherical and a plane piston distribu- 
tion. Throat impedance measurements also agree 
reasonably well with impedance values calculated from 
a one-parameter formulation of the Ricatti impedance 
equation over the same frequency range. Both compari- 
sons, however, suggest some departure from the simple 
radiation patterns. It should be noted that the polar 
response data 8 do show a pronounced columniation of 
the sound energy along the principal axis of the horn 
as the frequency is raised, a result which seems to be 
characteristic of radiation from a flexible diaphragm. 

Attempts 8 to improve the off-axis radiation response 
by employing multicellular horn structures met with 
some success. While the uniformity of the angular 
distribution is for the most part improved, some 
sacrifice in smoothness in the axial frequency response 
results. 

Throat impedance measurements on the single-cell 
structure indicate the presence of reflected waves in the 
horn which cause frequency response fluctuations. 
However, axial response measurements a over the audio- 
frequency range reveal a relatively smooth response 
indicating that the reflections are not serious. 

We conclude from this study that the experimental 
findings substantiate the one-parameter spherical wave 
formulation of the propagation over a limited frequency 
range, say from ka equals ! to 10. Taking into considera- 
tion the complicated geometry and the simplifying 
assumptions and approximations necessary to formulate 
a tenable theory, it is indeed gratifying that the 
general characteristics can be predicted as closely as 
these comparisons reveal. 

In conclusion the writer expresses sincere apprecia- 
tion to Professor It. E. Itartig for his encouragement and 
gratefully acknowledges helpful discussions with Pro- 
fessor E. L. Hill. Finally, the writer extends grateful 
thanks to Mr. P. N. Hess of the University of 
Minnesota's Computing Center for his aid in numerical 
work on the Reeves analog computer. 
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