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1 Assumptions of the Free Electron Model

• Interactions between electrons are negligible

• There are no interactions with the lattice.

Essentially, the electrons are flowing freely through the solid. These ap-
proximations can be very accurate in a metal.

2 Fermi energy

2.1 Quantum mechanical model

The possible energy levels for electrons free to move about a volume V are
found from the Schrödinger equation. The energy levels are quantized, and
each level can be occupied by two fermions, one with spin up and one with
spin down.

At T = 0, the energy levels will be completely filled up to a certain
energy, which we have called the chemical potential, or alternatively, the
Fermi energy. At T = 0, there will be no occupied states with ε > εF .
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2.2 An explicit expression for εF

2.2.1 Write εF in terms of nF

For an electron in a cubic box,

εn =
π2~2n2

2mL2

where n2 = n2
x + n2

y + n2
z

We can then define the Fermi energy in terms of n at the Fermi energy.

εF =
π2~2n2

F

2mL2

where nF is the quantum number at the energy level εF . An explicit expres-
sion for nF has yet to be determined.

2.2.2 Find the density of states

We want the density of states for the electrons in the metal as a function of
n, which we will then relate to the energy. The approach is the same as in
the case of photons: consider a three-dimensional n space and integrate over
the positive octant of a sphere. We consider an octant because ni ≥ 0. The
radius of the shell is n and the width of the shell is dn. We consider n to be
sufficiently large that it is a continuous variable.

The number of states between n and n + dn is given by the density of
states per unit n space volume times the volume we are examining.

N (n)dn = 2 · 1

8
· 4πn2dn = πn2dn

Note. The factor 2 appears because there are 2 spin directions for spin 1
2
,

and thus each energy level can support 2 electrons.

The total number of occupied states, thus electrons in the system, is then

N =

∫ nF

0

N (n)dn = π2

∫ nF

0

n2dn =
π

3
n3

F

Thus nF is defined in terms of N . The expression for εF contains the
square of nF ,

n2
F =

(
3N

π

) 2
3
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Substituting,

εF =
~2

2m

(
3π2N

V

) 2
3

Note. • We have used

L2 =
(
L3

) 2
3 = V

2
3

• The only variable parameter that appears in the expression for εF is
the density of the electrons.

2.3 Numerical example

2.3.1 εF

Sodium is the canonical example of a free electron gas. It behaves as an
ideal electron gas to a very good approximation. Thus we consider sodium
to evaluate a standard example of εF in a metal.

Note. Each sodium atom contributes on average one electron to the free
electron gas.

The average mass of sodium is 23 g
mol

. Sodium floats, so its density is on
the same order as that of water, ρ ∼ 1 g

cm3 . The number density is then,

N

V
≈ NA

V per mol
=

6× 1023 particles
mol

23 cm3

mol

≈ 2.5× 1022 cm−3

Note. This is a good number to remember as an estimation of the density of
electrons in a metal in general.

Evaluating the constants in εF ,

εF ≈ 3 eV

Expressing a quantity in terms of other units can sometimes be enlight-
ening, so consider. . .
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2.3.2 TF

Definition (Fermi temperature).

TF =
εF

kb

Note. This is the temperature equivalent to the energy of the electrons in
the highest energy state. This is not the temperature of the material. The
temperature is an expression of the average of all of the energies of particles
in the system. In this case, only one or two electrons obtain the energy level
corresponding to TF , while most of the rest of the electrons are at much lower
energy levels, and hence TF will be much higher than the actual temperature
of the metal.

Evaluating TF in the case of sodium,

TF ≈
3 eV · 1.6× 10−19 J

eV

1.38× 10−23 J
K

≈ 35, 000 K

2.3.3 vF

Definition (Fermi velocity).

εF =
1

2
mv2

F

⇒ vF =

(
2εF

m

) 1
2

Note. • There is the implicit assumption that there is no interaction en-
ergy in the Free Electron Model, so the potential energy of each of the
electrons is 0. Thus all of their energy is kinetic, so the above definition
is justified.

• As in the case of the Fermi temperature, only one or two electrons
obtain the Fermi velocity, while most of the rest travel much slower.

In the case of sodium,

εF ≈ 106 m

s
Note. • vF � c, so relativistic corrections are negligible, as is usually the

case in free electrons in a metal.

• Relativistic corrections may not always negligible, such as in the case
of a electrons in a white dwarf star.
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2.4 Compare to a classical gas at 300 K

The average velocity of a particle in a classical gas of nitrogen is given by
the equipartition theorem,

1

2
mv2 =

3

2
kbT

⇒ v =

(
3kbT

m

) 1
2

This is smaller than the Fermi velocity of electrons in sodium by a factor of
(

T
TF

)
(

mN2

me

)


1
2

∼
1
10

100
=

1

1000

Thus the velocity of an electron in a metal is much much larger than that of
particle in a classical gas.

Note. Changing T from absolute 0 to room temperature will have very little
effect on this ratio. The thermal velocity in a classical gas is lower than that
of electrons in a metal over a broad range of temperatures.

3 Density of states

3.1 An expression for D(ε)

The number of electrons in a small energy range ε to ε + dε can be written
similarly to the case of photons,

D(ε)dε

where D(ε) is the density of states per unit energy range. The energy density
of states is related to the number density of states,

D(ε)dε = N (n)dn = πn2dn

dε
dε

These are simply two different expressions for the same distribution.
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From the expression for ε from the Schrödinger equation,

ε =
~2π2n2

2mL2

⇒ n =

(
2mL2

~2π2

)
ε

1
2

⇒ dn

dε
=

(
mL2

2π2~2

)
ε−

1
2

Computing the term that appears in D(ε),

n2dn

dε
=

2mεL2

π2~2︸ ︷︷ ︸
n2

(
mL

2π2~2

) 1
2

ε
1
2︸ ︷︷ ︸

dn
dε

Multiplying by the π from the original expression for D(ε) and combining
like terms,

D(ε) =
V

2π2

(
2m

~2

) 3
2

ε
1
2

Note. D(ε) is directly proportional to the volume of the box. As the volume
of the box is increased, the spacing between the the energy levels decreases,
so there are more states accessible at a given energy, and thus D(ε) increases.

3.2 D(ε) at εF

Note that εF scales as N
2
3 . Writing εF in terms of a constant A,

εF = AN
2
3

Taking the log of both sides,

log εF =
2

3
log N + C

Differentiating both sides,

dεF

εF

=
2

3

dN

N
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D(εF ) =
dN

dεF

=
3

2

N

εF

Apart from the numerical factor, this is the answer we would expect from
dimensional analysis.

4 Ground state energy

Recall that the Fermi distribution function is a step function that is 1 for
ε < µ and 0 for ε > 0. As the temperature is increased, the Fermi function
smears out about the value ε = µ.

Combine this knowledge with what we have just learned about the density
of states, which scales as the square root of the energy, but is independent
of the temperature. The net population is the product of these two.

For T = 0, the product is the same as D(ε) for ε < ε, and 0 for ε > µ. As
the temperature is increased, the density of states stays the same, but the
distribution smears out according to the behavior of the Fermi distribution
function. The important point is that the density of states is independent of
the temperature.
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