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1. Introduction

A loudspesker & a tansducer that is designéd to
convert electric energy into acoustic energy. 1ty object
1510 generate an acoustic pressure wave', thal resem-
bles the clectric signal as closely as possible,

This thesis disousscs the design and optimization of
an electrodynamic loudspeaker, The designer of such
a loudspeaker can take advantage of 4 theoretical
model, from which the behavior of a specific loudspe-
aker can be predicted. At low frequencies this model
is refatively simple: the loudspeaker behaves asa rigid
piston and the scund radiation s almost equal 1o that
of u plane piston in a rigid baffle {1} At higher
frequencies some deviations from this simple model
oceur: the loudspeaker diaphragm is not rigid any
more, it shows n “break-up™ Also the influence of the
cone depth on the sound radiation must be accounted
for, Both effects exert an inNuence on the steady state
and transient response of the loudspeaker,

Section 2 of this thesis presents a descriplion of a
lumped parameter model of an electrodynamic lood
speaker, in terms of an electric analogous circuit
Such a simple model can be used 10 derive many
propeeties of the loudspeaker and can serve us 2 basis
for furthe: discussions. '

To judge the quality of 4 practical losdspeaker we
need onc or mote figure(s) of merit for its behavior
and sommie cnteria for an oplimum design,

To this end we consider a loudspeaker 25 a transmis-
sion system with the electrical voliage at the terminals
as the input signal and the sound pressure il 2 space
point (throughout assumed to Tie on the loudspeaker
axis) as the output signal. The interrelation between
the input and output signal i quantitatively characte-
nized by the impulse response or (equivaiently) by the
Foutier transform of this impulse response, the com
plex-vilued transfer function, under the assumption
that the loudspeaker can be viewed as a lincar,
time-invanant system.

The impulse responne is defined as the sound pressure
due 10 an clectric Dirac impulse. An ideal loudspes-
ker can be defined such thut its impulse response is a
Dirac unpulse jsell This implees that its acoustic
response iy o delayed replica of the eleotrical oxcita-
tion. As a consequence the magnitude of its transfer
function has a consunt value = & function of
frequency, while the phase response is linear.
However, these properties can be obtained in a
ltmited [requency range only, because 4 noavanis-
hing responde from DC to infimite frequencies is

') The Miameas ear bs Al 000wt (Meaure tucmiver (1, I0)

physically unrealizable Theeefore we define 4 semi-
idealloudspeaker as one for which the abose require-
ments are satisfied only within the range of audible
frequencies.

Particularly the magnitude of the transter function of
a semi-ideal loudspeaker has a constant value for all
audible feequencies. This roguirement fs widely ac-
cepted [1.2) 1 is checked with the aid of a swept sine
wave as an dectrie excitation signal {3).

As for the transient respanse of a semi-ideal loudspe-
aker, many measurement methods and represents.
tions have been developed, forexample the tone burst
respanse and the cumulative spectra [4), ‘buat the
interpretation and the formulation of an opuimiza-
tion' criterion s problomatic. Nevertheless, all infor-
mation about the transient behavior of the loudspea-
ker is contaiped in its impulse response. The problem
is then, how to extract this information from the
impulse response, of (o find a fepresemation thas
allows the formulation of an optimization criterion
for the tranvent behavior,

A new and promising repeesentation for the transient
behavior of 2 loudspeaker is the Wigner distribution
of the impulse response. The Wigner distribution can
be used to recognize some physical processes in a
loudspeaker and to define an optimization critenion
for its trampient behavior. This Wigner distribution Iy
discussed in Section 3

The influence of the diaphragm break-up on the
sound radintion can be predicted by culeuloting the
vibrations of a nonrigid loudspeaker diaphragm
numetically, which is the topic of Section 4

The influence of the cone depth on the sound radis.
tion s treated In Section 5.1, In that seclion we
calculare the sound radation from a radiating surfa-
<z by solving the Helmboltz equation numernically,

The neat point v the necessity to divide the total
frequency range into different parts that sre covered
by separate loudspeakers. This makes it necessary 10
design & loudspeaker for cach scpariate frequency
range and yields the problem of how to combine
different lovdspeakers. To increase the freedom in
combining diffecent loudspenkers into ane system we
spply an clectrical ¢rossover nctwork, The conse-
quences of this netwark for the lregquency response
have been extensively discussed eisewhere [56) A
numencal technique for the optimization of the
crassover network can be found in Ref, (33} The
netwotk may aleo, however, offect the transient
behuvior, and this s discussed in Sections 52
snd A3



So far the loudspeaker has been ussumed to be a
linear system. However, an actual glectrodynamic
loudspeaker shows small nonlinearities that give rise
to distartion companents in its response. An overview
of possible nonfineanties in a practical electrodyna-

mic loudspeaker is given in Section 6. This section
aly0 presents 3 model of the nonlinear loudspeaker
behuvior, which can be used to predict the low
frequency distortion ol & loudspeaker.

Finally Section 7 presents some conclusions,



2. The lumped parameter model of an electrodynamic

loudspeaker

The main part of an electrodynamic loudspeaker is a
vibrating diaphrogm radiating sound inte space. The
vibration of the diaphragm s mamntained by an
dectrodynamic motor, Le. an electrically driven voice
coil in o static magnetic field. The construction of
such a loudspeaker is shown in Fig. 2.1 for a cane-sha-
ped loudspeaker. The diaphragm can be plane-, cone-
or dome-shaped, the 1ast expecually for high-freguen-
¢y loudspeshers,

corm-shaped afer tore suApEnLOn
Catvogn % of 17y
Ayt
—
St
vie ol
Qr e

Fig. 21 Cromasection af an decirodynamic cone-trpe 10udapen:
Aer.

The disphragms is suspended al the outer edge by
means of a Mexible surround or rim and at the inner
edge by o so-called spider, This cotationally symme-
trical spider centers the voice coil in the nir gap of the
magnet system. It has 3 small stiffness for axial and
a much larger stiffness for radinl movements of the
voice coil. The nir gap has a stuti¢ radial magnetic
field, which 15 maintained by a permanent magnet.
The simplified mechanical behavior of the loud-
speaker i that of 4 mass-spring system. The spring is
formed by the outer edge suspension and the ypider’.
The mass is formed by the diaphragm, the voice cail,
the effective suspension moving mass and the mass of
the air load.

Again in a simplifying model, the sound radiation
can be viewed as 3 one-port with a cettain “radation
Impedance™. This view excludes the description of
directional cifects, but admits a correct interpreta-
ton in terms of power: the power dissipated in the
one-part is the eadiated sound power,

The simple mussspring model and the one-port
model of the sound radiation together form the
“lumped parameter model™ of a loudspeaker. It
allows the formulation of some approximate analyti-
cal expressions for the loudspeaker sound radiation
due 1o an eleotrical input voltage.

'F A Ipmdspeaker b wssaity mownted in 2 clowed box with a limited
volume. This seoustie box vomme a1 i bazk of the didphragm
sty us a mechanical spring ur law fregquenciss. In our model this
wpring. which cannot S naghtcted, w imcorparated in (he spader
OTTAR Snmiant

The lumped parameter model of the loudspeaker

imvolves the following assumptions:

« The diaphragm of the loudspeaker s rigad, 1e. the
shape of the diaphragm does not alter when the
diaphragm iy in motion.

- The radiation impedance i equal 10 that of a plane,
rigid piston in an infinite baffle, the influence of
the noaplane shape of the dinphragm on the
radintion impedance being ignored. This is 4 good
approximation ut low frequencies. where the wave-
length 1s much larger than the cone depth or dome

height.

The properties of such 4 tighd diaphragm loudspeaker
can be representod in un electrical analogon, the
sia-cilled impedance-type analogous circuit of Fig.
2217} In the anulogous ¢ircuit the relations between
the elecincal and mechanical quantines are represen-
ted by a gyrator.

T v,
i Pl S EJ
¢ n] .Cl"" t
s
P 1

Fig 2.2, Impeisance-ty pe analogows circu for sn glecurod ynamng
foudapeaker.

The parameters |n the cireuit are:

R, :clectrical coustance of the yoice coil £1]]
L, :inductivity of the voice coll® [H]
T : voice coll current (Al

- induced voltage in the voice coll due 10 s

v
metion vl
B :air gap Nux density m
I :effective jength of the voice coll wire (m)
F : Lorentz force on the voice coil IN]
V@ velocity of the voice coil |m7s)
- tolal spnng constant IN/m|)

K
m, o totl moving mass, without air load mass [kg)
R, : mechanical damping (force over velocity)

[Ns/m|
The mechanical radwation impedance Z _, coan be
written in the form:

zt.l' = RIU‘(‘” + jx'.“w)u 1—'

and 11y frequency dependence 1s shown in Fig, 2.3

) T indictiviey exhitits o weak freguency dependence due 1o
oMy Currents in e rron centra! pile
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Fig 27 The normakiaed rent sad imaginacy parts of tee mechiass,
ol endianon impedance of 2 plane, Srcular and sigid pistoo inan
Infirite baflle versus Meguency. & i the wese number snd u i ihe
radlas of the piston. (Aftar Beruned (1]

The quantity X (@) e is the “air load masy™ m,,
which is constant at low frequencies.

For a plane, circular and rigid piston in an infinite
baffle the following low- and hgh-frequency ap-
proximations are valid [1,8%

|
T e R A .. 20
2¢
2 pocoxa’O)%a fore> @, 23

where g, 18 the density of air, ¢, 1s the sound velocity,
@ t the radins of the piston and @ is the angulur
frequency.

The circular frequency whete the ucoustical wave-
length equals the circumflerence of the piston is the
transition frequency:

W =2, 24
¢

If we add the ir load mass m, (due 1o the radiation

impedanco) to the transducer masses we get the total

moving miss

m,=m -+ m. s

Many propertics of the loudspeaker can be derived
from this simplified model. As an example we denve
an expression for the efficiency of the loudspeaker al
low frequencies. Also we discuss the frequency de
pendence of the sound power response under con
stant-amplitgde electrical excitation,

2.1 The loudapeaker efficlency as & function of
the frequency

The transducer vibratory behavior of. Fig. 2.2, is that
of 4 simple mass-spring system:

10

F':-(R.?)wm,?_i'o*km,)v, 26
jo

The electrical source i loaded by the impedance

(Bn

K
(R_+R_ )+ (m, - :’f)

The influence of the inductivity L, is relatively weak
and will be ignored throughout the remaining part off
this section.

The power supplied by the generator equals:

P BT Rej2) =

YR
a F | R+ (BIV(R, +R,,.)

i L\
w

where Ro means “roal part of™ and | = |7 stands
for the amplitude of the current,
The radiated power is given by

P, = WVV Re(Z,) = "B VR,, 29

Combination of ~F = 817 and Eqs. 26 and 2.9
yields

P,='n -7
(R_+ R'.o)’q» (Qm.-;')

210

It s convenient to Introduce three dimensioniess
variables: the mechanical, electrical and acoustical
Quality fuctors Q.. O and Q¢

i
Q. ™ -E— (k,_}n.)"’. 2n

1
QM - T{*.’"')“’.

the last beny frequency-dependent.

The electrical quality fuctor Qs independent of the
voice coil wire length [ 1t can castly beshown thit the
resiatunce R . equals

a.F
v .

-

Rp= 214



where o and ¥ ore the resistivity and the volume
of the voiee coll material respectively. Rewriting Eq,
212 yields

o-
O;=V e

(k, m)'"7, 218
which i independent of the voice coil wire length.
The resonance frequency of the mass spring system i
given by

k\In
o= ()"

m‘
Using Eqs. 28 and 2.10, regarding Eqs, 29 und 2.13
through 2.16, and assuming Q, . > Q. the following
relation for the efficiency is found:

2.16

P‘
) -P—t
o ' a7
1 1 @ o\t
—NT & | ot o

2.2 The sound powsr response as a function of
the frequency

The next quantity of inteeest is the radiated power
P (o) us a funcrion of frequency, Usmg Eys 27 and
211 through 213, we can rewrite Eg. 2.00 in the form:

2
P.= % Risel). & 21
3
g (2-2]]
s M, @
where @, 15 the total quality factor defined by
..'.. = -1- * L R -'_ 219
Q Q. € Qu

The acoustical guality factor is frequency dependent,
butits value 1s much targer than those of the electrical
and mechanical quality factors and we may write:

' 2.20

which s independeant of frequency.
For frequencies @ < @, the radiation resistance R,
is proportional 1o @' (¢f, Eq 2.2):

R,“ L] °}~ 221
The frequency-dependent part of Eq. 2,18 15 given by

ey

o

el

l. o<W,

and its behavior as a function of frequeacy with
parumeter @, (s plotted in Fig. 24,

Fap 24 Tow fmquency dependence of (he radiated power with
parumens

An actual loudspeaker s designed with w, <« @, and
Fig. 2.4 shows that Q, = 1 is an optimum chofes if
the power response should be flar. This Natness of the
power response 1 due to the compensation of the
decreasing diaphragm velocity (inversely proportio-
nal to the frequency for @ > ay) by the increasing
raduntion reststance (direct proportional 1o the squa-
red frequency for @ < o). This Mat part of the power
response 15 the theoretical operating frequency range
of the loudspeaker:
W, < W < W, 223
Al frequencies below the resonance frequency the
diaphragm velocity is ssymptotically proporional (o
the Irequency and the radiated power will be propor-
wonal to @',

At frequencies above the transition frequency the
radintion resistance i constant and the radisted
power will be inversely proportional to the squared
frequency.

Fig. 2.8 shows the behavior of F_ as a function of
frequency with @, = 1 in accordance with the rigid
piston theory

Pa
lym|

'» ‘2 Mot -Gdflke

>-—

P - -l

- )

- -
Fig 1.5 The power F, 4z 4 funtten of the fooguency
The seoustic pressure eapressed in dB will show the

same frequency dependence as the acoustic power,
provided that the directivity eemuins small.

2.3 The need lor & multiway loudapesker system

A theoretical operating (reguency runge of the elec-
trodynamic loudspeaker s the constant pan of
P @), 18 @< @ < o, The lower liminng frequency
of the range s delermined by the resonant freguency



wy, of the mass4pring system of the loudspeaker in its
enclosure and the upper limiting frequenocy i deter-
mined by the ransition frequency o, (el Eq. 2.4),
which Is inversely proportional (o the lincar dimen.
sions of the loudspeaker.

However, a small lowet limiting frequency and 4 high
upper limiting (requency make contrary demands on

the size of the loudspeaker
The maximum radisted power of the loudspeaker
equaly (see Eqe 2.2 und 2.9
et poostma
B =t Vo == 0.

% &

where ¥, and U, arethe maximum velocity and
excurnion capability of the loudspesker diaphragm,
respectively. '

Equation 2.24 shows that the radiation of a certain
aeoustic power requires o larger diaphragm excur-
nion copability, if the lowest frequency 10 be reprodu
cod is decreased. The extursion capability of an
ncteal loudspeaker is mechanically limived, which
makes demands on the minimum disphragm arex
Such & minimuom diaphragm area, however, puls
limit on the maximum frequency to be roproduced.
Also the loudupesker will show att incrensing directi-
vity il' we increase the frequency. Therefore the
frequency range of a practical broudband loudspes-
ker system is divided imto two or more frequency
parte, Each of these parts is reproduced by a separate
loudspeaker. The low frequency loudspeaker or

12

woofer is characterized by a relatively large radiating
diaphragm surface and a large excursion capability.
The high frequency loudspeaker or tweeter is charac-
terized by o relatively small radiating diaphragm
surface and a small excursion capability. For 2
smouth transition between these two frequency re-
gions an intermediate loudspeaker can be used: the
midrange loudspeaker ar "squawker”

2.4 Discussion

The fumped purameter model is a uaelfel 100l in the

design of an elecirodynamic loudspeaker. However,

it shows same shortcomings:

= The sound radiation above the transition freguen-
cy s much larger than that predicted with the
lumped parumeter model This 8 caused by Lhe
nonrigidity of the diaphragm at kigher frequencies
During movement, the shape of the disphragm will
vary asa function of time (break-up) and theaound
radition will be more complicated than that pre-
dicted from this model (Section 4).

~ The radiation impedance of a2 cope- or dome-
whaped diaphtagm & not equal 1o that of 2 plane,
rigid piston in an infinite baffle. The sound radia-
tion from such a noaplane diaphragm will show
peaks and dips, which cannot be predicted with the
imple rigid piston radiation model (section §).

= Theactual loudspeaker shows nonlincarities, while
the lumped parameter model contuing only lincar
elements (Sectan &),



3. Time-frequency distributions of loudspeakers: the application

of the Wigner distribution™

Chapter 1 contains 3 reprnint of the article

CP. Janse and AJM Kasizer, TimeFrequency Distributions . of
Loudspeakers: the Application of the Wigner Datribution,

JAES, vol 31, no. 4, April 1983,

CORNELIS P. JANSE AND ARIE J. M. KAIZER

Philips Rescarch Labgratories, 5660 MD Einthaven, The Netherlands

The spplication uf the Wigner distethutaon in the analysis of lopdipeakers & discussad
The Wigner distribution of & signal can be interpreted au # distribution of the signal
enelgy An time and Frequency. 11 b 2 badic time- (requency diviribution, and i1 has

st aliow simple physicel interpeetations. Funhermive the Wigaer distnbation
faciliates the mderpretation of other time~frequoncy distridbutions since these datributions
can be expressed ay & convolution of the Wigner Siszibution and 2 weight function
determined by the particulsr distribution cansidered, The Wigner Sistribution of the
impulse response of & foudspeaker cun therefure provide useful information about the
tramslend behavior of e luudspesker, and it etabled s designer to formulete eptimization

crsteria tor this behavior,

0 INTRODUCTION

A loudspesker iy o transducer which converts electric
SNLIgY INLO 3coustic encrgy. An important quantity of
soch & transducer is the sound pressure at o point in
space a4 a function of time as o resalt of the electne
voltage applied o the loodspeaker connections. This
function is cetermioed both by the impulie response
of the loudspenker as well as by the Fourier transform
of this impulse response, the complex-valued transfer
lunction

The tmpubie response is defined as the sound pressure
a1 2 point in space as » function of time a5 the result
of an electric Dirac pulse [1] applicd to 1be cloctnical
connections of the loudspeaker

Although the impulae respome fully determines the
transient behavior of the loudspeaker, this raformation
is not eanily visusiieed by inspection of it, and this
hampers the constitution of optimization criteria based
on this function. To cope with this problem in the past
many transforms or measurements have been developed
for evaluation of the response of a loudspeaker Their
purpose is twolold: to give un msight into the physical
processes that play a role in a4 loudspesker and o de-
termine oprumization criteria for the behavior of &
loudspeaker. A short review of some functions and

* Presented ot the 71t Convention of the Audio En lmms
Soviety. Montroun, Switzerland. 1982 March 2-
November 2, 1942

measuring methods that have been used In audio en-
glocering follows,

1) Imputse Rexponse. The iumpuise response can be
approximated. for a imited bandwidth, by the response
of the system 1o 0 pulye with » finite width 121, (3],
However, as remarked before, it is difficult 10 extract
teievant information or optimization criteris from the
impulse respoose

2) Tranxfer Funcrion. The uansfer function containy
the amplitude and phase characteristics as & function
of frequency. The amplitude characteristic in particular
has been used in order 1o optimize the steady-state
response of it loudspeiker (flar curve). The amplitude
and phase charaeterintics can be determined by meany
of a plowly swept sine wave [4], or dynamically by a
rapidly swept sine wave ar chirp |31, {S]. Also they
can be calculuted from the Fourier tranaform of the
Impilse responie

3) Group Delay. The group delay is defined as the
negative ol the detivative with respect 1o frequency of
the phiass charactetistic of the transfer function {11

w) = — d—'—:::’
The group delay can give an indication of the position
of the scoustic centes of the traslices

4) Tone-Buryr Resporse [4]. The tone-burst response
determines the attach and decay response ol & sysem

13



for a single frequency.

5) Cumslarive Spectea (2], The cumslative xpecirn
determing the uttack and decay responses of the system
for a frequency reglon

6) The White-Noflye Autocorrelation Funcilon. Thes
function determines the transient bahavior of a filer
[6).

In this paper we introduce a new ool in the foud-
speaker fleld: the Wigeer distribution, This distribution
was proposed by Wigner | 7)—an far back usin 1932—
for application in quantum mechanics. It wat “red|s-
covered” by Vilie (8] and de Bruin [9] who hax given
It 2 sound mothematical foundation, and wus tecently
recognized by Clansen and Meckleabriuker [10)-{13]
as being a powesful ool for time-lrequency analysis
of signals Its potentual application for sudio systems
was briefly mentioned by Gerzon in 4 comment | 14),

Because the Wigner distribution of 2 signal can, with
some care, be interpreted as a distribution of the signal
energy in time and frequency, it also has an interesting
apphication In the description and inletpretation of
loudspenker behavior, where both time snd frequency
response play such an important role,

We will show that with the Wigner distribution it ix
possible to inerpret the physical processes occurring
in peactical loudspeakers, and this lcads the way to
formulite criteria for optimizing the trassiant behavior
of foudspeakers in un cicgant way.

The paper is divided into two parts. The first par,
Section 1, gives a briel signal-theorotical review of
the Wigner distzibution and other time-frequency dis-
tribotions. A very detailed description of the signal
theoretical background of the Wigner distnbution can
be found in the references | 10]+] 12], Heze we restrict
curselves to a formulation of the definition and 1he
most important peoportiek, which will kllow the reader
1o usderstund the materinl of Section 2 without need
to go docply into the refecences Morcover we will
give 3 discussion of the application of the Wigner dis.
tribution fo study the transizal behavior of filters and
wthet linear syatems, 1o Section 2 we will elaborate on
the practical appiicution of the Wigner distribution, in
particulat for loudypeaker systems

1 THEORETICAL PART

In this part some theareticnl properties of general
time-frequency distributions are described, while spe-
cific attention s piid to the properties of the Wigner
distribution.

Section |, 1 gives a general ¢lass of time-Trequency
distributions and 4 set of possible properties which can
be wselul when comparing ditferent distributions

Several known time~frequency distributions sre &is-
cussed in Section 1.2 The Wigner distribution appears
to be a basic time-fregquency distnbution, in the sense
that the other distributions can be described ax a con.
veslution of the Wigner distribution end some window
function. The specific properties of the Wigner disiri.
bution are described (o Section 1.3,
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Since most practical applications of the Wigner dis-
wibution will involve digital processing of sampled
daty, a numerical evalustion of this time-frequency
distnbution i required. This comprines the effects of
windowing and sampling, which will be discussed in
Section | 4, In thix scction also 8 dixcussion is given
of the analytic sigoal, whick will be used frequemly
when analyzing loudspeakens with the Wigner distn-
bution. [ Section 1S the relation belween this Wignes
distnbution and 1wn other distributions, often used in
the fleld of sudio engineening, namely, the cumulative
spectrum and the spectrogram, is discusved

Some introductory examples of applications ate given
in Section 1.6, where the Wigner distribations of well-
known filter responses are discussed,

This theoreticel part is mainly based oo the srticles
by Claasen and Mecklonbriuker 110}-[12]. Part | of
their paper | [0] discusses the properties of the Wigner
distridution for continuous-time signals, and the prop-
erties for discrete-time signals are Jiscussed in part 1l
of their paper | 11] Finally, (n part 111 of their paper
|12] the relstion is given betwoen the Wigner distris
bution and several other distributions,

1.1. A General Class of Time-Frequency
Distributions

In order o exiract detatied mformation on the transient
behavior of & tystem {rom its smpulse response, several
differsnt time- frequency distributions huve been pro.
posed. For example, the spectrogram and the cunmalative
spectrum in the nudio field. These distributions generally
have different properties. An efficient way to compare
them systomatically i» o comsider 3 general olass of
time-frequency distributions that includes them all

This general class of time-frequency distribations
wis introduced by Coben [15), 116). Each member of
this class is given by

Clt,w,®) = 2-.; L.J:L eV =NE T
x j(u + ;_)I'(u - ;)ﬂdu!& y (D

where flu) 1t the time signal, f*(&) 18 its complex con
jugate, and & by a vo-called kerne!l function, repre
sentative of the particular distribution function.

In arder to be able to give a particular distribution
an interpretation 25 a distribution of i energy in time
and frequency, the distribution has to possess certain
properties. These propesties prescribe certam comstraimts
on the kernels. When we determioe the kernel of 2
particolar distribution that belongs to the Colien ¢lass,
it is possible to study 115 properties in 2 systamati
way. A suitable set of properties wan proposed by
Claasen and Mecklenbriuker [12] These properties
and the correspording coustraints on the herels are
ltsted in Table |

The first two propertles are very useful, becuuse they
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enabi¢ ug 1o consider the disinbution 4y a distribution
of energy The imogration of € over ull frequencics
at a fived time ¢ is the invtantaneous power at that time,
and the integration of €, oves all times #t a fixed fre-
quency is the energy spestral density at that frequency,
IT either of the propentics is satisfied. then the integral
aver all times and frequencies will equal the total signal
energy.

Propentics P, and Py state that shifts in time and
frequency give cocrespoading shifts in the distribution.
The next property, Py, which is very convenlent from
a practical point of view, is that the distribation Is real-
vislucd

The finite support properties Py and P; are important.
They state thul if a signal is bounded in time or fre.
quency, then its distribution will siso be bounded in
the same Lime or {requency.

The next (wo propertizs can be very useful for signal
analysis. Property Py hay the consequence that the center
of gravity or average in the time direction at & fixed
frequency of the dintribation of the impulse response
of o linear time-invariant dystem 1& equal to the group
delay of the system ut thar frequency. The definition
for the group delay of woch & system can be loond in
the Intcoduction. The property Py states that the center
of gravity in the frequency direction ut a Axed rime of
the distrahotion of a complex-valued signal is equal 10
the instuntancous feequendy. '

The last property, Py, is the positivity of the dis-
teihution for sl times and {requencies. 1t can be stated
that thas property Is one of the requirements that enable
ut 10 inferpret the distribution as an ehergty diatribution.
However, thin property is incompatible with the prop-
ertics Py [12]. The corresponding comsiraint hay
been given in [17] and kas the consequence that € is
a spectrogram with a window fenction wir). Therefore
the only positive definite distribution functions of the
Cohen class are the spectrograms .

It we accept negative values in the distribution, it
can be siked whether the distribution still has the phys.
1cal intarpretstion of an enecgy distrbution, The oc-
currence of negative values ix consistent with Hewsen-
herg's uncertainty relation which protibits an arditranly
sharp frequency discriminstion with so arbitrarily tharp
tume discrimination | 121 Also. we <an never maign
un cxact encrgy vilue to & time-frequency point of &
distribution. We always have 1o satinfly Hesenberg's
unceriainty relution which réquires an aversging over
B Cortain arcs in the time-frequency pline. in geoernl
we prefar the propecties Py Py rather than the positivity
peopaity.

Various distributions oxist of which the kernel satsfies
P—Py 112}, 0 to choose between these distribuiions
we need an additional crterion. Al important criterion
s the spread of the square magmirude of O, @, @)
which i discussed in [ 18] The spread of the square
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magnitude is taken because large alleraating contri-
BUlOns Can OCCar, as can bo scen from the variows
formulas for the disiributions of the chirp (soe Section
1.2) In thal case we xan make oul chowe with the
decand of a mimmium spread of the square magnitude
of Cr, w; &)

1.2 Some Known Time-Frequency Distributions

In Table 2 some known time-frequency distnbetions
with their kernels are listed With the wid of Tabic |
ihe correspanifing properties can be derived, From the
et of properties we can judge the usefulness of the
particular distibution.

As an grampic we compare the represeatation of a
chirp, that is, a signal with & lincarly ingrexsing fre-
quency:

£ = o™= )

where al i the isstantaneous frequency, for the Wigner
and Rihacrok distributions.
The Wigner dustribution of the chirp is equal to [ 10}

Wy, wy = Jadiwe - an) H

This i exactly what we would intuitively expect; a
distribution which is conceatrated around the line
w o~ oot

The roprescatation of the chirp signal obtained by
the Rihacrek distribution can be shuwn to be

In J = aty
CAt, wi @) = \/ = expl) el f) )
while the real part of the Rihaczek distribution gives
™ -tV

Although the real patt of the Rihaczek distribution has
the vame set of properties F-Py 55 the Wigner disirie
Pution, it ks 2 large spruad around the fine w = ar
This can be understond (f we realeze tat & distribution
may have large alternating contributiony and still yatiefy
PPy Therefoee we also condlder the spread S(iy, wy)
of the sguare mugnitude st & point (2, wy) of the (7, w)
plane

Stan o) = I I(“ - 1 v (a - wel')

x |Cir, w: ) dz dw 1)

In U8 0008 shown that this speead of the sguace mas-
nitade is snnimal for the Wigacr distribution. This iy
espectally clear when we compate the jepresentation
of both distributions for the chisp signal 1) can be
concluded that ihe Wigner distriburion is the detter of
the two From Eq. (1) and Table 2 [or Eq. (9)] it can
bre found that any member of (he Coben class can be
considered us a two-dimenstonul convalution of the
Wigner distribanon with a window function
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Cht,m &) = 2—';[:[:“: ~ W -8

x W,(rv. 0 drdt N
where
ol W) = 2!'[ J S, T dE or ¥

This means that any other distribution of the Coben
class can be considered 23 2 spread vesion of the Wigner
dustribution Therefore the Wigner distribution can be
conmdered &5 the Sasic distribation of the Conen class
It 13 often casier to explaimn the properties of other dis.
tributions i terms of the Wigner distribation than di-
rectly from the distribution itsell. This will be clear
when wo discuss the spectrogram and the cumulative
spectra in Sectiom |25

The Wigner distriburion will be discussod funther an
Section |3,

1.3 The Wigner Distribution

In this section the properties that are important fos
the application of the Wigner distribution o loud-
wpeakers will be emphasized. For this reason we shall
discuss only the suto-Wigner distribution and not the
more genersl cross-Wigner diatribution 110]

The Wigner dissribution can be evaluswed buth from
the time sigoal fin 110}

Wilr, w) = L.c"'f (t . 9}'(: - ;_')d‘t (%

and from the Foutiet transform Flw) of the time signal
fin [10).

Wilw, 1) = ;; I‘.e'”‘}(- ‘ ‘i!)

* F‘(u - !2!)40 (10)

The two distributions have the relaton:

Wdr, w) = Wl 1) . tn

The Wigner distnbution hus the properiies Py-Py m
discussed in the precoding secniony. which makes u
possible o interpred it, with some care, as 2 distribution
of the signal encrgy mn lime and Trequency

Anuther remarkable propeny is that the signal fi)
can be recovered from ity Wigoer distnibunion a1 fime
2 by the mverse Fourier transform, up 1o 4 constant
factor [10])

o = 5

] e w4, ) du (1
SO aparr from s constast calibration factoe, 1o infor-
mution about amplitude or phase js fost is the Wigner
distribution. (For camples-valued signals the constanm
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Table 2. Some kuawn time-frequency distributions with thelr kernels and correspoading properibes.
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will be complex.)

Before discusmng the numernical evaluation of Wigner
distributions i iy convenicat to review the Wigner dis-
tribution of a combination of two signaly

The Wigner distributian of the sum of two signals £
and g (4 given by

Weddto W) = Wit w) = Wit w)

4 2 Re{Wy (t, wif (13)

where Re meuns real part of and W, i the cross-
Wigner dinttibution defined by {10}

W owg = L:l""/(l . ;);'(l - ;—) de  (18)

The Wigner distribution of a convolution of two signals
fand g is given by |10]:

Weglt, w) = I Wir, wiWyir = 7 )6t (1%)

and is equal to the convolution of the Wigner distri.
butions W, and W, in the time variable.

The Wigner distribution of (be product of two sigmls
[ and g s given by [10):

Wiglt @) = z.';' I Wls, W0, @~ Q) 402 (16)

und 1s equal 10 the convolation of the Wigner distn.
butions W, und W, in the frequency vanable.

As the lust subject im thas section we wili discuss the
occurrence of negative values in the Wigner distnibution.
It kas boen shown in [24) that the Wigner disuribution
of & function /(1) can only be nonncgative for the whole
(1, w) plane if the function s » Dirac pulse or 2 Gahor
function {for a refereace 1o Gabor functions see |9, p.
2611, that i, = function of the form:

fin = P Rela) <0 un
where o, 8, and v can be complex-vajoed

In Section 1.1 |t was explained that ihe occurmonce
of pegative values in the divinibution is convistent with
Heisenberg's uncertaimy relation which prohibits an
arbitrarily sharp frequency discrimination with an ar-
bitrarily sharp time diserimination [12). Moreover, for
the Wigner distribution it can be shown tha suitable
averages of the distnbution, in accordence with Hey-
senberg’s uncertminty relation, siways yield positive
valges [25),

The question arises whether it 15 3uch an advantsge
that the Wignes distribation gives a much sharper pleture
than the other distributions, as shown in Section 1.2,
In our opinion the answer i affirmative because we
have to realize that the other distribytions always per
Torm & fixed weighting, which depends on the particular
transformation

The Wigner distribution allows one to chaose any
weighting function afterward For example, it in even

possible to weight with 3 function whose dimension 1o
the frequency direction s frequency-dependent and
whose dimension in the time direction is (0 conformity
with the uncertainty relution. This specific weighting
procedure is of importance. for example, when 4 log-
arithmic frequency seale is used.

The practical calculation of the Wigner distnibution
from a measuced impulse response cannot be performed
diroctly!

1) Due 10 the infimits insegration boundsries the
Wigner distribution can only he evaluated analytically
To be able to estimate the integral numerically, the
signal bas to be weighted with a time-limited function,
i vo-called window function win) with the property that
wit) vanishes for Jfj>T.

2) In the preceding sections we only considered the
Wigner distribotion for continuous-time signals. To
perform ¥ proctical memurement, where a digiul com-
puter is used, we have to evaluate the Wigner distni-
bation from a discreteime stgnal

Therefore we bave to window and to sample the con-
Hnuous-time sigonl, the ¢ffects of which will be dis-
cussed in this section. Alsp we will discuss the asalytic
signal, because this ssgnal will be frequently wied for
the application of the Wigner distribution to loud-
poukery

1.4.1 Windowing

The windowed version of & contiruous-time signal
o) i given hy:

M1 = Avdwis — 0 [18)

where 1 gives the position of the window on the time
axis.

Wk Eq. (15) we can evaluate the Wigner distribution
of the windawed signal

Wilr, ) = ,—';J Wy, ()

* Wir = Lw - (19
For each window position we get another Wigner dis-
Iribution. Now consider only the cross sections where
v o= 1 In s case the window is symmetsically located
stound v. and we obtam:

Wilrols, = ziﬂ [ W4, 1)

x W0, w - 0 (20)

The sow Tunction of 1 and w i3 the so-called pseudo
Wignor distribution proposed by Clansen and Meck-



lenbriukes [10), 112)
PWD(r, &) = Wyir. wil.,

This prendo-Wigner dustribution closely resembles the
original Wigner distribotion when it is evaluated with
2 properly choses window fusction, Campared with
the Wigner distribution, the preudo- Wignes distnibution
lacks the properties Py, Py, and Py, Fram Eq. 119) we
see that such a distribution 1s » spread version (leakage)
In the freguency dirdetion of the Wigaet distribution
This spreading is equal to & convolution in the frequency
direction of the Wigner disttibation of the nonwindowed
signal with the Wignés distnibution of the window
function Therefore it will be clear that we do bot have
the finite support property P; in the frequency direction,
It can be shown [ 12] that windowing by means of w
amounts 10 smoothing the Wigner distnibution i the
frequency direction. An important pomnt s that the
pseudo-Wigner distribution does not give a apread in
the time direction as, for cxample, the spectrogram
does, which will be discussed m Section 1.5,

Whea considermg the influeace of a window on the
impulse reaponse Mi) of a caunal system with Aty ~ 0
for ¢ > 1, we see that the pseudo-Wigner distribution,
evaluated with » window length T > 1, will closely
resemble the Wigner distnbution. In that case the
pacudo-Wigner distribution aimost has the properties
Py, Py, and Py, and this will improve further, without
decreasing the time resolution, when we lengtben the
window. The impulse response of 4 loadspeaker slwsys
saltsfies the condrtson (h2) = 0 for r > 1, whete the
window length T > 1) on its impelse response and
therefore we will refer 1o the Wigner distribution in
Section 2, although we sctually mean a pseudo-Wignee
distribation

1.4.2 Discrete-Time Signals

The transition feom & Wigner dismribution of a comy
tinuous-time signal to that of a discrete-time signal is
ot tavind, amd severn! dennitions foe the Wigner dise
tribunon for disorete-time signaly are possible [11],
201, 127 We will use the definition given (n 1)), In
[ 10) 11 is shown that for 2 band-fimued signal [Flw) =
O fur fal > we, | the disttsbution is completely determined
by the samples:

{21)

WinT. w) = 2T 2 6P + BT - 0T

(22)

whote the sample time T satisfien 7 < w/2u, that s,
1, = 3f,, where /, 13 the sample frequency: f, = WT
Eq. (22) is the basis for the Wigner distribution of
discrete-time signals, When 7 = | we obtamn the
Wigner distribution (or 3 dngrete-time signal f(e) with

a unit sampie perod |11}

Win 0) = 2 3 ¢™Yin & &)f*n - &)

. -

2%

for the case of o time-limited signal [t cam be showa
that Wen, 0) s compictoly determined by itv samples
in the feequency domain [11]. When the window w of
the pscodo-Wigner distribution has a leagth M >
2L~ 1. wik) = 0 for [4] = L, then the pseudo-Wigner
dintribution 1s complelely determined by its samples:

L &
PWD{w, ;;) “2 N e aihipin, b,

bo v
F‘o."'.”' ' ‘24’
where

POy = wiliw*(=k)
and

gin, 2) = fin L kY *(n ~ &)

To evaluate the preudo- Wigner distnbution for & ttme
n we can ivgerpret Eq, (24) for M = L — lasa
discrere Fourier transiorm (DFT) with respeot 10 the
varisble & of the fenction p(h)g(n, L), which can be
calculated efficiently usang a3 fast Fourler transform
(FFT) procedure, However, such ot FFT requires u
even number of polnts. This can be salved eaxily by
sdding & zeto to the setics, sothat M = 2/,

The window p can be a known window like a Ham-
ming or 3 Kater window [28], of a rectangular wisdow
for a short impulse reaponse.

A detail & the fact that an FFT is mostly eviluated
with the boundaries O and M~ 1. This 14 no problem
if we realize that:

¢ b N oMt

- e (23)

If we rearmunge the terms p(&igin, &) in Eq. (24) with
respect (0 the & varable from M2 + 1, .0,
M2inte 0, ., M2, =M!2 = ), .., =1, wecan per-
form the FFT, which results in o frequency sequence
fromOwM ~ |iFg 1)

A maote important point is the siimsmg bekavior of
the Wigner dinnbution The periodicity in the frequency
variable of the Wigner distribution is ¥, wiereas that
of ine Founcr srunsform is 2w, Thin difference s csused
by the foctor 2 jo the exponent of Eg. (23). The re-
sunction f, < 4f, in Eq. (22) indicates that we have 1o
use o ssmplisg frequency which Is twice as high us
that used for 3 Founer transfora,

For am analytic signal we can use the usoal sampling
frequency according 1o the Nyguist criterion, hecause
the frequency spectrum of the ssalytic signal vanishes
for negative frequencics, It can be shown [11] that the
Wigner distribution has no altasing contributions for
any signal whose spectrum is nonzero on an intesval
soiallet thun or equal 1o = (Figs. 2 und 3).

In Section 1.3 it was stated that the Wigner disine
bution can be evaluated both from the time signal f(1)
and from s Fourier transform Flw) Withouwt going
usto deturls, we note thal the requirements ot evilusting
a distribation from Fiw) are similar 10 those described
sbove for the evalustion from the time signal fle). Fient
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we have to stan with a time-limated sigmal fin), where
fin = 0forlf > 5. e = 4/d,, then the frequency
behavior of the dittribotion is compietely defined by
samples at distance o, in the Trequency domiie.
 After this 2 bond-dimited signul i3 assumed, and

san

forh = <L -~ Dtk -~ Hdo
= pim Ky ow w + K (%n -

Windowing

fark .= =L = 1jtodt = 1)do
ytk) == ptky  gln, &)
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Nouue and remamber

for k = («L = I)lo <1 da
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Fig: 1 Plaw daagram ol the catcalation of the Wignes di.
Inbution

Fig. 2 Wigner distnibltlon aliasing of & real-valued time
wpnal

X

can be vhown that the ume behavior of the distribution
I8 completely defined by samples in the time domain,
which are of the form W (mw/AM. n), If the requiremem
o = $/d,cannot be Tulfilled, alizsing contributions in
the ume direction will coxult. However, this requiremen)
ts practically always fulfilled when considering s ym-
pulse responsc of n flter or a icudspeaker.

The evaluation of the Wigner distnibution (n 1he fre-
quency domain 4 sometimes mare convement far sn
analytically known system, in particslar when iis rep-
resootation in the frequency domain is simpler than
that in the time domuin. This s the case, for example,
with filier systemn, ‘

A practicd| measurement usaally starts more con-
vemently from the time domain impulwe response. Then
the snalytic signal i delermined (n the frequency do-
main. Again we have 10 bo aware of aligsing 0 the
time direction

143 Analytic Signal

InSection | 4.1 it was shown that the pseudo. Wigaer
distribution gives a spread in the frequency direction.
A spread in the time direction is obtained by using the
unalytic signal sssociated with » realivalued A1) This
i+ 2 complex-valued time signal £,(r) wn which the real
port equals /(1) and the Imaginery part (s the Hilbert
transform of fir). The relatinn hetween the spectrum
Flw) of the original signal f11) and the spectram F (w)

i gven by

Fw), w >0
Flw) = 4 Flw), w =20 _
0, w <90, (26)

In [ 10] 5105 shown that the relation between the Wigner
distributions of fi7) and £01) Is given by

%! Witr ~ i.w)“—"gﬂdw.

Wi w = w >0 (2N

0, w=<n

This relation can be iterpretod s follows [ 10} The
Wigner distritustion of 1he analytic yignal ot & fixed
pasitive frequency can be obtained by fillering the cross
sectinn at frequenty w, which 14 in fact a functon of
timo. with an sdeal Jow-pass filter wath cot-off frequenty
2w

To give an example we consder (he Wigner distri-
butions of the Une wave fir) = coslnagd) and the us-
sociated analyne signal £ = ¢™. The Wigner din-
tributions are

Wer, o = ','lb(u = upl + He + uy)
* 251)con 2]

Wolt,wl = 20de ~ uy) 128
In the Rest cne we oblnin a statlonaty contribistion



it w = =uy and & varying contribution M « = 0,
which is coused by the variations of the instantancous
power, 1n the second case we anly ubtain a contribution
Hw = wy

The varying contribution i the first part can be in-
terpreted as the intesference between the poxitive snd
segative frequencies. This is a more gencral property
of the Wigner distribution. When the Wigner distri-
bution has two contributions in the (7, w) plane, thea
there will be an alternating contribution due ta intes-
ference in between. This will occur for two contributions
i any direction of the (1, w) planc [ 18],

By evalunting the Wigner distribution from the an-
alytic signal rather than the signal itsell, we avoid the
interference between positive and oegative frequencics.
This is important for the application of the Wigner
disinibution 1o Joudspeakers, since the contributions
due to interferances give no additional information and
are disurbing when formulating oplimization criteria.
This is the reason why we frequently uie the analytic
vignsl in the applicstion of the Wigner distribution to
loudspeakers. However, we have to realize that the
finite support property in the ime direction no longer
Bolds because of the sproading-out eftects in the time
direction according to Eq. (27).

1.5 Relations between Wigner Distribution,
Spectrogram, and Cumulative Spectra

The spectrogram o used in the fsld of speech analysis
112). 123). while the cumalative spectra are used in
the designing of lowdspeaters (2] They can be con-
ridered as members of the Cohen class, as was sthown
i Tabje 2. The spectrogram can be calculated from
the shot-time Fourier transform (SFT). The SFT is the
Foutler tramaform of the anginal aignal fir) windowed
with a window funcizon wit)

Flw) = rc"”nc)w(t - Hdr (39)
where 1 indicstes the position of the window on the
nme axis

The spectrogram 5, is obtained by:

(3

and the relation to the Wigner distribution I glven by
11z

Sd1 w) = Fawb

Sdt. w) = zi"af J Wt )

» Wiar —rnom = 1) é=di2 3N
.
i | x
(P, R
- -’. 0 why 2 n

Fig. X As Fig. 2. tut with Un anelytis dgnal Lwithos
dlissing)

From Tabic 2 1 follows that the spectrogram has the
proportics Py, Py, Py, a0d Pyy, that is, the shift propertios
asd the positivity of the distribution. It can also be
sbown [i2] that the relations which give the geoup
delay and the instantancous frequency for the Wigner
distribution now give aa average group delny snd an
average instuntaneous frequency over the length of the
window. Thiy means that the spectrogram can peovide
usefu] information for tignals that are almost statlonary
over the window lengih. Since the impllse response
of a loadspeaker is not statlonary at all during the win-
dow Jength, (( Is generally better 10 use the pseodo-
Wigner distribution Instead of a spectrogram in the
ficld of Joudspraker dexign (see alvo Section 1.4.1),

Comparning the pseudo-Wigner distribution with the
spectrogram we see that the fitst distribution does not
haye the positivity property, but it has the propertics
P, and Py. From Eqs. (19) and (31) it i+ clear that the
spectrogenm docs not have the finito support property
in the time direction while the pscudo-Wigner didtri-
bution does huve this property. Both the preudo Wigner
distnibution and the spectragram are spresded versions
of the Wigner distribation, bat with the pseudo-Wigner
distribution the spreading 14 only in the frequency di-
rection. When the frequency resolution is increased
(by increasing the wisdow length), thy time resslution
dectenses i 1he spectrogram This is not the case for
the pycudo-Wigner distzibution, where we are free 10
inceease the frequency resolution without affecting the
time résolution.

The cumulstive specira {2} wan be divided into a
decay and an attack spectrum. These are in fact special
cases of the spectrogram. and the points in 1the cu-
mulutive spoctrum heve values which ure equal 1o an
integral over & cross section of the Wigner drstributrons
of the windowed sigrals. The difference 1 the fact that
the window is & step funcrion U<k

T=0

%0 (32)

Ui = [ (',:

The kernels and properties of the cumulative specira
can be found from Table 2, and it s clear that the
derivative of the decay spectrum (with respect 10 the
vartable 1 which indicates the posstian of the window
o the time asisl is equal 1o the distribution of Levin,
while the derivative of the attack spectirum is equal to’
the distriburion of Page. The ser of propesties of theie
distributions s himited

When evitliesting the cumulative speatrs numetically
(Lis not possidle to cxtend the integration boundary to
infimity Theretore the impulse respoose i not weighted
with u sep fonction but with u finite window. In that
case the spectrogram, the camulative decay, and the
cumulative attack specira only differ In the time defl-
nition. In Eq, (31) the relation between the spectrogram
and the Wigner disttibution i given, where the time 1
indicates the center of the window. With the curmulative
spectin the time definition is shilted over hall the win-
dow loepth, The relatian between the Wignes disthl-

2



bution and the cumalative decay apectrum in:

St wy = JF ()l

= a5 [ Wl -

Wl - - a) dv dft (3%)
whete T indicates the window leagth, For the attack
spectrum thin celation i

Sdt, ) = [F (W)
1 w nw(
= 2;'J‘ >, ‘(TO ) - L '

- Wl - 0)drén 38

In 3 practical cane the leagth of a window used with a
spectrogram bs eelatively short, while the window length
for 2 cumulative spectrum s relatively long.

Since the cumulative spectrum |s wied frequeatly for
the evaluation of losdspeakers, we will discuss another
aspect of the cumulative specttum. In (2] 3 s shows
that the cumuiative spectium can be intorpreted ays the
square magnitude of the system response Lo 4 starting
ar 2 stopping sine wave. If we have an input signal of
o lincar ime-invariant system of the form e™U(1), where
U(1) is the stop function, then the response of the systom
i given by,

AN = ! e~ -~ 1)) Uy

= c"‘J e ™0 — Tigivdr (35)
where gir) o the impulse reaponse of the system
From Table 2 and Eq. (35) it i clear thau
Fowf = lganf (36)

Thus &t any frequency ay, the uttack spectrum is the
square magnitade of the response of & starting slnusoldal
oscillation with frequency wg. However, we have to
realize that when the sinusoidal ascillation stans, this
Is associated with 3 teansient phenomenon which has
eppreciabile conributions at frequencies otherthan w,,
The Wigner distribution of the input signal is given
by

»
e gin| Hw ~ ni,
= oe YN He waolt

w
Wi, w) = (>0 (37}

0, 1< 0

For small values of 1, W, has a large spread i the
frequeacy direction. This mesna that for small ¢ the
camilative spectrum will mave appreciable contnbutions

prd

focated |n the stopband ol the system

A similar discussion can be given for the devay spec-
trum. We note that these sproads are in conformity
with those of the distributions of Page sad Levin, which
are not band-limited either. The above uspects will be
clearly vivible when we evaluate the cumulative spee-
trum of a band-pads Hlter (Soction 1.6) or a Toudspeaker
(Section 2.3),

From the above discussion it will be clear that we
peefer the Wigner disinbution over the cumulative
spectrum in the field of loudspeaker engincesing.

1.6 The Wigner Distributions of Some Filters

In this soction, which is in fact an introduction to
the zpplication of the Wigner distrnibution to loud-
speakers (Sectios 2), Wigner distributions of some filters
will be discussed  All caleulated disiributions are
prepdo-Wigner distributions, but we will nevertheless
call them Wigner distributions in this section, since
the Wigner distribution and the pseudo-Wigner distei-
bution are almost indistinguishable forthe signals used
(see Sectivn |.4).

In Fig. 4 the Wigner disribution of the impuise re-
spomie of & Butterworth low-pass hilter of order § iy
shown, The cut-off frequency (=3 dB) is | kHz. Fig
8 gives the corresponding contour plot. The group delay,
the frequency charactenistic, th is, the magnitude of
the transfer function, and the impulse reaponse of this
flter are shown in Figs. 6-8.

It can be ween that the Wigner distribution has a
mountain ridge paralled 10 the frequeacy axis and, at

-
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Fig 4 Wigaer dbsriounion of & lowpass Batterworth filter
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the cut-off frequency, a ridge paraliel to the time axis

This latter ndge will be called “ear™ in the rematning
part of the paper. The distribution s only given for
positive frequencies 1ince it 18 symmetric with respect
to the time uxis for real-valued signaly. The mountain
ridge 15 delayed with respect (0 the ime of excitation,
and this delay i in conformity with the Bode relations
[38] Bode showed that this delay i inversely propor-
ticna) Lo the cut-off frequency snd proportional to (the
slope of the filter. The fatter is clearly visible in Figs.

9 and 10, where the Wigner distribution |s shown of a
corresponding filer of arder & with the same cut-off
frequency,

We observe also that the lengih of ihe ear increases,
whick agtees with the fact that the group delay of the
fitees mt the cut-off frequency increases when the ueep
ness of the filter slope Ingreases. The group delay, the
frequency characieristic, and the impulse respoase of
this flter ace shown i Figs, 1112
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The altemanting comnbutiany in Figa 4 and 9 are
intorfcrences between (he cars af positive and negative
froquencies, s discussed o Section | 43,

From the previous discussion if is clesr that we have
10 1ake care when determining the delay of, for expmple
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a woofer or tweeter loudspeaker with different anti.
aliasing filters. These antialinsing Klters introduce an
additional delay, which can disturh 3 proper interpre-
tation of the delays.

In Figs 14217 the Wigner distribution, the group
delay, the frequency characteristic, nnd the impulsé
tesponse for 2 Batteeworth band pass filter are shown;
Thus band-pass Alter is @ series combination of a low-
prass Slice of arder 10 with 4 cot-ofT froquency of 4000
Hz and s high-pass filter of order 2 with a cut-off fre-
quency of 1000 He The ear ut the bigh frequescy cut-
off is comparable with that of the low-pass fiiter shown
in Fig. 4. However, the farge number of interferonces
make it difficelt (0 interpret the distribution,

Fige 1% and 19 show the Wigner distribution of the
analytic signal of the same band-puss filter (F(f) =
0focf < 0)

1t b5 clear that the interferences between positive and
negative frogeencues, which impede un mterprotation
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of the distribution, have disappeared

The length of the cars is proportional 10 the flter
shape on & linear frequency scale, For sudio purposes
filters are gencrally used which have i certain decay
per octave For filters with the same decay por actave
the length of the cars will increase with decreasing cot-
off frequency,

The magmtude of the analytic signal can be mterpeeted
us the envelope of the onginal signal [29), and w can
be shown [1] that the envelope al the response of »
symmetnic band-pass filter equals the impulse response
of u low-pass filier with a cut-off lrequency equal 1o
the bandwidth of the band.pass fiter. The distndution
in Figa 18 and 19 indeed resembles the distnbation
of a low-puss lter shifted in the froquency direction
The distributions are not exacily the same because we
did not use a symmeteic band-pars filter.

In Section 1 4.3 o was shown that for esch w the

v}w 1w 3L
n‘ 16, Magnitude of the transfes functinm of filter of Fig
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Fig. 18 Wigner distribution of flrgs of Fig 14 evaluated
with the Mualytic signal.



Wigner disteibution of the analytic signal is related 1o
the Wigner distribution of the original signal by u con-
volution ity the frequency variable of the Wigner dis-
tribution with an deal low-pass filter with cut-off fre-
queacy 2w, Thin means that we get spreading oot
effects, cepecially at low frequencies. This becomes
very clear in the cantour plat of the Wigner distribation
of the analytic signal of a low-pass flter (Fig. 20).
Even at times ¢ < 0 the distribution gives nonzero
contributions; whichk are such that the group delay is
conitant i the passband of the filter. (Contributions
for t < 0 can occur since the Hilbert transform used
to determine the imaginary part of the signal is 3 non-
causal transform. )

The filier used in Figs IR and 19 is 2 minmum-
phase basd-pass fiter. It is important o note that &
lincar-phase filter, which has a constant group delay,
also has ears in the time ditoctinng, as cun be seen in
Figr. 21 and 22. The group delay, the frequency char
scteristic, und the impulse response of this filier are
shown in Figs. 2325

The next caample 1 this section 1 the combination
of two Buttcrworth band-pass filters with a slope of
order n = 3 in the crossover frequency region as de-
scribed by Linkwitz [30]. This combination has & pass-
band from 500 1o 4000 Hz, with a crossover st 2500
Hz. The low-frequency band-pass filter in a scries
combination of o band-pass fiker of order n = 2 wt
SO0 Hz and a high-froqueocy rolloff of order m = 10
at 4000 Hz followed by a third-order Butterworth 2500~
Hr low-pass filter, The high-frequency band-pass filter
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i & mimilar combination of the same 500 4000.Hz
band-pass und 2 third-order Bunerworth 2500-Hx high.
pass filtee If we connect one of the two filters in an-
tiphase, then the group delay is smuller in the passhand
than if we connect both filters in phase, as shown by
Lickwitz [30], The differences are not very large.
Howevor, the impulie responses wre quite different,
bt these differences canrot be interpreted castly. What
happens ¢an be scen mote clearly in the Wigoer dis-
tnibution of the two combinations, becaiie now we cin
study the attack of the respome in more detml, Coar
necting the twe Alters in phase gives an sdditional delay
of the dintnibution around the croasover froguency (Figs.
26-34).

Tha group delay ix oftea misused. tn [ 1] was shown
that the group delay has 2 proper interpretation as the
deluy of a narcowsband modulated vignal. The Wigner
disiribution (asdicatzs when the group delay provides
useful information for a hroadband system. For the
harsl-pass this is the case ot the mounmain ridge, and
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Fig. 26, Wigner distrshution of u third-order crossover. The
two band, pave Kirees are connrcted in phave

|1 o p— o

it (7 =\
= S\ Y
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I8 questionubie at the ¢ars bocause the group delay
does got give information on the spreading-out effects.
An exampie (e the linear-phase filter with 4 constant
group delay in the paasband. The conutam) group deluy
tolls us notiting about the concentration of the eacrgy
around this time. It is clear that in the regions of the
coll-off frequencion the energy in mote apread (in the
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time ditection) than in the passhand region. The group
delay has a constant value only because the energy s
spread symmetnically around the delay ime. The inter-
pretation of group delay as 3 deluy of the signal energy
is certainly wrong in the stopband, because there even
causal systems can possess a negative group Selay [10],
(3]-133)

Auvother example of 1he group delay providing wrong
information is the case where we have two spaced time
responses, for example, a reflection. The center of grav-
Ity mnothe timre dhrection of the Wigner distribution,
which equals (Table 1) the group defay of the total
signal, lies between the two rldges when the size of
the ridgens iy of the same order. Thus the value of the
group delay gives no information about the delsy of
the separate contributions.

In our opinion, the Wigner distribution gives mote
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Fig. 33 Magnitude of tranafes funotion of Kiters of Figy. 26
andd 30

and better information abaut the time delays of 2 yystem
than the group defay,

To conclude we give a compirison of several time-
frequency plots of other disinbutions of the impalse
response of one and the same Butterworth 5004000+
Hz band-pass filter with » low-frequency tolloff of order
3 and a high-frequency rolloll of order 10 [Figs, 15~
37). The cotrespoading Wigner distribution is given
it Fig. 43

We note the fact thit the cumulilive Jecay spectoum
alto hay sppreciable contributions in the stophand,
which agrees with the discussion in Section 1.5,

2 APPLICATION OF THE WIGNER
DISTRIBUTION TO LOUDSPEAKERS

In Secuon | some fundamental issues of the Wigner
distribution were discussed. M was shown that this dis-
1sbution can b interpreted, with some care, us a dis-
tribution of the signal energy (n time and frequency,
The Wigner disiribution can be considered an 4 basic
Hme-frequency distribution. Since the Wigner distri-
bution compared with other distributions 1y optimum,
Itcan more easily be interpreted than other distribulions,
Also, the propertics of other distributiony can be sludied
conveniently using the Wigner distribution. The neg-
ative values that occur in the Wigner distribution were
shown 10 be | sccoedance with Helseaberg's uncertuioty
relation, Averages of the Wigner distribution, taken
with & weighting function whose dimensions are i
accordance with Heisenberpr's uncertainty relation, sl

Fis 35 Real part of Rihavzek distribunon aof & Buncoworth
band-pass Ritee

Fig 36 Real part of Rihaceek distribution of s Buttes worth
Band-pass filier evalusted with the apalytic wgnal
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ways yield & positive value [25]. b was shown that »
transform that has posstive values at all time and fee-
quency points in is disribution lacks some vary im-
portant properties.

In order 1o avaluute the Wigner disirthation numer-
ically it was secessary to introduce the pseudo-Wigner
distribution (10], (12]. Because thin dintribution uses
& weighted version of the impuolse response, it is possible
(o resiricl the integration 10 an mterval with finite
boundaries.

The pscudo-Wignor disiribation wan found 10 be a
frequency-speesd version of the Wigner distribution.
However, the pseudo: Wignor distribution closely ro.
sembles the Wigner distribution when the system under
sady has a rapidly decaying impulse responne sod when
& witable (sefficiently bong) window is used. This s
nesrly always the ciuse for the impulso responscs of
practical filters or Joudipeakers, For that resson, we
need not bother to refor to the Wigner distribation in
this part of (he paper, when we sctuzlly mesn the preudo-
Wigner distribution

In this section we discuss the application of the Wig-
ner distabistion to loudspenkers. Jowill be shown that
the Wigner distribution ennbles us 1o formulate optl-
maation criterin for the nime-froquency (rransient) cee
sponsc of a tranaducer ora combination of transducers,

In Section 2.1 the application of the Wigner distri-
butiodn to the eviluation of 2 single tramducer is dis-
cussed, and i Section 2.2 2 similar discussion about
cambinationt of transducers s given. Is Section 2.2
we will also devole somme atention (o the role of the
geometrical mounting of the single transducers in the
Ioudspeaker box and 10 the mfuence of the crossover
on the time-frequency behavior of 2 single transducer
and a combination of transducers

In Section 2.3 we discuss wome points concomming
the practical use of the Wigner distribution and i Sec
tion 2.4 we compare the Wigner distribution und the
cumuiative spectra that are commonly used in the field
of loudspeaker engineering. Finally Section 2.5 contains
a concluding discussion of the rosults obained, and of
perapectives for future teaearch.

2.1 Application of the Wigner Diatribution to the
Evaluation of a Single Transducer

A defimibon of apdeal transducer could be: A rans-
decer iy an sdeal transdocer if S impulse response is
o Dirac puise. This meana that its frequency charac.
teristie hus o conetant salue for Wl frequencies and the
acoustic responne will be s (delpyed) copy ofhe elecine
signal,

However, this definmion {5 not very realistic, since
a transducer with an infinitely extended frequency
claracteristic or with a response at direc! currsnt Cannat
be physiwally replized. Therefore, amore practical def-
mition iy the following: An “ideal' iramducer is one
of whick the time frequency behavior resembles thal
of a smpoth band-poss filter

The type of filrer that we take Tor the prototype o

2%

somawhat urbitrary, but the smoothness condition hints
toward Bullerworth or Bessel filters. (The Wigner dis-
tributions of these two types of fillees are dimifar for
low-order filters.) The location of the rolloffs of the
filter wnd their shapes can be defined in detail, and the
filter has 3 Mat response o the passhand.

The compartson with such an “tdeal”™ band-pass filter
gives us 4 mansgesble criterion foc the time-frequency
brhavior of a transducer and allows an casy visual in-
s -

In view of the preference far the Wigner distridutios
discussed In Section |, this means that—in the ideal
shisation—the Wigner distnbutions of this filter and
tramsducer should be very similat,

The Wignor distribution of the impulse sespone of
2 Butterworth Band. pass filter is shown in Fag, 38 This
flter his 3 low frequency cutoff at S00 He with 2 slope
of order 2 and £ high frequency cutoff at 4000 Hz with
a Mope of ordee 10, Figs. 39-42 give the contour ploy
of Fig, 3% and the group delay, Ihe frequency char-
agteristic, and the impulse cesponse of the same Blter

The Wigner Qistribution was evaluated forthe analytic
signal (xec Section |.4). The time-frequency gicture
of the bamd-pass Nites conteins 3 mountain ridge parallel
10 the frequency axis and two ears (ndges) panallel to
the time axiy located at the cut-off frequencies, This
menns that the signai encrgy located around the fran.
sition bands of the fiteris spread in the time direction,
The alternating (positive and pegative) contnbation
are the interfercnces between the cars as discussed In
Section | 4.3 The integration over all times at 3 fixed
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Fig 37 Camulmtive decay spocirum of @ Bulterworth bandg.
pass filter

Flg 38 Wigner distribution of wn " l0eal™ hasst prass filtes
gvalvared stk the anaiytic signal



frequency is cqual to the energy spectral density |Fw)|’
The center of gravity in the time direction is the group
deluy 1) (Table 1) The plots of the Wigner distei-
bution show that the group delay at the transition bands
18 larger that in the pass-band, which is a well-known
fact. The length of the can increases if the steepness
of the roll-off slopes increases, us can be seen in Flg.
43, which is a filter with the same cut-off frequencies
an that of Fig 38, but with a Jow-frequency slope of
order 3. Toe group delay, the frequoncy characteristic,
and the impulse respotise of the same filtes are thown
in Figs. 42-46 ' ‘

The length of the ears is proportional to the stecpness
of the filter slope on a tinear frequency scale, The filters
that are used in the field of audio engineering have &
stecpness defined as 3 number of decibels per octave,
that is, on a logarithmic frequency scale, The length
of the ears decreases as the corresponding roll-off fre-
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quency of a filler incresses,
For the comparison of the ume-frequency behavior
of u transducer with that of an "ideal" band-pasy filter
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it i helpful to distinguivh some typscal devintons from
the ideul time-frequency behavior observed in actual
transducers:

1) The occurrence of additionsl cars that ars nol
located at the cut-off froquoncios

2) The mountain ridge not being parailel to the (re-
guency axis, which mesns that the acowtic centor of
the trunsducer shifis with freguency.

1) The accurrence of reflections in the time dircction,
for instance, refiections mside the cabinet o¢ diffraction
effectn at the edges of the trensducer or the cabinet,

Let us comsider vome prectical examples of (hese
typical devimtiony and, for comparinom, an exsniple of
an almost (deal time-frequency behavior of & tweeter
loudaspeaker

1) Additional Egry. Fig. 87 shows the Wigner dis-
tribution of & woofer cone loudspesker. The additional
cxrs are clearly visible. Those ears are the ringing cen-
inbutions, in the time direction, of the bending rewn-
nances in the break-up region of the loudspeaker. These
are typical of cone {pudypoakers | 34)

Figs. 48 and 50 give the Wigner distributions of two
almost identical woofer Joudspeakers. The woofors are
made of 4 different cone mutenial with a different ma-
tenal damping. The log magnitede of their transfer
functions are shown In Figs, 49 and 51

The iafluence of the damping on the beoding reso
nances is clear. Although the differences of the reso-
nance 10 the two loodspeakers alyo manifest themaelves
in a different transfer fanction, we maistain that the

Aane "aae!

Frg. 45 Impulse reapanse of Hlwr of Fig. 23

Fig. 47 Wigner disttibution of & woofer gose loddspeuler
evaluaind with the snalytic seygnal
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effect s much more cleirly visible in the Wigner dis-
tribution, The woofer with tiie higher material damping
Bas a ringing contribution (ears) that detays more tap-
idly; as can be expecied

A further exsnple of the occurrence of additional
can is the ume-frequency behavior of o dome (wester
Its Wignee distoibution |s showa th Fig 2. The car ot
high frequencies % oot & normal rolloff ear; u1s size
Is toa large 2t these frequencles |1 14 caused by the
ringing of the first membrane resonance of the dome
[ 4] and 1 typleal of dome loudspeakens. Dome tweetors
with & soft dome materigl (rubber-impregnated textile
matesial) have a mote enpidly decaying eat at this fre
quency than dome tweeters with @ hard (polymer) dome
material The larger matetind damping of the solt dome
Is the reason for the faster decay

2) Erequency Dependent Acowstic Center. Fig 3,
showing the contour plot of the Wigner distribution of
# squawkes loudspesier, s an example of a frequency-
dependent scoustic center. The acoustic center of this
transducer shifts at the high-frequency end of its pase-
band. This means tha the crossover frequensy botwees
squawker and tweetes has to be shifted to lower fre-
quencies in order (0 get ko optimum combination. This
has mdocd been dane in the practical applications of
thik squawker, presumably as a result of |istening tests
Huwever, this sffect testricts our freedom in the design
of n lovdsperker combimution,

SyReflections i the Time Direction, The aeatexample
is 8 tweeeter loudspeaker which & incorrectly mounted

7 1 er srributicn of # dome twenter calculaed
-uh mc m tic vignal

-
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Fig. 43 Contour plot af the Wigner destribution of 3 sguawher
loutspeakes with & Lroguency-dependant scouttis canter.

in & baffic. The front side of the tweeter protrudes from
the baffle, which causes a (diffraction) reflection from
the edge. This reflection can be seen in the cantaur
plot of Fig. 54,

3) Lenwdspreaker with an Almost Ldea! Time -Frepuency
Behavior. The lust example o this section s the Wigner
distribution of the impulie response of & pewly devel.
oped tweelesr loudspeaker, which s shown in Fig, §5.
Fig. 56 gives the conwur plit of this Wigher diair
bation, and the group delay, the frequency characier-
e, nod impuise cesponse of this tweeter ate shown
in Figs. §7 -39, The time-frequency behavior is almost
mqual 4o that of an “ldeal™ band-pass filler, which can
be found in Fig. 38. The result of this nearly ideal
situgtion i cannderable freedom In choosing the
ceessover frequency and the Glter. It also may be con.
cluded that further development of this tweeter can
hardly improve its transient behavior

. Fraguency (emi| A
e

Flg 54 Contocs plat of the Wigner disttibutian of 3 tweseter
loadapeaker with an improper (profreded) mountiag

Fig 3% Wigser distzibutian of & newly déveloped rweeter
toudspeaker
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Fig 6. Comtour plot of Fig 3
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From these examples it can be concladed that the
Wigner distribation is a powesful tool for the evaluation
and optimization of the time-frequancy beliavior of a
single ransducer. The Wigner distribution enables ss
therefore to formulate optimization criteria for the
transicnt behavior of the transducer. Deviations from
this ideal behavior, caused, for example, by diaphragm
resonances or by unwanted reflections, can casily be
identified and examined. Furthbermore, the Wigner dis.
tribution gives impartant information on the position,
us & function of frequeacy, of the acoustic center of
the transducer.

2.2 Application of tha Wigner Distribution to the
Evaluation of a Combination of Tranaducers
The combirauon of different transducers in 0ne sy»-

tem intreduces two new prohlom arcas where the Wignes
distributian can be of help: the geometrical separation
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of the transducers and the excitation of the rransducerns
via an electric crossover network . Staming from a single
ident transducer it s clear that the optemization cnterion
f{or a combmation of transducers i o time-fregaency
behavior (Wigser disteibution) that equals thar of 2
uingle "ideal"™ (smooth) band-pass filter. This meam
that the mauntain rdges of the diffecunt trannducers in
the Wigner distribution have (o be sligned in the time
direction. Also. the ears of the various transdocors in
the crossover frequency region have (o cancel each
other In pranciple this can be achwyed. since the Wigner
distnbution of the sum of two wansducers equaly the
wum of the Wigner distributions of the separate trany
ducers pluy an sdditional contribtine, the cross-Wigner
dustribution of the two transducens [Eq. (14)) With a
first-order crossover it s indeed possible 10 obtain »
complete cancellation of the cars. To optimire the time-
frequency hehuvior of 2 combination of iraesducers we
have the following degrees of frecdom;

1) The crossover frequencies can be shifted.

2) The roll-off sloper in the grossover Frequency
regloms cun be adjusted

3) The ampliude lovels of the signals of the ditferpm
transducess can be adjusted.

4) A tme delay between different iramducers can
be obtuined, for example. by choosing smother geo-
maircal mountng.

The range over which quantities can be vatied de-
pends, among other things, on the regiony ur which the
separate transducers can be considered 1o be an adequate
approximation of a tand-pass filier.

Somie typical deviations from the “idesl” bandpass
behuvior of the combinition of transducers are as followy
(other deviations are of course the deviatians of the
separute transducers):

1) The transducers are not aligned in the time di-
reeton .

2) The crossover petwork shifts the acoustic contery
of the individun! transducees

3) The amplitude fevels of the signals of the differemt
tranaducers are nol egqual 10 each other.

Let us consider now some examples of these tymcal
deviations, and alxo have s Took at the Wigoer distri
bution of a systen whose behavigr i approsimately
lingaz-phase.

1) bimproper Allgnment. An example of as improper
alignment i given in Figa. 00 and 61, where the Wignet
dustributions of & wooler and ¥ squawket loudspeakes
are shown.

Thas improper aligement can eanily be corrected by
ihifting & transdocer in the time direction, for example,
shifting mechanically In the ditection paralie! to the
axis of the transducer. It is clear that especinily the
contour plot of the Wigner distribution is # powerlul
tool for investigating the influence of 1me-delay din-
tortion, also commonly known st phase distortion. (A
discussion of passe distormon can be fopad in (33),
(351, and [36] )

1t is worth remarking that the nime delays wre not
pecessarily cauned by differences of path leagth or by



an incorrect mechunical slignment of the diffecent
transducers. Bodo has shown |38] that any high-fre-
quency attenuation gives a time delay of the low-fre.
quency components. This time delay Increases when
wo decreate the cut-off frequency or Increase the
stecpacss of the attenuation curve. It means that a woofer
always has & relative delay when wo compare |bs time-
frequency behavior to that of a squawker or a tweeter
loudspeaker

It i important to pay attention to the influence of a
crossover filtor, which causes an additionsl delay, The
choice of 3 crossover filter also has consequences for
the mounting of & transducer,

Agother filter which causes 3n additional delay is
the antialisaing filter that was used when we measured
the smpulss response of the transducer. This complicates
the determination of the relutive time Jdelay of two
transducers whose impulse responses were messured
using different antiallasing filter.

2) Influence of Crozsover Filter. An example of sn-
other deviation from the deal time-frequency behavior
which 18 caused by & crossover filter is shown in Figs.
62 and 63, The Wigner distribation of the wngle
squawker loudspeaker resembles that of an “ideal”™
band-pass filier, but the combination with 4 crossover
filter causes large deviations at the low-frequency side
of the time- frequency response. The response in the
time direction of these frequencies consists of three
separate contributions,
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Fig. 0. Contour plot of the Wigner distribution of & woofer
lowd . The wooler in mounted in the same batfic w
the wuawker in Fig 61
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Fig. 61, Contour plot of the Wigner Elstrsbution of o spuawker
loudpeaker. The squawker it moanted iv the tame haffle ay
the woofer in Fig.

3y Transdacers with Different Levels. Although the
Wigner disteibution of the combination contains the
miormation conceming the fevels (the integral of the
Wigaer distribution over ull times at a fixed frequency
equals [E(@)*), ¥t is not always easy 1o retrieve this
information from the distribution. The easiest way to
check the Jevels i to determine [F{w)| directly from
the impllsc response.

d) Linear Phase System. The previoos exsmples of
sinple transducers or combinations of transducers were
slt mimmum- phase sysizms, However, it is also possible
to design a combination of transducers 38 an approx-
imation of s linear-phase system Fig. 64 shows the
Wigoer distribution of a combination designed us &
linoar-phase syntem (notc the roversed nme direction)
The corresponding contour plot is shown e Fig. 65
The curs atant at earhier times than those of & minimum-
phase system as was expected, but they are not paraliel
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Fig. 62. Comtour pist of the Wigaer disttibition of
wwawker,
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Fig. 63 Contour plot of the Wigner dintribution of the saine
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to the time axie. In Section 2.5 we will discuss the
usefuloess of a lovdspeaker system designed as o linear-
phise system.

Agaln, these examples indicate that the Wigner dis-
tribution can also be a powerful tool Tor optimizing
the time-frequency behavior of 4 combination of trans-
ducers ot 2 loudspesker box. The Wigner disteibution
gives impottant information on the time allgrment of
the individusl transducers and an the influence of the
crossaver network on the transient rosponae.,

2.3 Some Remarks Concerning the Practical
Use of the Wigner Distribution

1o this section we will ke some remarks concerning
the practical use of the Wigner distnbution which would
not have been relevant in the previous sections.

The first remark concems the measuremeant of an
impulie revponse, which is necesaary for the evalustion
of the Wigner dustribution. Unfortuaptely a Dirse pulse
cannot be physically realized. lestend we ewcite the
system with a pulse having & finite widih, The response
of the system to this pulie has a close resemblance to
the true impulse responso of the system for those fre-
quencies where the Fourier transform of the pulse has
(almost) a constant magnitude. The extent of thiy fre-
quensy region ta highdr frequencies is invensely pro-
pottionad 10 the widih of 1he time puise. Huwever, the
signal-1o-noise Tatio incresses s the pulse | made
wider. A good compromine between a broad frequency
region snd A reasanabie signal-o-noise ratio is 4 pule
width of approximutely 10 wx [2]. In that case the
useful frequency range it about 20 kHz. To improve
the signal-tonome ratio further we have to apply sigaui
averaging [37]. 10 the messurement s carried out in
an ancthoic room, the numbder of sverages can be re-
duced becuune of the low background level. Alw, the
repetition rate can be increaxed due 10 the low rever-
beeation teme, saving time for the 1otal measuting pro-
cedure. A disadvantage of this direct method is that
the responye includes the charactesiniicy of the power
amplifier. This must, teerefore, be of a very high quality.

This requitement can be avilded I we determine the
tramfer function between the vlectrical inpyt of the
loudipeaker and the pressute of the messiring mic-
phone. (The Wigner distrsbution can also be evaluated

.,anﬂr — -
[\ a8 I
- .\—\\b:"

= ) |

"\
=

-
(S
- .

Lawe Sapec !
-

e —

D) — .
: Ty _ar .
—_—

Fig. 85 Contour plot of Fiy, &4

from [requency domaio data, ) In (hat cance it is possible
to uie white noise or pseudo-random noise, which pro-
vides the excitution signul with u larger energy content.

But even then signal averaging has to be applicd. A
dikadvantage is the need fora larger amount of com-
putationul power which may inceease the measuring
time. A hatdwace two-channel analyzer might be ad-
vantageous in this case, Another possibility for deter-
mining the transfer function, with a good signal-to-
noise ratho and & small sumber of averages, i the ap-
plication of & chirp signal [3]. However, we must realize
that the sweeping filter necessary for this method el
fectively causes an averaging of the time-frequency
response

Another remurk concerny the altasing that might oocur
whes evaluating the Wigner distribution. In Section
1.4.2 1t was showa that the ovalustion of the Wigner
distribsition fram the trme domain data requires a sam-
pling rate four times greater than the largest frequency
component of the slgnal. This can b¢ ohtained by ad-
justing the cuteoff frequency of the antisliasing filter.
Also, the antialiasing filter affects the measured value
of the acoustic center of the sysiem an discussed
Section 2.2 This cannot be neglected since antialiasing
filters have a large rolloff rate A similar problem
arises when the Wigner distribution is evaluated from
frequency dommn dati. In that case an aliasing in the
time direction might occur.

Another poont that requires attention is the repre-
sentation of n Wigner distribution of a system with a
broad frequency range. At lower frequencies the enerpy
of the system s spread over & longer rime penod than
a higher frequencies, resulting In o lower level of the
dinttibltion at Jower frequencies whon the magnitude
of the frequency response of the system has o constant
or an almost constant value The roason v that the
intogral over all times at u fixed frequency equals the
energy apecteal dansity [Fluw)l’. This might cause some
difficultics when we interprot such a distribution, since
variations at the lower froquencies ure oot always visihle
due 10 theer low fevel.

Sevecal methods can he used to \mprove the display
of such a distribution. dut some of them mtroduce ad-
ditional dificultics.

1) When the frequency region of interest i not very
farge, the beat method s to dispiay a constant ime
interval with a lincarly varying o and 1. The plots in
this paper were made with this method.

2) Whes the frequency range of interest i lerge, It
makes sense to split the frequencs axis into several
parts which can be displayed with an appropriate time
and frequency (ntesval

1) The time scale can be converted into 2 fixed num.
ber of periods. Instead of o lincar time scale we get o
period scale. The time compression must be sccom-
panied by & (corresponding) scale of the amplirede ac-
cordirg (o the amount of time compression, 50 that the
miegral uver all periods at & fined time oquals the energy
spectral density. A disadvantage of this representation
i that tme delays are diffculs to interpret



4) 1t is possable 10 plot the values of the distribution
on 2 loganthmis scaje, 5o that a ymall value n more
carily visible. However, the interpretation of the al-
ternating micrferences is mare difficolt, Positive and
regative parts cancel when averaging over an area with
appropeinte dimensiops, which i difficult to sec on 2
loganthmix scale

The purpose of studying diffesent methods of dispiay
i 1o fingd # representation which is able to emphasize
thase kspects of the distribution in which we ace in-
terested . An example of this I8 the Jevel of & transducer,
which can be determined more easily from the mag-
niluide of #s frequency respanse thun from the Wigner
distribution, although this distnbution contains all the
information requited It is imporant to tealize that,
although 1i) tepresentations or averages of the Wigner
distribution are allowed, the problems with the ntee-
pretation have 1o be solved with the original Wigner
distribution

An exampie is the sttack of the time-frequessy re-
sponse of a loudspeaker. The Wigner disttibution of »
loudspeaker ix mostly determined from the analytic
signal. Hawever, the analytic signal gives a spreading
in the time direction, especially at low frequencies. In
most cates this reaulty in a small duturbance i the
attack of the sime-frequency respomse of the lfoud-
speaker I we with to observe the offcct of the aftack
in more detail. wo have to retum 1o the Wignes distri-
butioa of the original real-valued signal.

2.4 Cumulative Spectra

Camulative spectrs have frequently been used in res
cent years Tor the cvaluation of louwdspeskers |2]. In
Section 1.5 it was shown that the cumulntive specirum
i it fact a special type of spectrogram. It s 4 wpacial
type because the window function 15 a step Tunction.
It was shawn that the spectrogram for any point (¢, w)
of the lime~[{requency plane 1x the value of an integral
it the hime direction of the Wignaer distribation of the
weighted vignul. Thiy mesany that the denvative of the
cutnulutive spectinm with respect 10 time has a closer
reyemblance (o the Wigner distribution than the cu-
mulative specttum (tself. An impottant point is the
diffetence in physical interpretation of the Wigner dis-
teibution and the cuomulative spectrum, The Wigner
distribution shows a distribution of the signal energy
into time and frequency. while the cumulative spectrum
shows, Bt any w, the square magnitude of the syatem
time response (0 & sudden sturted or stopped sine wave,
[n Section 1.5 o was shown that the suddenly starting
of stopping of the signal yields o beoadening of the
frequency spectrum, Thus we sre dealing in fact with
the response of the syslem 10 4 combinatinn of a sine
wave and = brozdband signal, which hempers the inter-
pretation, This Is the reason why approciable contry
butions always are found in the stopband of the sysmem.
Il we compars the Wigner distnbution aod the cumu.
lative spectrum of a loudspeaker (shown in Figy, 66
and 67 for a dome tweetert this is clearly visible

18 our opinion thi! because the Wigner distribution
15 o dmtnibution of the signal ¢ncrgy m time and fre-
QueEncy, i1 gives ws geeater insight Into the physical
processes which take place m a loudspeaker than the
camulative spectram, which shows the response of the
systemn to # suddenly started or stopped vine wive,
with the above-mentioned disadvantages. Mare or jess
sumilar cemorks hold foe other repecsentations

2.5 Discussion

In Section I we have discussed the apphication of
the Wigaer distribution to loudspeakers. It 15 known
that the impulse response Tunction of 2 loudspeaker (s
a rapidly decaying function of time, and this has the
yreal advantage that the practicully evalusted pseudo-
Wigner disiribution resembles the theoretical Wignor
distribution very much. Furthermore the (mpulse re-
sponse |5 intrinsically # nonsunionary signal, and
therefore we cannot use the spectrogram which was
shown to give uaeful information only if the signal s
stationary during the window time. The pseudo-Wignes
distribotion 15 capable of coping with such nonstationary
sugnals, and it was shown to be g powetful rool for
evalunting the (transient) time-frequency tesponse of
& loudspenker.

The Wigner distnibunion allows the miroduction of
ohjective optimization criteris for both 2 single trany-
docer and 2 combinatibn of ramducers. Deviations
from the Ideal behavior can be located. For example,
the decaymg ringing contributions of the beoding and
membrant cesonsaces of cons dnd dome lovdspenkery,
as well as ime delays and reflections, can be recognized
from the nccurrence of spunogs contmibutions

To simplify the interprotaton of the disiribution or
to emphasize paicdlar effects, |1 may be converient
to une an adapted reprosentation. Examples are the une
of the snalytic sigmal 1o suppress disturbing interference
contritutions and the contour plot, in which 1ime delays
are cantly recopnized. In ordet bo suppress disturbing
or irrelevanm contributions, one could nlvo averape the
deatribation with 2 suitable window 1t is important (o
note that alikough such processing may make sense,
we dlways have 1o retam Lo the Wigner distribution of
tho oryginal vignal if we have any problem with the
mterpretation of & particdlar representation. It may be

"'....wL'.n.'

Fig. o6 Cumulative decay spectium ol g dome tweeler
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advantageons 10 carry out a4 conversion of the axes,
such an u logarithmic frequency or amplitude scaling.
Thas might be important when the deviabions of the
time-freqoency behavior from the jdeal behavior are
to be cmphasized. Thisis closely related 1o the sudibility
of phenamena, which i not discussed in this paper It
w clzar that for a proper evaluation of the sigaificance
of deviatione from ldeal time-frequency responses |t
W imporiant 1o know something sbout the nodibiliny of
these deviations. However, the audibility of many
transient phenomens 1v 101 yel known,

if & sutisfactary theory could be found for thin im-
portznt domain of acoustical pesception, il might be
possible 10 average the Wigner distribution with an
approprate function, which woold result in & repre.
sentation showiag only the sudible comrbutions of the
dimribution. Given the state of the anr of Knowledge
ahout the perception of ucoustical transient phesomens
and the abiiity 10 formulate mathemptical or physical
models of 1his bearing mechanism, this requires much
nddiional rescarch

The Wigner distribution can, inour opinion, be very
unefiul in this study, since i gives 3 propee distribution
of the encrgy of the stimulus signal, wiich allows an
accountable application of weighting, averaging, and
transformution.

Another point thar requires much atention s the
Influence of the direcuvitity of 4 loudspeaker. An im-
palse response on the axis 15 not a complere descripion
ol & teamaducer. Any point i space will give a different
impulse responye and Wigner distribution. Many im-
pulse reaponses and many Wigner distridutions cun be
determined, byt it s dilhiculr 10 assign priceitios o
these Wigher disesibutions,

A possibie solution s 10 place the transducer in a4
normal listening room and to meanure (he impulse te-
spoase of the transduoer at the listening position, This
unpulse response contains relavast informition about
the system performance, the directivity, and the room
parameters. The interpretition of the Wigser distribution
af this impulse response, however, requires more ad.
ditional research

As o last poiet we shall consider the veeluinesy of &
lincar-phase loudspeaker design (not 1o be canfused
with ime slignment of separate wansducers). Such an
approximated bmear-phase behpvior i olten claimed

¢ B e cay P P
—_—

Fig: 87 Wigner @arribution of the dame tweeter of Fig 60
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to affect The tramsjent response of a loudupesker fa-
vorably. From the Wigner distibutions of the misimum.
phase and linear-phase filter systeros (Figs. 18 and 21)
It 13 clear that the only differences are the position of
the ¢ars selative to the mountain ndge and the delsy
of this mountain ridge.

The exrs of 4 practical lovdspenker system are locuied
in frequency reginny that are sssumed 1o have almost
no influence on perceptional phenomena If these {re-
quency regions are not considered 1o be importam,
thea there w no difference between the minmuom-phase
and the linear-phase systemd, Also it s known that the
stereo image 15 determmined mainty by the “uiracks™ in
the music [39), If the fowest and highest frequency
regions would be smportant for the stereo imaging,
then the cars of a lincar-phase system would influence
siropgly the artacks of the music. In our opinion this
indicates that the need to design 3 loudspeaker system
with an approximated lnear-phase behavior i gues
tionable.
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4. Numerical calculation of the vibration and sound radiation of

nonrigid loudspeaker cones’

In Section 2 the lumped parameter model of the
clectrodynamic londspeaker was discussed. This mo-
del nssumes that the sound radiation of a loudspeaker
resembles closely that of a plane, rigid piston in an
infinite baffle. Because of this assumption it predicts
the sound radiation of an actual loudspeaker with an
acceptable accuracy only 3t low frequencies. At
higher frequencies the vibrational behavior of the
dizphragm itsell comes into play as well. In fact, the
radinted sound power above the tramition (requency
is much lurger than that predicted by the lumped
pazameter model. Thix ix illustrated in Fig. 4.1 for a

cone-type diaphragm.

i
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Fig 4.1 Measuirad tadfiated pawer P, of 3 conedype losdspesler
ai & lunction of \he fteguency (ol g, 2 5
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Cone-type loudsprakers (¢f. Fig. 4.13) are the most
common in use, and we will therefore concentrate on
this type of diaphragm geometry in our discussion.
The dynamic behavior ol a nonrigid lovdspeaker
cone can be calculated waing thin shell theory [9-12),
as proposed by Frankort [13] The cone is & thin
curved plate or shell, which is excited at one side. The
differential equutions that describe the dynamic be-
havior of 3 cone or dome are thon derived using thin
shell theory,

Throughout the remainder of this section we will
restrict ourselves 1o shells of revolution with an
axksymmetric excitation. Furthermore, all the geome-
trical parameters refer 1o the middle surface of the
(thin) shell,

A conetype shell of revolution is shown in Fig. 424
and its geometrical paramsters are defined according
10 Figs. 4.2.b and ¢ The parameter R i the radius of
curvature? in the metidional dnrct.uon. § i the mert
dionnl coordinate, i.e. the distance measured from an
arbitrary origin along the meridian, ¢ &s the angle
between the normal on the shell surface and the anis

' 1o this section the bum abose ihe embols for the indication of
» compies valued virahle will be wminied

182y raius of SRIVAIMSE CON 22UNSE & OCESIVE VIS 21 41 The Sane
WHA i convel cooe shown i Fig. 330
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of symmetry, ¢ Is the distunce of & shell ¢lement from
the axis of symmetry and R =r/sin(@) The parame-
ter R is related 10 the meridional coordinate § by
do= !/ R, di Inthecascof o smugm conical shell
(Fig. 4, l)b) R, i Infinite and izs inverse vanihes:
1/ R, =0. For n plane plate both 1/R_and @ equal

zero

4
le)

Fip 42 A wooctype shell of revelonon (a) and crimescchom of
iy el pantaliad g0 o tvenidian (b) and perpendicuiar to the axis
ol wymmetry (€1

The stresyes acting on a shell element are depicied in
Fig 435, where o,, 0,and @, are normal stresses and
the other are shearing stresses, The azimuthal coordis
nate & denoted by @and the transverse coordinate by
s A=h/2<:<h/), where h denotes the shell thic-
wness )

[}

Fig 43 An chenent of the ahell of revetution of Fig 4.2

In the analysis we use o set of differential equations,
derived by Reissnor [12,19], that describe the vibratio.
aal behavior of a thin shell. This author started from
four basic assumptions, which were proposed by
Love (14}

L The shell is thin, {e the thickness of the shell i
small compared with its radii of curvature,

2. The displascements of the shell are smull, The
equilibrium conditians for deformed clements are
the same a3 1 the clements were not deflormed. This
causes the differential equations to be finsar.



3. The transverse normal stress o, is small compared
with the other normal stress components and may
be neglected.

4. The normaly of the undeformed surface are defor-
med (nto the normals of the deformed surface,
which meuns that transverse shear deflections can
be neglected. However, the integrated effect of the
transverse shear stress, which is given by Eq. 43, is
not neglected”

In the differential equationa the siresses in the shell
are replaced by their resultants, which are assumed 1o
act on the middle serface of a shell element. The
nonvanishing resultant forces N, N,, @ and the
moment M [9], are given below.

The symbol N denotes the resultant force in the
menidional direction per unit leagth, defined by,

Ae 2

N = -{’:0"42. 4.1

where o1 the shell thickness,
Similarly we find

/2
[ o,dz,

—hr2

N, = 42

A2

{ o, dz,
-3

and Q@ = 43
The bending moment per unit length is given by

nez

M= LA
-2
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The displacementy and rotation of and the resultant
forces and moment acting on & shell element are
depicted in Fig. 4.1b. The symbols U and W denote
the displucements in the meridional and transverse
directions, respectively, and [ is the rotation of the
shell element in the U W plane.

The following enatysis makes use of some additional

assumptions:

« The influence of the sourd radiation on the mecha-
nical vibration is secaunted for in asimplified way.
The raduation impedance of & plane rigid piston
with the same maximum radial dimension s assu-
med 10 be equally distributed over the diaphragm
wirface. This radiation impedance conaists of a
radiation resistance and an imaginary part. The
first b combined with the diaphragm material
damping and the latter Jeads to a radiation load
miass, which can becombined with the pistan muss.
The radiation load mass of a rigid piston with

FIr shindd e noted that the verdthipg ttanevens shear stram (A0
runyverss shiar deflectinn) i mconsisient with the preseace of
rensverse shearing siresses. bt these Love asamplions are
aevertheless Almost unrsenally 2ccepeed by oohers in the Field of
i whell theoties 1% 13|

radius a, for frequencies below the transition
frequency, equals (of. 2.2y
- 10 ";"}_ a8

On the other hand the muss of & pton with
thickness & and dc_mity P, equals

m

m, = rahp,. 46

"
For a typical poton with @= 80 mm, h= 0.5 mm
and p, = 600 kg/m’, the ratio m/ m, equaly (.26,

= The material is sotropic in the plane of the diaph-
rugm, L. the Young's modulus is the sume in all
directions. IV there by no preferred ditection in the
manufacturing of the material, this assumption i
reasonable,

- The Young's modulus and the loss Factor of the
diaphragm marena! are assumed 1o be constant in
the frequency range of interest. The effects of
internal materis! dampmg und of the radiation
redistance have heen incorporated into the Young's
modulus, which can be written in the complex form
(assuming harmonic vibrations) [1 5,17}

Elw) = E (o) + | E'(@) = E(w)(1+ 5 (w)),
47

where () is the loss factor,
For many materials the Joss factor § is constant in
& broad frequency range [18]%.

= The effects of rotatory inettia are neglected in the
thin shel] differential equations. Thin shells are
characterized by the condition A/ R, < 1, where h
15 the shell thickness and R, is the smallest radms
of curviature of & shell element |9,10), For an actual
loudspeaker cone the factor h/R, is typically
smaller than 0.01,

With these sssumptions we can (ormulate the diffe-
rential equations that describe the vibrations! beha.
vior of a shell.

4.1 The differential equations that describe the
cong vibrational bohavior.

The axisymumetric transverse vibration of a rotatio-
nally symmetric plane shell or plate (zero curvature)
can be described by a fourth-order differential equa-
tion [16]. This traasverse or “bending™ vibration (for
which the middle plate surface does not stretch
inextensional vibration), is responsible for the sound
radiation of a piate. On the other hand the in«plane

* 1n geaeral ihereal and the imuginary part of ihe Yourg s modubug
w4 inatnot of frequency cannet be chasen independentty, hul
hirve 10 sitialy the K ramess Kronig sstations: the resl and imaging-
£y panth of the Youngs moduhed sre Hithert tramiform pales 1394

9



or "membrane” vibration for which there I no
transverse component (the stretching of the middle
surfice of the plate is dominating: extensional vibra-
tion) does not contribute to the sound radiation.
Hending and membrane vibrations are independent
in thin plate theory.

1n contrast (0 a plane plate, the membranc vibration
ina curved plate or shell has a transverse component
In the displacement. Therefore, the membrane vibra-
tion contributes (0 the sound radiation of the curved
shell and cannot be neglected, as will be seen in
Section 4.4,

An clement of 2 shell of revolution possesses thiee
degrees of freedom for axisymmetric vibrations: the
displacements U/ and W in the meridionasl and the
transverse direction, respectively, and the rotation fi
of the shell element. The axisymmetnic vibration is
then described by a single sixth-order differential
equation or, equivalently, by a set of six coupled
first-order differentinl equations [19)

The six first order differential equanions ¢un be
written 0s two coupled vector cquations:

d
L. Apd + A6

dX
—= Ay X+t A6, 48

4 M=
with the property that

Ayy = (A"

where T denotes a transposed matrix.

The matrices A, ,, A¢» and A, depend upon frequen.
cy and material and geometrical parameters of the
shell, a5 can be found in Appendix A

The vectar G is formed by the two forces and the
moment acting on a shell element, Xis a vector whose
clements are the displacements in the mendional and
transverse directions and the rotation of a shell
element and § is the menidijone! coordinate, as shown

in Fig 42

RrrQ
G = 2N
[ 2me M/ b
49
W
A= U
.P“]

where b denotes the thickness of the shell

Ifweput 1/ R, =0 and 9= 0in Eqs. 45, thedifleren.
tial equation describe the axisymmetnic transverse
vibration of a circular plate, which can be written in
the form:

40

% ,
rdrt drhrdr dr

410

where D, Is the bending stiffoess as defined by Eq
4,12 Eq 4,10 15 the well-known equation for harmo-
nie mation of the plate (8.9,

4.1.1 Membrane (extensional) dilferential
equations.

The set of six coupled first-order differential equa:
tions that describe the vibrational behavior of the
shell of revolution has six lincarly independent solu-
tions.

From the asymptotic analysis put forward by Ross
[20,21) for the set of differential equations (4.8), it
appears that these solutions (if properly chosen) can
be classified into two classes, except in the "transition
area”, bLe. In the vicinity of & ring on the shell for
which the equation
@R Vp/E = 1, ERE
holds

The first class consists of Tour solutions for which
bending s the dominuting mechanism. These ben.
ding solutions show 4 rapid spatial variation and are
strongly dependent upon (he sheli thickness. The
second class has 1wo solutions for which the effect of
bending s Quite negligible. These membrane solu.
tions are rather slowly varying functions of position
and have only o weak dependence on the cone
thickness.

Ross also showed 120] that the membrane solutions
are woll approximated by mecans of the membrane
model’, which is the model in which the bending
stiffness D, given by

EN
1200=v)°

where v is Poisson's ratio, is assumed 10 vanish,
Setting £, =0 implics that the moment M and the
shear force Q vanish [9]and the number of differents
al equations reduces to two, The differential equa-
tians for the membrane model aro found by subatitu-
ting Q=0 and M=0in Eq. 4%:

AY

;E' fy U= ByS

412

D‘,-

Y When spedking abiut membrane theory, metmbiesne sess o
mepmehiane force we do nat mnan that the forves sre nesessatily
tenaile forces, 1hey <an 3630 be commpressive forces



du

— = B, U+ B,;5,
£ 2 2
where B,,= 8, and $=2xrN/h, The transverse
displacement W is given by

413a

W=CUr S 4.13b

The coefficients B, B,,. By, C, and C; arclisted in
Appendix A

If the bending stifTness vantibes, the resultant set of
differential Eqx 4.13 exhibits a singularity at » ring
on the cone whose position is frequency dependent.
The location of this sangularity on the shell, which iy
called the “transition point”, & given by Eq. 411,
There is a Jowest and a highest lrequency where this
ring coincides with the shell outer and inner circle,
respectively. With a nonzero bending stiffness we get
2 "transition area™ in the vicinity of the “transition
point”, in which bending and stretching effects are
coupled to each other,

Van der Pauw has reported [32) that in the lossless
membrane model an accumulation and trapping of
vibrational encrgy at the “transition point™ occurs.
This résults in & dissipative driving-point admittance
at the apex of 2 truncated conical membrane, even in
the complete absence of mechanical damping in the
membrane material. This phenomenon of “energy
trapping” may be viewed as a conversion ol power
from membrane solutions to bending solutions in the
“transition arca”

4.2 Boundary conditions

The set of differential equations can be integraled
after prescribiog & number of boundary conditions
that s equal (o the pumber of first order differential
equations. For the axisymmetric ¢ase, including
membrane and bending (extensions! und inextensio-
nal) effects, this resulty in six boundary conditions,
three at each edge. In the boundary conditions we can
prescribe the values of the variabies directly or by a
linear combination or u ratio of these variables

Outer edge. Il the outer edge of the cane is connected
with o rim {suspension ) then the suter part of this nm
is & clamped edge: W0, U=0and =0 ie. there is
no motion at the edge.

If the Influence of the rim i to be ignored, then we put
a free edge ut the outer boundary of the cone which
means that the forces and the moment at the edge
vanish: Q=0, N=0and W=0

Also it is feasible to define a boundary condition as
an impedance in the meridional or transverie direc.
tion or as b rotational impedance. Then we prescribe
a value for the ratios N/ U, /W, 0r M/R

Inner edge. 1Tthe inner edge is attached 1o 4 voice coll
former (Fig. 4.4) the axil force F, acting on the
former s provided by the Lorentz force (the voice coil
Is @ cutrent-Ccarrying wire in a static magnetic field),
which gives a boundary condition:

. 414

The inner edge 1s basically a free edge and the other
two boundary conditions at the voice coil lormer are
M_o=0and @_ =0, 415
The relation between the axial force F, and the
Lorentz force F can be found from the analogous
circuit shown in Fig. 4.5, This figure is similsr to that
of Fig. 2.2, excopt that the vibratory pary, ot the
right-hand side of the dashed line, does not show the

behavior of a4 simple massapring systemn, but is
described by the differential equitions of 4.5,

P*H‘*”H“Z'
'ﬂ':.‘«- % A e Zine

T

——

Fig 4.5 tmpedinen $ype pandogous cucui foe an dlectrodynamic
loedypesiver

The rotal spring constant k, s spiit into tha of the
combined contributions of the spider and the box air
volume &, and that of the outer edge suspension &
The mechanical nput impedance of the nonngid
cone is

F
-—t 416
Z,. v
where F_ is the axial focce that acts on the voice coil
and Vs its sxinl velocity.
The effects of the spider, of the box mir volume and

of the clectricul parameters are described by the
transfer function £/ E, which is found from Fig 4.5.
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The transfer function between the velocity of any
cone point and the axial foree acting on the voice coil
former and also the mechanical input impedance (cf,
©g. 4,16) are found from the numer|cal analysis.

4.3 Solving the set of differential equations

In general the set of differennal equations cannot be
solved analytically, and we therefore have to turn to
numerical technigues. Within the framewaork of this
thests a beiel discussion of some methods scems to be
sufficient.

I'he method of finite differences |22}

The differential equations can be written in a scheme
of finite differences and the resulling equations can
be solved, This method has the disadvantage that il
dogs not permit an automatic sefection of an opti-
mum step size of integration at each step in accordan-
ce with the desired uccuracy. Therefote this method
was not used in our analysis

The method of direct integration, 1.e. # Runge-Kutta
[23.46] or predictor carrector [24.46) method. It can
be applied conveniently to a latge set of first-order
differential equations with known boundary condi-
tions at one side of the integrution interval and i
permits an automatic step size selection in sccordan-
c¢ with the desired nccuracy of the solution. It is not
directly suitable for a problem where the boundary
conditions are prescribed a1 sither side of 1he integea-
tion interval, Such a problem has to be solved by
construcling » independent solutions ( is the num.
ber of first-order differential equations) and by com-
bining these solutions with appropriate constant
factors to match the known #/2 boundary conditions
ateither edyge. The loss of accuracy which might resull
from this numerical method was obviated by adop-
ting a multisegment method of integration &5 propo-
sed by Kolnins [13,19,26].

A third method exists with & completoly differem
approach 10 the problem, the finite element method
[27). This is an attractive method, because several
soltware packages for the analysin of mechamcal
vibrations thal are based on this method sre avail-
able,

In our numericil analssis the direct integration me-
thod was chosen becawue it provided a great flexibiti.

42

ty in the experiments, Which couid not be obtained
from a standard (finite clement) software package.

4.4 Some resuits of the numerical analyais

The sound radiation of a loudspeaker was evaluated
N WO Steps:

In the first step the mechanical vibration of the
loudspeaker diaphragm in vacuum was evaluated
numerically. The influence of the sound radistion on
the mechanical vibration wiss accounted for by incre-
asing both the mass of the diaphragm and the
dissipative part of the Young's modulus of the diaph-
ragm material,

In the second step the sound radiation due 1o the
mechanical vibration, as found In the previous step,
wos calculated. The method used evaluvates the
“Helmholtz equation”™ (Eg. 5.1) In free spuce, which
is discussed in noxt chupler,

The loudspeaker cone shown in Fig. 4.4 was cvalua.
ted uting Eqs. 48 The boundary conditions are Egs.
4,14 and 4.15 Tor the inner edge and a fixed outer
edge The measured and caleulated sound pressure
levels on the axis nre shown in Fig. 4.6, (The material
and geometncal parameters of the loodspeaker cones
that have been used in the calculations discussed in
this chapter can be found in Appendix B.)

{aa]
seund
prenise -
-
Al bt s 22 CLEY PPN |
o

o
e Wpguengy [H2 |

Fig AS Mersnrod (drawn hina) and cabtvlated (dachad Linng sound
premere of & conu iondupericer.

Thete is a4 reasonable qualitative correspondence
between caloulated and measured results. The quants.
tative correspondence is not optimum which is due to
the difficulty in exstimating the material parameters
and boundary conditions of cone parts, For example,
the modeting of the glued joints in Lerms of Young's
modulus and damping as a function of the frequency
ts problematic. The influence of & change of the
Young's modulus of the diaphragm material is a shift
of the location of peaks on the frequency axis while
i change of the damping will influcnce the height of
these peaks

However, the analysis can be very useful in predicting



the qualitative effects of, for example, cone geometry
variation, and in the remaining part of this section we
will focus the attention upon the qualitative effects.
Thesound radiation will be spproximately evaluated
with the Rayleigh integral;

pult) =~ Juopy f f ,‘m’ ™ e sy,

=1l

418

where p I8 the sound pressure at the field point 7, o
is the angular lrequency, oy, is the density of air, Wiz,
ts the velocity normal to the surface at the point r, on
the cane, A equals the ratio of the circular frequency
and the vefocity of # free space sound wave, |2~ £, is
the distance batween the cone point and the ficld
point and S, i the cone surface. If we have a plane
radiator in a plane, ngid and infinite bafile, its sound
radiation can be evaluated using Eq. 415 [8 45]

4.4.1 Sound rodiation calculation with and
without bending effects.

The solutions of the differential equations can be
divided into u set of bending solutions and o set of
membrane solutions, This means that the sound
radistion can be split into & part that results from the
bending solutions and a part that resuits from the
membrane solutions. The bending solutions have a
relatively short wavelength compared with that of &
frecspace sound wave at the same frequency. This is
ilustrated in Fig, 4.7, which shows the magnitude of
the caloulated vibration pattero ot 5 kHz of & cone
with an outer diameter of 160 mm and & (ree outer

edge.

i
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Fig 47 Magmitude Wl (2e cabioulated ranyverse sibration W a1 4
& Hr of 5 cone with un cster diameter of 100 mm 3¢ 3 funition of
the maridional conndinae §

The bending wavelength is of the order of 20 mm
whereny the wavelength of i free space sound wave at
5 kHz is abour 70 mm, Therefore, due 1o destructive
interference, the sound radiation associnted with the
bending solutions, which show a rapid vanation with
the meridional coordinate, is relutively small |30),
The membrinc solutions are well-approximated by
the membrane model |20} Fig 4.8 shows the sound
pressure of a londspeaker, one calculsted with the
membrane modet (EQ. 4.13) and the other with the
model including bending effects (Eq. 4.5).
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Fg 48 Calculated seund peeasures on the g of b cone with an
outar doampter of 165 mm

In the calculation a free ouler edge wis assumed. The
voice coll mass is 0,24 times the cone muss At low
frequencies there are no differences in the calculated
sound pressures, In the break-up frequency range the
sound radiation increases. Also a fine structure due to
bending resonances appears in the diagmam. The
same occurs for the radiated power and the mechani-
cal input impedance, which are not shown here. |t
should be emphasized thit the calculations according
10 the membrane model require u much shorter
computer time than those with the model including
hending effects. The number of differential equations
is reduced and the step size in the integration algo-
rithm can be considerably increased, A small stepsize
in the model including bending effects is necessary
becauwse of the Bghly oscilfatory behuvior of the
bending sofutions. Some typical vihration patterns
calculated with the membrane and with the model
ncluding bending effects can be found in Ref. [31).
The much shorter computing time, at least by a factor
of ten, implies an improvement in the practical
usability of the theoreticu! model.

4.4.2 The infiuence of material damping and voice
coll mass

In this section we Investigate the influences of the
matetial damping and of the voice coil mass, The
cone vibrutons were calculated using the membrane
model and i free outer edge wis assumed,

It Is instructive to study first the sound radiation of
astrnight cone (Fig. 4,13b) without material damping
and with vanishing voice coil mass, The differential
equations that conatitute the membrane model then
¢xhibit a singulanty on a ring of the cone in 4 fimited
(requency range: the break-up region. The position of
the singulanty oo the cone meridian moves from the
outer to the inner edge with increasing frequency
according 1o Eq. 4.11. The vingularity is an obstacle
1o numerical integration, but can be obvinted by
adopting a compiex path of mlegration us propased
by van der Pauw {32)

In the fallowing analysis the angular frequency wand
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the meridional coordinate § are considered 35 com-
plex quantities. The integration is then carried out
along an alternative path in the complea - plane. The
question arises whether the path of integration should
be choven above or underneath the transition point §,
which is given by the equation:
§, = (@Vp/E cotan (g) 419
This can be solved [32] by giving @ & negative
Imaginary part (for an excitation of the form
exp( + jort)), which shifts § away from the real axis
into the upperhall -plane. In the imiting case Imi{ @)
~= ={, the transition point & will shift from ibe
‘upperhalf §-plane back to the real axis and conse-
quently the correct path of integration is underneath
the transition point £

In the numerical procedure it is convenient ta intro-
duce a new complex variable z according 10
coth () = &/2,, 420
where the real part of § s the meridional coordinate
on the cone. With this transformation und assuming
1/ R, to vanish, the set of differential Egs. 4.13a can
be written in the form

'd"§= “"y = ”|:‘g
dz

L H,V+ H,S
ds n G Ld)

where Hy, @ Hy, and b= U.E
Hy,. Hand Hy, can be found in Appendix A,
Th‘o cn:l points of the integration path along the real
axis are the outet edge meridional coordinates §, and
&y The corresponding points =, and 2 in the complex
z-plane can be found from the equation:
:='"Sin (ZE.‘.L') .

&8
For §, we find ({_/§, < 1)
‘..“ii’l! » .‘ 423
/61 2’

an

2w in

“u

i!b' o
Fig 49, lnbegratn pallt in the complea 2-plane
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and for &, (3,78, > 1)
cﬁICI"’ 1
e8!

The integration can be performed numernically if we
choose the integration path paraliel to the real and
maginary axey.

The sound radiation of the lossiess cone, calculated
with the membrane model, is shown in Fig. 4.10.(The
Rayleigh integral was evaluated directly using the
same complex integration path, obviating the need
for calculating the transverse displacements of the
cone explicitely).
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Fig 4.10. The sound pressarc of & cone with an outer diameter of
160 e and] with vanashing vislce coll mass and vanishing material
dampeng.

The break-up Mrequency region i the frequency range
where the vingularity occurs on the cone:

VE/ptan (¢) VE/ptan ()
—_— ) < —

' 425
"

and in this frequency range we find a rise in the sound
radiation. The peuk ut 17 kHz s 5 membrane reso-
nance

Assuming the cone material to passess some damping
with a loss fuctor 5 equal to 0.1, we get the sound
radixtion as shown in Fig 4,11
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Fig AN The same a5 Fig 400 bt naw with a materisl damping.

The next point of Interest is the infuence of the volce
coil mass. Such an additional mass increases the tatal
moving mass, which yields a decreased overall sound
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Fig, 405 The tame 3 Fig. €11, bt with » vouce coil mas of 3
grums The cone mmes equals 4.3 yrasns

radiaton. Fig. 4,12 shows that such a voice coil mass
vields an additional drop of the sound radiation in

the break-up frequency region.

443 The influence of cone shape and outer edge
A .

In the preceding sections we discussed the sound
rudintion of » nonrigid cone with an infinite radius of
curvature R_ (conical shell). In this section we show
the influence oF a bent cone shape, for example a
convex or concave cone shape. To this end we
calculated the sound mdiation of u cone-sbaped
radintor and those of a convex and a concave cone,
both with & radius of 0.1 meters, The geometries are
shown in Fig. 413,

In the calculations we sssumed & voice coil mass of
1.5 grams and the vibrational bebavior was caleula-
ted with the membrane model. Fig. 4.14 shows the
sound radiation of the cone with & conical shape.
The sound pressute response resembles that of Fig
4.12, but the roll-off stope in the break-up frequency
range i smaller, due to the smaller voice coil mass.
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Fig. L4 The ssundd peessute teaponse of & cone (comical shape)
with o outer dinmeier of 160 mm and wilh & vorce codl mas ol 1.5
grams. The cone musss eGuals 39 grams
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Fig. £.17. The tound pressiine recponse of L conves sone of Fig
416, bk haw Inctuding bending =fTects.

The sound pressure resporise of the concave cone i
shown in Fig. 415

Compared with the previous cone the break-up fre-
quency region has moved towirds lower frequencics
and the break-up peak is sharpened.

The third cone shape is (he convex cone and its sound
pressure response is shown in Fig. 4.16. .
The break-up peuk hus disappeared and only 4 small
gradual rise in the sound radianon response remains.
Also the response shows a roll-off ar much higher
frequencics. However, with the convex cone, we are
not allowed to ignore beading effects any more,
because the shape of the cutet cone part approxima.
1¢s that of a plane plate. In Section 44,1 we showed
that the bending effects have a small influence on the
sound radiation of a cone with a conical shape, These
effects are even smaller for a concave cone shape, but
for 4 convex cone shape the amplitude of the bending
resonances increases, The sound radiation response
of the convea cone, calculated with the model inclu-
ding bending effects, is shown in Fig 4.17.
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This response has 2 moving average that was cornect-
Iy predicted by |he membrane model caloulation, but
it also shows pezks and dips cansed by bending
resonances that can no longer be ignored. The ampli.
tudes of these pesks and dips were found to depend
strongly on the material damping

We conclude this section with a study of the influence
of the outer edge suspension or rim. The sound
radution responses of a comcal-shaped cone with
and without an outer edge suspenuion are shown in
Fig. 4,18,

) .
frequeriy THel

Fig 415 The sound peorvure ceaponies of 3 conieal éhaped cone
with nnd without am oles edze suspenaion, The volce ool s is
1.5 gramm

The outer edge suspension causes a dip and peak in
the response below the break-up frequency region,
The amplitude of the dip und peak were found 10
depend strongly on the outer edge suspension matery-
al damping. The rim also increases the amplitude of
the peak of the scoond bending resonance in the
bhreak-up frequency region, as reported clsewhere
i3

4.5 Discussion

The sound radiation from a nonngid cone shows a
rise in the break-up (requency region. The average
tise is correctly predicted by the membrane model, r.e.
the model in which the bending stiffness vanishes, In
the bredk up freguency region the idealized (lossless)
membrane model differential equations show a sin-
gularity on the cone, the position of which moves
from the outer 1o the inner edge with increasmg
frequency according to Eq. 4.1 1. A trupping of energy
at the singularity on the cone in the lossless membra-
ne model was reported by van der Paaw (32, which
effect results in a large transverse amplitude of the
vibration at this point. This large transverse amplitu-
de of the membrane vibralion generates a bending
vibration at the site of the singularmy, However,
bending waves cannot propagate al the inner cone
part (between the inper edge and the singularity
point), as shown in Ref. [251 and will decrease
exponentially with displacement. At the outer cone
part (betwoen the singularity point and the outer
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edge), bending waves do propagste and standing
(bending) waves occur. Ineffect, at the singulanty we
find a conversion from membranc energy into ben-
ding energy 132} The influence of the matetinl dam-
ping on the membrane vibration i the break-up
frequency rogion is small, because the caonversion of
energy 10 bending waves can be interpreted s a4
damping mechaninm, On the other hand the bending
waves are strongly influenced by the material dam-
ping

The sound raduation of the nonrigid cone can be splis
into the contridbutions of the independent solutions of
the differential equations that describe tty vibration
In contrast (o a plane plate, the membrane vibrations
in the cone have a trapsverse component in the
displacemen! and thus & sound radiation. In the
break-up frequency region the amplitude of the
transverse membrane vibration is relatively large,
which results in i risc of the sound radiation m the
break-up frequency region. At frequencics below the
break-up frequency region bending waves cannol
propagate and a generated bending wave will decay
exponentially. Therefore, the sound rudiation below
breok-up is mainly determined by the membrane
solutions.

In the break-up frequency regian the sound radiation
due to the membrane soluttons of the conical-shaped
and concave ¢ane show u conniderable rise The
contributions of the bending solutions (o the sound
radiation of a cone with a conicul shape are small
compared with those of the membrane sofutions and
cause a fine structure on the sound pressure curve
The contributions -of the bending solutions (o the
sound radintion of & concave cone shape are even
smaller and ¢an be neglected,

The convex cone shows oaly a small tise in the sound
radiation of the membrane solutions. The contribu-
tions of the bending solutions to the sound radiation
are much higher and can no longer be neglectod, The
bending solutions yield a number of bending reso-
nance peaks and dips in the bresk-up frequency
region,

The moving average of the sound radiation in the
break-up frequency region, which is carrectly predic-
ted by the membrane model, Is srongly influenced by
the voice coil mass, Such ik mass yields an additional
rall-oft of the sound radintion in this frequency
region. Therefore, the sound radiation of a concave
cone with voite coll mass shows a peak which
originate from the membrang solutions. These mem-
brane solutions are nol very sensitive to a matecial
damping in the break-up frequency region and the
peak amplitude is haedly affected by such a damping
The sound rudiation from a convex cone with a voice
coll mass shows a number of peaks and dips that
origmate from the bending solutions, but the moving



average does not show a rise in the break-up frequen.

cy region. The amplitudes of these peaks and dips can
be decreased by increasing the material damping.

The choice of a cone shape depends on the material
properties. For example, metal had a large specilic
mass and the thickness of a metal cone should be
small iy order to limit the total moving mass, which
yields a small bending stiffness. The ratlo E7p o
relatively large compared with that of a commonly
used cone material such as paper, so that the break-up
frequency region starts at relatively high lrequencics.
Furthermore the material dumping of a metal &

smull. Therefore the concave cone shape is optimum
for @ metal cone: the influence of the beading reso-
nances is minimal and the break-up peak is located at
reintively high frequencies.

A commonly used cone material, for example paper
ot plastic (e.g. polypropylenc) material, bas a much
smaller ratio of E/p and 3 much larger material
damping, which is able to damp the bending resonan-
cis effectively. Therefore the convex cone shape is
optimam for such 4 cone matenial the sound pressure
response shows & smooth curve (provided that the
bending resonances are damped sufficieatly) which
extends towards sélatively high frequencies,
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5. The Wigner Distribution: A Valuable Tool for Investigating

Transient Distortion*

Chapter 5 contuing b reprint of the article:
C.P, Janse and A LM, Kaizer, The Wigner Distnbution;
A Valuable Tool for Investigating Transient Distortion,
JAES. vol 32, no. 11, November 1984,

CORNELIS P. JANSE AND ARIE J. M. KAIZER

Phitips Research Laboratories. 5600 JA. Eindhoven. The Netherlands

It was shown earlior that the Wigeer dlatribytion {4 & valuable tool for analyzisg
tressient diaontion of filless, loudipaekers, and loudspesker combinations. Some further
appiations of the Wigner distnbation jo the evalyation ol Jesdspeaker transient behavine
are reported, The Sirst topic i the influeace of the geametry of a radistod on i1s transjent
response, The goometries discuticd aro the pluns, cong-shaped, and dome-shaped
ridizors. Also dealt with is the mfluence of some knows crossover filters on the on-
adin and disectional tranvient bebavior of a combination of toinkident and moncoineidest

driven

0 INTRODUCTION

In the past many representations have boen used to
describe the behavior of u loudspesker system, Among
them are the transfer function, which coptains the em-
plitude and phase characteristics as a functios of fre.
quency, the impulse response, and the tone-durst re-
sponse. These ceprescatations Of medsurzments can be
divided into two groups, and each represents an aspect
of loudspeaker evaluation: steudy.state and transient
behavior. The steady-state rexponse on axis and the
steady-state directional behavior invelve relatively
stable condittons, and the methods developed 1o evalusie
them are widely regarded as satisfactory.

This leaves wansicnt bebavior. Here there iy litie
sgreement on the precise effects and how (o measure
them. Techniques developed in the past include impulse
tespoase, group delay, tone-burst response, and co-
mulstive spectra. All of these are well known, but none
of these previously developed techaiques, In fact, pre-
sents a rzally clesr picture of the octual physical bebavior
under transient conditions, However, impulse response
measurcments are the natural approxch for mvestigating
transient behavior, and the measurements de indeed
contain all the (nformation needed, bul the problem
has always been how to detive insight into the physical
behavior fram the representation. Therefore in a pre-

* Presetsed ot the 73rd Convention of the Audio Eagineenng
Society, Eindhoves, The Netkerlunds, 1953 15=1%;
tevised 1984 Fedruary 15,

ah

vious paper (1] we proposed the Wigner distribution
becauie of its ability to display the information con.
tained [h impulse response messurements conveniently.
The Wigner distribution of a signal can be interpreted,
with some care (1], as the distribution of the energy
contained in the signal in both time and frequency. In
the sechnique developed it is portrayed in a readily
understood graphic form,

In principle, Wigner distribution analysis can be used
for various appiications. It is capable of glving u clear
insight inta the transient behavior of all kinds of trans-
ducers. us well us the mechanics of speech and other
transient phenomena, But the major application so far
developed it the analysis of loudspeaker performunce
1], The Wigner distribution can be used to evaluate,
and to optimize, the tramaient response of Individual
loudspeakers or multiway combinstions.

In this paper we report on some [urther applications
of the Wigner distribution technigue to the evaluation
of loudspeaker transiont behavior. It i3 assumod that
the roader is farmiliar with the ierminology used in | 1]

An imporiant applicstion of the Wigner distridbution,
namely, the stody of shifts and of the spreading-out
cffects of an impulse response in the time dirsction of
filters and loodspoakers, i discussed. Often used for
this parpose ts the group delay, which gives only an
indication of the Jocation of the acoastic cepter. How.
ever, the group delay can be misleading in practice
(1], and i1s accuracy ¢sn be sffecied senously by re-
fiections |2).



fn Section | the influcnce of the geometry on the
tranatent behavios of plane, conc-shaped, and dome-
shaped loudspenkery is discussed. Section 2 describes
the transient beliavior of sevesal well-known crossover
filtors, while Section 3 discusses the directional transent
behuvior of these Alters Finally, Sectlon € containg »
concluding discussion of the results obtained.

1 TRANSIENT BEHAVIOR OF CONE AND DOME
LOUDSPEAKERS OF VARIOUS SHAPES

In 2 simphified theory the radiation impedange of 2
loudspenkeor 1s often upproximated by that of s sigd
plane puston in an infinite baflle or at the end of & fong
wbe 1), However, the radiutions from 4 plane platon
and from & nonplane radiator are quite different [4)-
(6}, These differences still uxist for tigisd radintors, ind
the effect is called the cavity effoct. To caloulsie the
expet sound radiation from a tadiating surface with an
arbitrary shape we fuve 16 soive the Helmboltz equation
(71, 18}, Assuming harmonic vibrations, the integral
form of thiy equation, provided that mere are no sourees

In space, is given by
Pir) = j J { Gu(rles) ;f; Pyirl

- Pun) ,f_ Gutrirg) o . o

whete Pir) is the pressure (o the field point # (withis
and o= the surface ares conolesed by the boundaries),
fu A 8 pOint on the surface Syt 18 the enit vector
normal to the surface, and G, is the Green's fusction.
This equation can only be solved analytically for
somie simple shapes such 25 a piston in an infinite baffie
of & pulsating sphere. For a plane radiator it an infinite
baffle, assuming harmopic vibrations, the Helmholtz
equation reduces o the Rayleigh integral 151, 191

Ple) = 'juij ;_;';—_

whete w 18 the anguise frequency, py (% the density of
atr, & iy the wave number, and Virg) i the pormal
componeat of the yelocity at point ry on the radiaror
surfsce S,

For more complicated shapes, such us cooe of done
loudspeakers, the Helmholte equation has 1o be solved
aumenically, This can be dome ditectly using a et of
integral eguations [10] oc with the aid of the finite-
element method [11], A detniied discussion of these
pumenical caloulation technigues s beyond the scope
of this paper.

Inthis section we dincsss the influence of the geometry
on the tranaieol behavior of cone and dome-shaped
radistors mousted m an inhmite bafife. The sound ra-
diation of tbese radiators is calculated using the Boite-

Virg) dSs . (2}

olement method, The sctual calculmed phyyscal quantity
1 the comples suund presyure ot a point inspace, when
the radintor surfuce has an nceeieration level indepen.
dent of positon und lrequency i the direction of the
radiator axis. The sufluence of the geometry on the
transient Dehavior of (e radisted sound |s an extension
of the steady-stute radiation of a nooplane radiator,
which is discusned elnewhete [4)-[6] The Wignes dis-
tribution of such a radiator can be calculated from the
complex. vislued sound pressure level This is in Lact a
wansfer function becadse It was calculated with & fro-
quency-independent accelerntion level of the radiator
surface

1.1 Plane Radiator

The fral expmple s the sound radiation of & plane,
circuler, and nigid piston in an :nfinite baffie. The com-
plex farfield sound pressure ot & field pasnt » for hat-
monic excitation equals [7]

Pellusds Ltkasing) .
Ind anane

Pn(') — hH

where o in the distance of the ficld pownt 7 to the center
of the piston, & Is the paton radius, U, is the mcel-
cration level of the piston, ¢ is the angle between the
s of symmetry and the direction of the Beld point,
and /, is the Beysed function.

The magoitude of the oncaxis far-field sound pressure
n independent of frequency:

Mol S

Watell = 2ud

{4)

The contour plot of the Wigner dustribution of the com-
plex on-axis fer-field yound pressure is shown i Fig
10a) 1t will be cloar that sccarding to [ 1], the transtent
behavior of thiy plane radiatos is almost el

In the following examples we will frequently uie the
w-called analytic signal. The resson for this s that
the negative and positive frequencies 10 3 specteum
yreld isturbing interferences In the Wigner disinibation.
Howevee, the negative frequencies do not give any
additiomal informution and can be ignored i the anal-
yviv. Removing the negative frequencics from (he
spectrum yields the snnlytic signsl, which was discessed
for this application i u previous publication |1]. Re-
moving the negative frequencics s the conseqeence
that the ropresentation of the impulss response in the
time domain has complex valees, while the oeiginal
upectrum has a real-valved impulse response. Another
consequence I8 that the comples-valued pulie re-
sponsc is noncaunal, The magnitude of thi noncausal
comples -yviloed impulse response, which is a function
of time, + also referred 1o s the esergy-time cutve
H12] Fig Hb) shows the contiae plot of the Wigner
dustribgtion of the spalytic sigoul associated with the
far-Neld sounad pressure. (A contout Jine with mdes
(= 1<9 has o height of (1 = (/101 and with index

&



{ = 108 height of 008 times the maximum beight of
the Wigner distribution. ) Compared with Fig, 1(a) one
can see i Fig. 1(b) the noncausality of this impulse
respanse. At lower frequencies the response is spread
symmeteically in the time direction. The et (see {1])
al the high-frequency end Is duc to the anti-aliasing
filter which is located at 12 kHz, Fig. | can be used as
a reference for the Wigner distributions of cone and
dome-shaped radiators, which zre dlscussed below,

1.2 Cone-Shaped Radiator

Unlike the planc piston radistor, whone on-aais sosund
pressure amplitude s frequency independent [Eg. (4)),
a cono-shaped radistor shows a frequency-dependent
an-axis sound peessure amplitude. This can already be
concluded from the calculution of the sound prossure
from a cone-shiaped radimor using the Rayleigh integral
4], (13) (alno commonly known as geometsical acoustic
approximation). However, this s only & rough ap-
proximation of the exact sopod radiation, since (he
Rayleigh integral is only vilid for 2 plane rsdiator If
we calouiste the sound radiation uning the Helmholite
equation, the sound radiation is also frequency depen-
dent, but the amplitade differs from thut obtained from
the Rayleigh integral. The calculated sound pressure
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Fig. | (a) Wigner &stribution of on-axis far-finkt soumt

nmum of rigid pisren with radius g = %7 mun, oo
wel of piaton & constunt. () Wigner divtribution zalculated
with analytic signal.
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shows large peaks and dips in (s amplitude charscter:
istic, an cffect called the cavity offect [4]-|6] The
sound peessure caldulated with the Rayleigh inmegral
has 3 much smoothe: amplitude ohacicteriatic  The
reuyon fof this i thit the Rayleigh integral takes into
account only the influence of the different distancen of
the cone points to the field paint The Helmboltz equa-
tion. on (he contriry, also takes Into sccount standing
Waves or resonances m the cone savity, which give the
large peaks and dips in the amplitude charscteristic,
The examples in this paper were calculatad with the
Helmboltz equation, which was solved numerically
using the finite-clement method |11], The geometry
wirs assuined (o possess rotational symmelry. The mash
pattern that was used for the cone-shaped radistor is
shown in Fig. 2. Oaly the sound ficld within and oo
the boundarics has 1o be calculated with the finie-
element method. The boundaries are the vibrating cone-
shaped radiator, the nonvibrating outer edge and flat
apex, i part of the Infimite rigid baffic, and » bemisphere,
which finks the inrer region 1o the outer region The
sound pressuce at any point outside the mesh regron
can be calculated snalytically by uiing the wound pres-
sute distribution on the hemispherical boundury |7].
A typical on-axis sound pressure responte s shown
in Fig. 3. This amplitude responde has a first peak at
ka = wi2, where & it the wave number and a is the
eodius of the radistos. Regarding the influence of the
cone geometry, the location of this peakon the frequency
axls depends oo the radivg o, wheress the amplitude
of this peak 1s dependent on the cope shape. For constant
4 we have observed thut the peak amplitude increases
with increasiog cone cavity volume. The transient re-
sponse of the same radiatos ks shown i Fig. 4, which
gives contour plots of the Wigner distribution of the
complex oa-anis sound prescure response, I Figs, |
and 4 arc compared, it will be clear thar the latter has
4 more spread oul trunsient respomie in the time direction

Fig. 2 Caloslation mesk of cone-shaped

radintor. Equivalemt

radiue—97 mm; eadiug of oules edge has Crosy section—

5y, radiug uf lnmirn-—l)m;mt sngle—120%;
men

sadiun of hemisphere—|



st middle and low froquencies. The first peak in the
smplitude characteristic can be scen in the Wignee dis.
tribution as 2 spreading-out cffect in the time directhion
This is to be expected since the peak can be conyidered
#s 4 resonance: this resonance » damped by the ucoustic
radlation resistance of the radintor. This transient be-
havior 15 typacal of all cone-shaped radiators.

It has been reported that the amplitude of the cavity
dip (following the resonance peak) can be reduced by
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Fig. 3. Fareld sousd pressure Jevel of cone-shaped mwdiator
with dlenepnions of Fig. 2
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Fig. 3. (a) Wigner distnbution of on-axik far-Held soung
madistion of Fig 3. (b} Wigner distribution calculated wirk
analyric signal

a dust cap [14]. In this case the transient response will
also be Improved. Figs $-7 show, respectively, the
calculation mesh pattern, the on-axss sound pressure
reaponse, und ltn Wigner distributions for the loud-
speakers of Figs. I-4, but now with a vibrating dus!
cap M we compare the tespective figures, it will be
clear that the on-axis sound pressure ampintude char-
acteristic hus been smoathed fexpocially 1he first peak
and dip) and that the spreading of the transient responsc
in the e direction has been reduced. These effects
become even more pronounced if we reduce the cone
cavity volume by mounting a larger dust cap.

in the foregoing it was shown that a cone-shaped
radintor has 2 certam smoant of transient distortion
This distortion is actually 8 widenimg of the transient
respodise Wt certain frequencies and s doe (o Cone go-
ometry. It was also shown that this wideaing ¢an be
teduced by mounting 2 dust cap in the cone, These
examples, however, were analyzed axing a conical cone
shape. The question arises as to what (nfluence & bent
conc phape will have, such ny 8 cohvex of @ concave
cone, To answer this qeestion the coalcal cone mus
be replaced by » convex and 3 concave core with the
same dimensions, namely, cone radivs and cone depth.
The mesh used in the calculation of g convex cone
shape is shown in Fig. 8. The on-axis amplitude response
can be found in Fig. 9, and the trunsicn) teaponse is
shown in Fig. 10, The same data (ot the concave cone
arc shown in Figs. 11-13, From these figures it will
be clear that the coavea cone Is slightly better than the
conical cone, but these difforences are only marging!
and mainly located at highet froquencies Also the
conical cone is slightly betier than the convex cone.
bul again the diffesences ate very small,

It can be concluled that the conical geometry of a
radiator has a large influence on s trannent seund
radiation, which s widered in the time direction at
middle and lower frequencies. It was farther shown
that an additional bending of the cone shape toward a
canvex or concave cone has anly a small imfluence on
the transiont sound radiation behavior. Furthermore ot
was demonstratod that the mounting of a dust cap re-
duces the widening of the transient response in the
time direction, an effect that becomes more peonoanced
with a larger dust cap. thus reducing the cons cavity
volume.

1.3 Dome-Shaped Radiator

Inthe previous wection @ was shown that the smpittude
of the on axis solnd presiuce, tudjated by 3 cone-aliaped
radintor, s frequency depeodent Thas contrasts with
the amplitode chavacteristic of 2 plane radiator or piston,
the amplitude of which iz independent of frequeocy
For 4 dome-shaped radiator the amplitude characieristic
1n alyo freguency dependent. As mentioned in Section
1.2 for a cone-shaped sadigtor, this may already be
concluded from the Raylzigh mtegral calculntion [15]
of the sound pressure for a domeshaped radistor as
well, 17 we calculate the sound radiation using the

5



Helmholtz equation, the sound radiation ts again fre-
quency dependent, but its amplitude differs from that
obtained fromthe Rayleigh integral. The main difference
is the dip in the amplitude charactenstic, which shifts
1o much lower fregquencies wheee the Heimboltz equation
instead of the Rayleigh integral is used m the calcu-
latlons.

The calculation mesh pattern used for the finite-¢le-
meat calculation of the Helmholez equation can be found
in Fig. 14, and the amplitude characteriatic of the on-
axis sound radistion from u dome-shaped radiator fs
shown in Fig 13, If we compare the amplitude char.
scieristic of Fig. 1S with that of a cone-shaped radiator,
it will be clear that the former only has dips m s
characteristic. The tack of peaks in the amplitude char-
actenstic is typical of a dome-shaped radutor, Fig. 16
shows the contoar plots of the Wigner distribution of
the on-axis sound radiation. The tranment behavior of
(he sound radiation [rom this radiator, as shown in this
figure, in almost that of the plase piton of Fig 1. Thus
such u domeshaped geomelry does not chwse large
distornions 1o the transient response. The dipa in the
response become more pronoenced if the dome bheight

Fig. 8. Calvulgtion rseab of cong sliapes? radistor with dust
cap. Radhas of dust cap—66 min, it 2quivalent patan ra-
diut —4K mm; othor dimconions ame as those in Fig. 2
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is inceeused, us shown in Fig. 17, The dome used bere
ix & hemisphere, 5o that the dome radios of the vurvature
i» oqual to the equivalent piston madius, the lstter being
equal to that of Fig |5, The first dip occurs at ka =
u/2, which is much lower than that obtuined with (ke
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Fig. 7. (8) Wignes distribution of on-sxis far-field sound

radiation of Fig. 4 (h) Wigner diswibution calculsird with
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those in Fig. 2



Rayleigh integral [5), [15]. The Infinence on the tran-
sient behavior, which can be scen from Fig. 18, i
small,

Finally it can be concluded that the influence of »
dome-thaped geometry on the transieat behavior of the
sound radistion |s rather small. This is especially true
if the ratio of the dome height o the equivalent piston
radies is much smaller than unity.
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2 TRANSIENT BEHAVIOR OF CROSSOVER
FILTERS FOR COINCIDENT DRIVERS

in & previous publication | |, sec. 1.6) the spplicstion
of the Wigner distribution technique to the evaluation
of the transtent behavior of & crossover filler wis briefly
discussed. The filter considered there was o third-order
Butterworth crossover filler as described by Linkwitz
[16). With this filte: phase reversal of the individual
drivers makes uo difference in the smplitude of the
combined frequeacy respanie. However, phase revenal
ylelds quite different impulse responses and transient
behavion, bul these differences cannot be interpeeted
easily. What happens can he scen more clearly la the
Wigner distributions of the two impulse responses, as
showa in |1}

The use of the Wigaer distribution technique for the
optimization of the loudspeaker crossover 1s schemat-
tcally illusteated in Fig. 19. Fig. 19(n) shows the con-
taar plots of the Wigner distribution of a low-frequency
and a high-freqoency deiver moucted in the same bafile.
The differcat positions of the acoastic centers are in-

Fig. 11 Calesilativn mesh of concave ¢ane-slaped radsasor,
Radive of concave curvatire — |1 M min, other dimesyions
wme 55 those tn Fig. 2.
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dicated by dashed lines. This difference is not a defect
in » loudspeaker, since the acoustic conter of the losd -
speaker depends on the location of both the rolloft
frequencics and the rolloff slopes [1]. The optimization
critorion of the combination of (wo loedspeakers Ix
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Fig, 14, Calculstion mesh of dome-shaped radlutor. Eqguin-
alent piston radias —30 mm; radias of hamisphere—33 mm;
ratio of dome beight to equivalest pistoo rading 0 §
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that its Wignor distributioo should have the shape of
the Wigner distribution of a band-pass filter, as shown
in Fig. 1'%c), The rolloffs are the low-frequency rollof)
of the low-frequency driver and the high-frequency
rolloff of the high-frequency driver. In thix case the
tramsducers huve 1o be aligeed with respect 10 lime 0
that the mountsin ridges in their individual Wigner
digtributions are in oz, This 18 illustrated in Fig. 19(b).
Also the crodnovers have 1o be sdjusted 4o that the oars
of the individual rransducers cancel each other i the
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crosover frequency region. This may be possible since
the Wigner distribution of the sum of Iwo transducers
equals the sam of the Wigner distridutions of the in.
dividus! transdecers plus an additional term, the cross-
Wigser distribotion of the two transducers |1, sec. 1.3),
which yields the cancellations in the crossover tegion,

In this section we compare the transient behavior of
several known crossover filters for coincident drivers,
According to Linkwitz [16] the dilferert types of
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Fig 17, Fac-field sound pressure lovel of dome-shaped ra-
distor of Fig. 18, but now with ratio of Soase helght 10 cquiv.
alent piston radlus of 1.0,
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crossover filters can be clasnified into three groups:

1) The constant-voltage crossover network, where
the sum of the complex tramsfer functions of the low-
frequency part and the high-frequency part is unity for
wll frequenciey,

2) The all:pasy crossover network, where only the
magnitude of this sum is unity. Ity amplitude responne
is thus unity at all frequencies, but ity phase response
is frequenty dependent.

3) The compromise crossover network, where both
the amplitude and the phase responses are fregqueacy
dependent.

Linkwitz compared the radiation patierns for these
types of filters for noncoincident drivers at their cross-
over frequency reglon. For this purpose he used the
following actual transfer fuactions

1) For the constant-voltage network two third-order
crossover filters with 12-dB.per-octave slopes us de+
wribed by Small (17}

I = as, :
Fi I+ as, 4 as’ + 35" (5a)
H 1]
Py = - eI A ($b)

l-r«u.+4u.’v:.

where F, und Fy, are the Jow. and high-pass filter transfer
functions, respectively, 5, denotes the narmalized com-
piex crossover frequency [Eq. (9)), anda = 2 4 V3,

21 For the all-pass netwark the thind-order Butterworth
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:i.s. 15, () Contosr plots of Wigner distnibutions of low-
high- deivers mounted in same Baffle. (h) Same
contous plots, bul with drivers aligned with réspect to tume,
{¢) Wigner dustribution of combination of low. and Bigh-
frequescy drivers of (n) with optimum crossover
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low. und high pass Blter functions:

!

(61)
| 4+ 235, + 21,7 + &)

F,a

!

"
Fon ® o — 6"
o I-Zs.?b,"ou] ol

1) For the compeomise network the second-order
Rutterworth low: ansd high-pass filter functions.

= ?
" ' = V}_’. + "x ' l .’
F o (78)
: |+ Vi, = 4}

To compare the crossovers of these Alter functions
we will usc the band-pass Bustarworth filter H, (1) a2
a reference, The reason for vsing 2 band-pass Alter
function is thar we cannot calcalate o discrete Wigner
distribution of & high-pass filier due 1o sllasing. Fur-
thermore a loudspeaker acts #s a band poss filter. The
filter M ty) has a rollolf of order 2 a1 300 Hz and &
rolloff of order 10 ar 4000 Hz. The contour plot of the
Wizner distnbution of this filter is shown in Fig. 20
(The length of the cur at & kHz, that is, the ringing of
the teath-order rollofl, o not greater than the sar of
the second-order tollof! at 500 Hz decanse the length
of an ear is directly proportionsl 1o the rolloff slope
and inversoly proportional to the frequency [1]))

The totul crossover function of the combined networks
can be described with the equation

”v.(” - "0(,.) ”~(,) . FA(‘.’ ”d‘) ‘a)

where 1 is tho complex frequescy variuble, £ denoted
In- and out-of phase connection, and &, is the normalized
complex froquency variable,

1

0--2-;— (L7

J, hemng the cronsover frequescy. The crossover fre-

¢ fﬂﬁﬁxliﬁ‘tv P S.co

Fig. 20. Wiganr distribetion of band pass Slter My la).

guency in the oxamples is 2500 Ha,
The “ideal™ crossvver function is given by

Fis) = Edsi = 0
(10)

Hois) = Hylx) or

and s transtent bohavior s shown o Fig, 20,

Such an “ideal” function (for comcident drivers) 1
the (a-phase coanection of the constant-voltage flter
of Eq. (5). and its Wigner distribution i3 that of Fig.
20, #s would be expected  The natural spplication of
thix crossover fiiter is the in-phave connection, but Fig.
21 also shows the Wigner distribution of the out-ol.
phise conpection. Thin transient response s only
shightly differeat from thar of Fig. 20, mainly because
of small diffcrences in the amplitude response

The next example 18 the all-pass crossover network
[Eq. (6)). Fig 22(a) shows the contour plot of the
Wigner disteibution of the out-of-phise connedtion.
The differcnces between Fig. 22(a) wnd Fig. 20 ure
savall 40 that the transient behavior of this crossover
is nimoxt “ideal.” The tn-phase connection of this il
pans crossover s shown in Fig 22(b). This coonection
has more influcace an the transient dehavior, 21 can
he seen fram the contraction in the fime direction »f
the crossover frequeocy. Thus the out-of-phage con-
nection of this all-pass Mlter has the least ransiem
dixtortson,

However, If (he delay of the low-frequency drives
is relatively large (crossover frequency at low fre.
guencies orhighrollofY slope), then the propes alignmen
with respect 10 time will aot be achieved. This topic
1 not discussed here, but can be found In |18). for
example. Furthermote our preliminary experiments
Indicate that the audible effects of sweh an additiona)
all-pass filter is very small for practical lovdspeakers.
which alko has been reponted elsewhere [19), 120).

The next examplo ia the compromise network of Eq.
{71, Fig. 23a) shows the contour plot of the Wigner
distrbution of the out-of-phase connection. The tran.
sient response s almost equal ta that shown ia Fig.
20. The diffecences are due Lo difforent amplitude re.
sponses, bat this transien! sesponse 1 without problems.
However. this 16 not the case with the inphase con
nection, as shown In Fig. 23(b). Here we find large
distoetions in the transiont behavior of the combination.
The composition of this response can be enderstood
from Fig 19(b). the ears al the crossover froquency
hitve to cancel ¢ach other, which occurs correctly with
the out-of -phate connection, With the in.phase con
section of Fig. 23(b) we get n cancellation at earlier
times and a0 amplificallon of the cars i the crosmaover
roglon, vince the sign of the cross-Wigner distribation
ivreversed. [There is no amplification of the ear at the
low-frequency end, since the ear in Fig. 23(h) is em-
phasized due todifferent contour helghts in Figs. 23(a)
and (b).} It will be clear that with this compromise
network only the out.of-phase cannection should be
conwidersd,

The lust example of this section Iv the optimum



crossover function for noncoincident dnivers s proposed
by Linkwitz [16). It s the cascade of two identicnl
Butterworth filters and actx like an alf-pass filter. Cas-
cading two identical fiest-onder Butterworth flters yields
the second-order low- and high-pass filter functions.
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27 (a) Wigner distribstion ef out-of s connection

Fig.
of'.ll'pnnmwmiuetoﬂiq. 16). {b) Wigner distribstion
of in-phate voancetionof all pass cronsaver filter of Eq. (6)

Fig. 24 shows the contour plots of the Wigner distri-
hutions of the out-of-phase snd the in-phase connections
for coincident drivers. Again the in-phase connection
of Fig. 24(b) should be rejected . The out-of-phase con.
nection of Fig. 24(a) closely resembles the ideal cross-
over of Fig. 20, as would be expected It can be con-
cluded that none of the filter functioes gives o substantial
transsept distortion for cotcident Erivor if the propes
phasing is used

3 DIRECTIONAL TRANSIENT BEHAVIOR OF
CROSSOVER FILTERS FOR NONCOINCIDENT
DRIVERS

As showe by Linkwitz [16] for sieady-state signals,
the optinum crossover for coincident drivers is not
necessarily the optimum cromaver for nascoincident
drivers. This is caused by & possible tilting of the ra.
diation pattern in the plane of the two driver axes In
the caso of noncoiacident drivers. To avoid this tilting
one hat to take care that the on-axis phase difference
botween the two drivess vanishes in the crossover fre-
quency region. To examine the transient behavior of
noncoincident drivers, one ¢an calculate the Wigner
distributions at different directions 0 in the plane of
the two énver axes, The geomotry of the two non.
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Fig. 23, (u) Wigner distribution of vut.of phase consection
of compromise crdsover filter of Eq. (7). (%) Wigeer dis-
tribation of in-phase connectios of comprumise Cromoves
fihar of Big (7).
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coincidont drivers 1 shown schematicully 1 Fig. 28
Howevesr, since the evaluation of many Wigner distri-
butiony can be cumbdersome, we will uke another rap-
resentation In this section. This raprescstation ts based
on the knowledge that the directional hohavior of »
crossover is most critical at the crossover frequency,
where the amplitudes of the individual dnvers measured
on axis are the same. The fepresentation is not the
nurmal time-frequency Wigner distnbution, buta time~
direction distribution. It is composed of the cross sce-
tions in the time direction at a vingle froquency, nuch
us the crossover frequency, of the Wigner distributions
of 1be impulse tesponses in the differcnt directions
This can de calculated efficiently if the Wigner disi
butions are calculated from frequency domaln data. In
that cane we can calsulate the cross sections at a single
frequency dizectly [1] without the need (o calculate the
whole Wigner distribution for cach impulse response.

With this directional representation of the transicot
betavior we will compare the different crossover func-
tions that were descrided in the previous section. The
difference with these examples is that the drivers are
noncoincident. The actusl spacing betwoen the drivern
Is 100 mm, and the crossover frequency iy again 2500
Mz,

The directional representation of the constant-voltage
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Fig 24 () Wigner distribation of out-af- plase coanection
of second-order Li Riley crowspver filier of Eg, (1)
(b) Wigner ditribution of in- conncction of second.

arder Lizkwite-Riley croxsover Aliter of Eq. (11),
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croxsovor of Eq. (5) 1 shown in Fig. 26 for the m-
phase and the out-of-phuse connections. Cledrly visible
i the tilting of the radintion pattern. In the case of an
\deal omnidirectional radistar the croas section in the
time direction ar every angle would be the same. Thes
the contour plot would only contain straight lines per-
pendicular to the time avis In the carc of an jdes!
directional radistor the contour plot would be sym-
metswcally tocated stound the 0% cross section. The
main lobe and side lobes are represented by separate
contributions or islands in the contour plot. A
The in-phase connection of the comstant-voltage filter

Fig, 25, Geomotry of two moocoincident drivers Distance
from the bafflo 1o field point £ is much larger than wacing
betweean Urivers.
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[Fig, 26(a)] shows the mun lobe at about —25% and a
side Jobe at about + 60", which ks shifted relative to
the main lobe in the time direction. The out-of-phase
connection [Fig. 26(b))| shows the main lobe at + 10°.
This connection has 2 smaller amount of radiation pat-
tern tilting than the in-phase connection, but both con-
nections are not well suited for noncoincident drivers

The directionsl representation of the all-pass cross-
over of Eq. (6) is shown in Fig. 27 for the out-of-phake
and e in-phase conmections. Fig. 27(a) shows the
main lobe a1 about ~ 18% and o side lobe al about + 607,
which is shifted in the time direction. The reverse or
in+phase coancction shown in Fig. 27(b) has the main
lobe at ahout « IR and a side lobe at about —6IF,
which precedes the main Jobe ta time. With this cross.
over, 100, neither of the two connections are well suited
for noocoincident drivers.

The directiona behavior of the compromise network
of Eq. (7) 1 shown io Fiy, 28 [ur the cut-of-phase and
the In-phase connections, The plot for the in-phase
conpection shows two fobes at about « 33" and — 387,
which are shifted in time relutive 10 esch other. It will
be cloar that this phasing should be reiected, but this
could alresdy be concluded from its smplitude char-
actoristic, which shows u Jarge dip at the crussover

frequency.
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The out-of phase connection 1 a much botter choice,
23 can be scen in Fig, 38(2). Ity transient response of
the main lobo |+ symmetrically located around the 0°
¢cross section. The two side lobes, however, are shifted
in the time direction, Therefote only the main lobe in
sligned with respect to time with the low- snd high-
frequency parts of the tatal transicnt rosponse on axis,
[Sec the time-frequency Wigner distribution s shown
in Fig. 23(a)] This will be clear if we realize that the
eross section at 2500 Hz of Fig. 2)4) equals the cross
section ut 0% in Fig. 28(a), Thus with this crossover
we are able (0 mamtun its time alignment within 4
limited symmetrically located beam width in the plane
of the two driver axes,

The last example in this section o the optimum
crossover network for neacoincident drivers a1 proposed
by Linkwitx [16]. This Linkwitz-Riley filter is the cas-
cade of two ientical Butterworth filtlers. Thus the order
of the filter i ulways cven. These filten resenble the
behavior of even Butterwarth filters, for example, the
second-ordor Linkwite~Riley flites, which can be de-
scribed by Eq. (11), has 3 simmlar behavios as the second.
order Butterworth filtee shown (s Figs. 23 and 2%,
However, the Linkwitz—Riley filtzrs have no peak in
the on-axis smplitude characteristic at the crossover
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Fig M) Direetions] Wigner disttidation ropreseatation of
In-phase conncction of founth-order Link iley crossover
filter i croasoves frequency (2500 He)

frequency. In this case, too, one of the phasings should
be rejected: the in-phase cotncction for the second-
order and the out-of -phase connection for 1he fourth.
order Linkwitz-Riley fltors. Both have two side Jobes,
which are shifted in the time direction, comparable to
those shown in Fig. 28(b)

The out-of-phase connection of the second-order
Linkwitz-Riloy crossover @ shown o Fig. 29, This
directional transient response resembles that of the
second-order Butterworth crossover showa in Fig.
28(a), and the wime discussion holds. The mn-phase
conaection of the fourth-order Linkwitz-Riley filter,
as shown i Fig. 30, mamtaias ite time alignment over
approximutely the same beam width. This will be clear
if we comparc the Wignet dintnibutions at different
angles for both crassovers. The Wigner distributions
of the second-order Linkwitz - Riley filter ut dufferent
angles are showan in Fig, 31 for the angles +30°, 07,
and = 3" The corresponding distribations for the
fourth-order Liskwitz~Riley filter are shown in Fig,
32 1t may be concluded that for the transient response,
t0o. the Linkwitz-Riley filters are the optimum cholee
for noncoincident drivers, provided that the proper
phasing iz used. However, from the directionul rep-
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resentation of the transient respanse it is clear that the
proper alignment with respect to time is only muintained
withia & limited beam width in the plane of the two
drives axes This beam width can be inceeased if the
spacing, between the drivers is decreased

4 CONCLUSIONS

In this paper we have been concemed with two topics
avociated with the transient behavior of loudspeakors
and joudspesker systems, First we discusied the inflo.

ence of the geometry of a radintor on the transiant
behavior of the on-axis sound sadistion. We huve shown
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that for @ ngid sxisymmectric radiator the plane piston
has the best transient behavior. The transient behavior
of dome-shuped radiators is also reasonable, especially
if the ratio of dome height to equivalent piston radius
is less than unity. The cone-shaped radiator, however,
shows i considerable transient distortion in the form
of a widening or spreading of the response in the time
direction at middle und lower frequeacies. Thin dis-
tartion 15 found with both the comoal cone-shaped ra-
diator and the bent cons-shaped radistor, like the coavex
and the coacave cone. The effect of the transicnt dis-
tortion can be reduced by fitting a dust cap. If the size
of the dust cap s increased, thus decreading the cone
cavity volume, the reduction of the transient distortion
will &¢ more pronounced.

The other topic of this puper was the tzansieat behavior
of some known crossovet filters for coincident and
nonceincident drivers. The types of crossover filter
functions were the constant-voltage, the all-pass and
the compromise 8lier functions. We also discussed un
optimum choice of the crossover functions for aon-
coincident drivers, the ull-pass Linkwitz-Riley Sleer
funchions. It was concluded that nooe of these filter
functions gives rise to any substantial trensient distortion
with colncident drivers, provided that the proper phasing
0 used. In the case of noncoincident drivers [t was
concluded that, for the transicol response, too, the

Linkwitz-Riley filtets aze the optimum choice, provided
that the proper phasing is used. Howeover, forall these
flter functions the proper alignment with respect to
time is mueinigined only on & limited beam width in the
plane of the two drivers’ axes, This heam width can
be inceeased if the spacing between the drivers (s de.
Gteayed
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6. Analysis of the nonlinear distortion at low frequencies’

The simplificd model of the electrodynamic loudipe
aker, the lumped parameter model, descnibed in
chapter 2 assumes the loudspeaker 10 be a linear
system, A loudspesker, however, shows small nonki-
nearities that produce typical distortion phenomena
Possible nonlinearities may be found in many pans
of the loudspeaker and it is convenient o tefer to the
lumped parameter model if the nanfincarities are to
be localized. A Vst of possible nonlinearitics is given
below.

A, Nonlismzarities v the mofor part (magsed sy
tem/ voice coil)

Al The force on the voice ¢oil in the case of a
constant cutrent drive depends an the posttion
of the coil, owing to the fuct that the clectromag-
netic coupling factar [ B.dl i a fusction of the
voice coil excursion. A typical / B.d/ vs. displa-
cement curve iy shown in Fig. 6.1,
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Fig. 0.1 Typeend foree wa. displucerment curve O an actual boudape
wher. The it gap length s 2 ssm sl dve voe ol helght o 10 tves

A2 The scelf-inductance of the voice coil depends on
ith pmition, because the voice oail protrudes
feom the central pole. This yields a reluctance
force proportional to the squured current [41)

F, = 'hf dl.(x). o1
dx

where x i the voice coil excursion

') The aumerical pnsiysis of the nonfinoar stortion of & soltapes
drives dectrpdynamee loudspesker, as described w this chapter, i
part of & M50 thesss 8y GLH van Lesuwon 421 The mepssraments
of (e nonisear respomes and of the unniinear componens
i seteyiniien were cartied out by WOELA M van Clijeet

A3 The voltage scross the ssll-inductance i not
only proportional 1o the time derivative of the.
current but shaws the relation:

di  dLix)dx
/= Lix)— + i —_
dt dx dt
Al The operating point of the permanent magnet s
influenced by the voice coil current
AS Eddy currents vecur which yield a nonlinear
damping force

6.2

B Nonlinearities in the mechanical part.

Bl Theforce ve displucement curves of the loudape.
aker spder and outer rim are not straight lines
and show hysteresis. A typieal foroe vs, displace-
ment curve of 4 spider s shown in Fig. 62

Fig 6.2 Typical force ve displacement curve of & spidec

B2 The excursian capability of the voice coil is
Himited (mechanical clipping). This nonlincarity
only oceurs at extreme drive levels,

B} Sub-hitrmonics are generated at the loudspeaker
cone [35]. This distortion occurs only at extreme
drive levels,

C  Nonlinearities in the sound radiation.

C1  Adiabatic distortion: the volume compression is
not proportional to the pressure but Yollows the
relation’

p.¥V 7 = constant. 63

C2 Doppler distortion: a low-froquency excursion
of the diaphragm yields & varying Doppler shifl
of a higher frequency tone. |t has been reported
that this distortion can be neglested in a practi-
cal situation [36).

It will be clear that the loudspeaker exhibits many
types of nonlinearity, Most of these nonlinearities ace
relatively small because the total harmonic distortion
in usuadly less thun a few percents even at high drive
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levels and It shows & maximum it the lower frequen-
cics where the excursion of the voice coil s masimum,
If we restrict our analysis to the lower frequency
range, around the foudspeaker’s fundamental reso-
nance (requency, then we have only (0 take into
account those nonlinearities that depend closely on
the voice coll excursion. In that case the most promi-
nent nonlineatities are

« The force factor | B 41, which depends on the voice
coll excursion (AL

« The electnic seif-indoctance, which depends on the
voice coll excursion (A3)

« The nonlinear suspension stiffness (B1),

The vibration of a loudspeaker diaphragm at low
frequencies rescmbles that of a mass-spring system
and the governing coopled differeatial equations ate
glven by

E= Ry+ 4+ Blx. 64

ALy D)
]

Bli=mx+ R ¥+ kv, 65
where £ is the voice coll excutsion

The nonlinear differential equation that describes the
nonlinear vibration can be derived If weapproximate
Bl kand L, by a truncated power series:

Bi= By + byx + bx*, 66
ko= ko + koo vkt 6.7
Lg= Ly, 4 hx 1,5, 68

In the pawer series 6.8 the lrequency dependence of
the self-inductance has been ignored. After insertion
of 6.6, 6.7 and 6.8 in10 6.4 und 6.5 and elimination of
1, one obtains the following differential equation for
the voice ¢oil excurhion:

ax + fix + yX + &€ +

AEx & bx® & exk b dx 4 exE 4 fiF v ik
+AE S + B+ OO + DR+ EXN+
Fxid 4 Gaxs = K, 69
where the torms with orders higher than three have
been discarded. The parameters in this equation are
listed in Appendix C.

6.1 Solving the nonlinear differential equation.
The nonlincar differential cquation that describes the
vibration of the loudspraker can be solved by means
of numerical methods. Two of these methods are
deseribed bedow.

Ha

Series expansion of the solution.

We assume the voltage E 1o vary sinuspidally sccor-
ding to Egcos (an) and the voice coil excursion (o
satisfy the series expansion

€= By 4 A sin(e) + A, sin Qo) +

Ay sin (3an) .

+ B, cos(wt) + 8Byc08 (2ai) + B, cos (Bor). ..
6.10

The expansion i truncated after the K-th term and
substituted in the differential equation. The resuleant
equation must be satnfied for any £so that the factors
of sin (meor) and cos (awr) vanish. This yields o st of
Ik nonlinear equationy with Ik unknowns and a
dependent equation that determines 8§, This set of
nonlinear equations can be solved numerically. The
method, however, is tather cumbersome, because we
wave 1o rewnte the whole set of nonlincar equations
if another nonkmear effect i taken into pecount

Direct integration.

Another method that can be used (o solve the nonline-
ar differential equution & direct Integration. The
differential equation is written as a set of [irst order
differential equations that can be integrated numeri
cally 123} The excitation is a sinusoidal voltage
starting it ¢ = 0 and the integeation ts terminated if the
response is stationary, i.¢. the difference between the
sojutions of two successive cycles is minimal. The
higher harmonics can be found by hurmonic analysis

However, both methods are rather cumbersame if,

for example, a difference frequency distortion com-

ponent has to be determined. More powerful analy:l-

cal technigues also are avilable:

« the Vollerra series expansion of the response
[37.38).

= the modelling of the system nonlisearities with a
plecewise-lincar approsimation |39)

The main features of these two methods are:

~ the Volterra series expansion has 1o be trincated in
a numerical analysis alter the a-th term, so that it
desctibes the nonlinear response of the system up
10 1he neth order term,

= the Valierra series s only suited for small nonfinea-
rities and a limited input signal, to guarantes the
Volterra series to converge.

« the piecewise linear modelling approcimates a
nonfinear component charactenistic by h finite
number of linear pieces, and is able to cope with
hysteress effects, which is not passible with the
Vaolterra serics eapansion.

In the remainder of this chapter the loudspeaker's

nonlinear response will be modelted using the Volier-

14 SeOes expansion,



6.2 Volterra series expansion.

The loudspeaker is assumed to be a nonlinear, time-
invarant system, The response of such o system can
be written in a Volterra senecs expansion if the
nonlineanties and the input signal are sufficiently
small to guarantee the convergence ol the senes and
il the response is unambiguous [3738), which exclu
des a description of hysteresis effects and subharmo-
nic generation [35]

The response p(r) of the system can then be written in
the form

o
RUES .{ him x(t—1n) dz +

6\8
ﬁ\’

h:"..t:’ ““ '., !(“' t:' df. ‘fz + 6-"

byt m.5) x1— 1) Xt —15)

-

e
~8
B\!

At e de, de, + L -

where x(1)is the system input attime tand the b s are
gencralized impulse responsces. The frst term repre
sents the convolution for a linear system,
Throughout the remainder of this chapter we wil use
a truncated Volterra serics. which was truncated after
the third-order term.

It should be noted that the lovdspeaker response
cannot be writtén as an ordinacy power series of the
input, This Is only possible for & memoryless or
frequency-independent {dispersion-free) system, like
a network with nonlinear resistors. In that case the
impelse responses are Dirsc pulses and the Volterra
series degenerates into @ power senes. The loudspea-
ker, however, i a dispemiive system, for which we
have to take the past values of the input into kecount,
which leads 1o a Volterrs series description.

By analogy with linear system theory, we can also
find u refation between the Laplace transforms of the
input und the output time signals [37,38).

Y(py= H(p)X(p)+ A (Hyppy) Xipy) Xipo)h +
AL (popay) X)) Xpg) X + ..., 612

in which A and A7 denote the "contraction opera:
tors™ or “association of variables™ [37,38]. The opera-
tor A transforms a function of two varisbles into »
function of & single variable and i defined by the
integral transformation

L

1
Yip) = — | YUp—s, ) dx. 6.13
P ryeres 3 AP

The operator A% is defined in a similar way for 2
function of three variabies

The system  Tunctions M p),  Myip.ps) and
H(p,py.py) are the multidimensional Lapiace trans.
forms of the corresponding impulse responses h,(1),
Balt, ) and hy(4,.0,0,) In the Volterra series,

The function H,(p) » the lincar system response
function. The system response function H,y(p pyhcan
be found by driving the system with the signal
expip, 1) + expip,r), which yields the responye

SMUHpup) + M Hy(pypy)

4 2B Noop p), 614

and the system function Hy(p,.p.py) by driving the
system with the signal expip, 1) +exp(p,1) + expip 1),
which yiclds the response

HHp o)+ T Hy(papsps) +

&P Hpupyps) 4 ORI (p b py)
3P H(pupypy) +

_k(:p;omu ”‘(hh.p" F

R L HIW}vP\) -

ISP I H (pupipy) 4

IR M iy 4

6T Hip papy) 6.15

It can be poted that the fonctions b, und H, ure
symmetric {37 38L e.g hy(r,5)= hfr,r).

6.3 Lumped parameter model system functions.
6.3.1 Voltage drive
If the loudspeaker is driven with a voltage of the form

E, =o' 4 o b o, 6.16

theén the voice cod excursion can be written in the
form

i) = gpde™ + gilp) e 4 oglp) e £

CRIN Y gt MmN 4 @l Py LU LTS &
Glpapy) €PN 0

QP papy) et BT &

Substitating this equation in the differential Eq, (6.9)
yields the linear, the second-order and the third-order
response terms. The linear response term equals

(a+ fp,+ ypi v dpl)
Eq 6,17 describes the voice coil excursion yersus

wiey) = L b
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input voltage The sound radiation, however, i pros
portional (o the voice coll acceleration und therefore
we define system functions that describe the voice coil
accelerntion versus input voltage The first-order or
linear system function equals

Hip) = maln).
The second-order response term equals

619

QApapy) = —_
=@ilp * 0D 4P uyipy) {ﬂ’l )T

+ 2t pd) + dipi ¥ pd) v Apyrpy) 4
+ 3pps + 20+ a (

o vul'P:’)} v

and Hylpopy) = Y(p, * po) galppy). 6.21

and the third.order term equals

PPk = = 9Py = st 1) ,i:. (r* ¥), 622

and

Hylpypspy) =

‘% QP+ % P (g * 0% py)° .Z::' v+ Y)
6.23

The parameters of Eqs. 6.18-6,23 nre listed in Appen-
din C,

6.3.2 Current drive
IT the excitation of the loudspeaker 15 a current, the

governing diffecential equation of its vibration at low
frequencics is given by

Bli=mi+ Rx+ hkx + F,, 6,24
where F, is the reluctance force (¢f. Fgq. 6.1).

The curtent is sssspmed to be of the form
(w4 e g, 624

Substituting Egs. 6.1, 6.6 through 6.5 and 6,25 in the
differentiul Eq. 6.24, yields the linear, the second.
order and the third-order response terms. The lincar
response term equals

Bl,
Hipy) = . 6.26
oA (p?m*"km"ﬂ,
and
Hypy) = pf AR 627

o

The second-order response term ts given by

PP = :
by tapd = a ot =2k, q(p dayip = |

h . 628
(py =P mt(p, + PR, = Ky

and
Hylp,py) = Woipi+ py) qslpyy) . .29

The third-order response term equals

PPy =
b4} = 2byB)— 2K, (C) - 2D} + 2L(H)

3 . 60
(P = patpyym+ip +p+pdR, + A

where the terms A to E are given by

A = qulpepy) * qdpirs) + ey

8 = qi(pdapd * g * 4,(p0g(py)

C= q,ip)aspapy) = 4ulpdadp,p) +
@ (PaAp, )

D= qpp . afp) - qipy)

E= g,(p) + q(p)) + qip5),

6.1

and

Hy(ppypy) = Yo lpy 4 py v ps¥ axlpyipspy) . 632

6.4 Lumped patameter model inverse system
functions.

The description of a nonlinear system by its system
functions & particularly suited to demonstrate the
principle of a distortion reduction circuit. The res-
ponse of the nonlinear system was shown to be

Y(p} =

ujw X(p) + A LHJLppd X(p,) X(py)) +
ASH P ooy Xpy) Xipa) Xipyhh 643
where the Volterra series s troncated afier the third
feem.

The inverse circutt 15 defined by the equation

X(py =
Gip) YIp) + A{Gypyps) Yipg) Yoyl +
AG (ppsrs) Yip,) Yips) Yipy) .

I this series o the Yolierra series wis truncated
After the thitd order term, Substiluting Eq, 6.33
into Eg. 634, and ignoring terms with an order
higher than three, yiclds
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Xip) =

G,lp) Hi(p) X(p) + A{1G,(p, =+ pg) Hilppy) +

Gy(pypy) Hypy) Hipol X(p,) X(py)) +

AUG(py+ s+ py) Hilpopapy) +

?)(PM‘:J’;) H,(p,) Hy(ps) Hi(py)l Xip)) Xipy)
Py -

In the denvation the following propesty has been
\sed |35}

6.35

ALHp v ps) Gipupshh = Fip) A(Glppy)t . 636

This equation hax to be satisfied for all values of X(p),

which yields the equations
|
G B _emrminny 0-37
W )
= Hyp,.p5)
GoApopsd = 5 Hh3s
) Hp) Hy(pg) Hilp, + 1))
and Golpypy ) =

H,(py) Hi(pa) Hy(ps) Hy(py +py+py)
The first equation (Eq, 6.37) is the inverse of the lincar
transfer funclion, However, it 13 alvo possible to
define s nonlinear inverse circuit that only inverts the
nonlinesr terms. The inverse cicuit can be described
with the equation

Zp) = Kyp) X(p) + A(Ky(pyps) Xpy) Xing)) +

ALK ppaps) Xipy) X(p2)d Xpy)) 6.40
and the loudspeaker response is given by

Yip) =

HJ(’) aP) * M”}"l’?}’ Z(P‘) Z(P;” iy

A “‘)‘Pn}’r’)) Zpy) Z(’..) Zp R (641

Kerr |

Tip vip!

Fig &3 toverss nondbesr carowit Tor loudipauker disortion
reduction

The total response of the cascade of the inverse circuit
and the loudspeaker should be

Y(p) = H,(p) X(p).
for all values of X(p), which yields the equations:

6.42

Kip) =1, 6.43

“toeepy) ) aimyey)

Kipygh) » —ns . 644
{0 Hip,+pm) 2q,p, 0y
and
= Hy(pypay)
K ' = ._.__!_..l_._._. =
ad P.N’)) H.(F: rpst
1 akp s A4S

6qdp +h+’,’)’-
Inverting only the nonlinear terms of the Volierra
series may be advantageous if the inverse function of
the lincar part is physically unrealizable, which o¢-
curs when H (p) is 3 non-minimem phase function.

6.5 Synthesis of nonlinear system functions.
6.5.1 Voitage drive

Mudelling 4 nonlineas system function can be done
with frequency independent ponlinear clements,
such av & squarer, and requency-dependent linear
clements {38,40)

Combination of Egs. 619, 6.21 and 6.23 with Egs.
643, 6,44 and 6,45 yields the distortion reduction
circuil system functions:
K'(p) =1 % 6&“
Kipps) = qyim) qipy) (Aaa+b) +
(aB+c)(p, 4 py) + (ay+ d)ip 4 p))° +
(ab+e)(p+p)' — pypday+d) — f +
(Mad+e)—g)(p, + D, hal
and

s

Kypyppry) = ' .‘::.(-V" Y). 6.48
Asan example the distortion reduction cirouit imple-
mentation of Egs. 6,46 and 6.47 Is shown in Fig 6.4,
The clements of the circuit are amplifiers (1), adders
(2), squarers (3) and the filer g,(p), all of which can
casily be realized. However, the clement p 8 a
differentiator, which is more difficult to implement,
The higher order distortion reduction circuits can
also be synthesized, but show an increasing complexi-
I)’.

6.85.2 Current drive

The distortion reduction svstem functions for the
current drive case, which are found from Egs. 643
through 6.45 and 6.26 through 6.32, can be realized
more easily. The linear term equals

Kip)=1. 6.49
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The second-order 1erm is given by

Kdpyps) =

-1 .
gy (p) + q(ph = 2kqpgip) + 1),

281,

and the implementation of Eqs. 6.49 and 6.50 i

shown in Fig. 6.5,

The third-order teem equals

Ks(ppapy) =
-1
S + 2 - 2k, - bk
T 15,3 4) b1 8 WG = ok, (D} +
2’:‘&,0 651

and ns impiementation s shown in Fig. 6.6,

5, ol

H.' 63 |mplementanion of 3 voltygs deive second onder divonlos reduction cirguit

a, (o)

Fig, 0.3 haplengatation of & currens Erlve second-order Srortion rsduchion clreus

o r:l}—‘

a,p

+
'pl_ ""

Fig 66 Implementotion of n current de(ve thicdonder ditontion teduction clecult Db (hind-order seem anlyh The implementation of

Kyl pyopad 1 xhiiwn in Fig 6.4
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The distortion reduction system function for the
current drive case, which includes the inversion of the
lincar term, cin also be eusily realized. s (irst-order
term equals

6.52

The second-ardes term is given by

Qupyry) =
= Hyp,ps)
"10’1)"“}‘1)”“’0 +p)

= Yaqylpyps)
(FW:)’QI(’!)‘IJ(P:M!(}N *r)

6.53

or

Q)pyps) =
|
2Hi,

(bt e
b, - '
Py Yaqitp)  aipd
W, I ]
(ﬂr?:’, U’!Px)"l(ﬁu Wips)

Its implementation is shown in Fig. 6.7,

6.54

The third-order teem equals

Quppnpy) =
_— ’!L.(’.' ,P,J)}
H(p ) H ) Hip ) Wi (py + oy + py)
= = Yoy 03 P5)
(Ppzrs @ P a P (P (g + 13+ o)

which can be written in the form

=

6.55

1
“iv

1
- ' - ——
Qylpypppy 681,

[ b4} + 26,08 = 2k, (C) ~ 6kAD} + 2B}
L Upy ety Yy )y (Pa)gy (D)

where the terms A through E can be found from Eq,
6.31. Its implementation is shown in Fig 6.8,

T

6.8 Calculated versus measured nonlinear
response of an electrodynamic loudspeaker.

in the preceding sections a Volterra series analysis of
the nonlinear response of an electrodynamic loud.
spenkes was presonted. Compared with other types of
analysis, this analysis has two advantages
- The anulysis of the physical model puts the relative
significance of the different sources of nonlineari-
ties into evidence, To obtain thisinformation from
experiments s very difficult in practice.
= In general, it & possible 10 desigh an lnverse
nonlinear distontion reduction circuil if the nonli-
near system functions ure known,
In this section it will be shown that the analysis
described in the previous sections indeed predicis the
nonlinear response of 1 loudspeaker with a reasona-
hile accuracy. '
It can be argued that the linear and nonlincar
responses of individual loudspeakers may differ,
Therefore twelve different loudapeakers (Philips
ADSOS0Y W4) were measured in atest box (25 liters)
The measurements Included the on-axis lingar fre-
quency response and second and thicd order harmo-
nie and intermodulution distortions under free field
conditions. From these measurements it was conclu-
ded that for low frequencies below about 250 Hz all
loudspeaker responses are fairfy similar. This |s
illustrated in Figs. 6.9 and 610, Fig. 6.9 shows the
on-axis linear and third harmoeaic responses of two

Fig. &7 implementasion of o current drine seconid-order dlutaeton redaction ¢lremwm accotding 1o B, 6 58

—

= i

1

712

Kilpppoy) —a

Figi 64 Implementasion of o eurmnt drive thind-ocder distormm reductoon corou acooiding te Eq. 855 The mplemenmision of

Ky p2at) o shown in Vg 64
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Fig 6.0 Froquency responae of two repomentat i ve woofer laudape.
akeey. The Hnoor respirnse e indicated with L, whareas 92 and d1
are (he second und thisdonder harmune dutortion products
(tamed 20 dB), respectively, The vemcal acale i arbiiraty

represeniative loudspeskers which weredrivea with a
sinuseddal input voltage of 2 V RMS,

Fig. 6,10 shows the samc on-axis lincar responses and
a second and a third.order intermodulation product.
The curve that is indicated with (im+ 2} shows the
vesponse ut (f, + L) irf, i fixed ot B0 Hz, as a function
of f. The (im+3) curve shows the response of
(245 + Lo with the same input signal. The vertical
scales of both Figs 6,9 and 6.10 are arbitrary.

ol
olz-_{:..}_‘\a... P hbiiitaaid —

o €N o 00
roamncy Myl bryuency M2 -

Fig. 0.10: Frequency ropotie ol two represeitanve wooler loud-
speakern The lisear reaponss |6 idicated with L, whetess the
fus +2hand (im o+ ¥) ace second and third order intermadudntion
Products, which are 1ahed 20 48

Although the résponses of different loudspenkers are
fairly wimilar, the lincar responses show small ircegu-
larities, which are not predicted hy the lumped
parameter model. The aceelesation of the voice coil
shows a smoother response, at low frequencies, is in
accordance with the lumped parameter model prs-
dictions. Also if 1s known that at low frequencies the
loudspeaker response is proportional 10 the voice cotl
ecceleration, Therefore we will use the voice ool
soceleration data of a single loudspeaker for compa-
rison of measured und calculated responses, This
loudspeaker was modified in the following way: an

70

accelerometer (Broel and Kjaer type §307) was
mounted on the voice coil former, which increased
the total moving mass from 17.8 to 191 grams. 1t is
assumed that this modification does not influence the
noniinear elfects of interest (force factor, suspension
stifTness and voice coil sellsinductance),

6.6.1 Moasuroemont ol loudspeaker linoar
parameters and estimation of the nonlinear
characteristics.

The lincar loudspenker parametery can be measured
with a siraightforward technique [43]. The ozl mo-
ving mass was found 1o be 191 grams (including
accelerometer), the volce coll resistance was 3.2 Ohm
and the mechanical damping was 1.0 Nov/m.

The nonlinear parameters (force factor, sell-induc-
uance and suspension stiffness) were messured as a
function of the volee call excursion. The coefTicients
of the power series (Egs. 6.6, 6,7 and 6.8) were found
from a least-squares curve fitting of the measurement
data. The curve fitting of the force factor measure-
ment data yiclds the coefficients:

B, = 50§ £ 0.05[N/A)

b = =23 £ $[N/Am]

by = —4%000 + 1000 [N/Am?]. 6.57
The spring constant of the unmounted loudspesker s
a function of the oxcarvon exhibite & hysteresis as
shown in Fig. 611,

Fag A 00 Peece v dlaplscement curve of the suspemion siffnes
of ian snmoonied wooler loodspenker

Curve fitting yields the following values for the
coefficients Ky, & and A,

ky = 574 = 30(N/m]

k, = 24000 = 2000 [N/m7)
ky = 3.210% £ 0.6 10° [N/ 6.5%
A dynamic measurement of the suspension stiffness
(from the fundamental resamance frequency) vielded
a value of 1120 N/m, This large discrepancy between
the static and dynumic spring constants riises ques.



1vons as 1o the reliability of the measured data.

The spring constant of the unmounted loudspeaker
should be added to that of the box air spring constant.
This box alr stffness too s nonlinear and its charac
teristic can be evaluated analytically, We assume the
box air compressian 1o be an adiabatic process, Le
the total pressure (po+p) and the total volume
(¥ + ¥) obey the rolation

(o * P (Vo V)" = poT,

where y = 1.4, p, s the static pressure, p, + p the
instantancous pressure, ¥, the static yolume and
¥y ¥V the ingtantancous volume

The box air stiffoess spring constant is given by

6.. s’

- dF, dp,+p)
= — - S 6.60
fuox dx B dx

where S is the effective cone surface and x is the cone
excursion. Rewriting Eq. 6.59 In the form

(Pot PH(Vo* ST = p V], 6.61

and differentinting with respect to © ylelds

L= ~¥Spa b P VS 6.62

ix

Combination of Egs, 660, 661 and 6.62 yields
~tre )

Ko = 957 22 (Hﬂ) ; 6.6

v,
o °
The power serics expansion of (| + x)" Is given by [44]

asar=r+ E {(5)<].

.04
which o used 10 approximate 6.63 by
Bl ()
Koo =¥ —= |1 = (1) {— ] ¢
by = v, (r+1) V
(74D (r+2) (3)] ; 665
Va

The coefficients of the series expansion of the box
stiffness are found 1o be

Kpurg ™ 2270 [N/m],
Koou, = —4357 [N/m],
Kyuuy = 5925 [N/m).

The coefficients of the series expansion of the total
stiffness are the sum of the respective terms of
unmounted loudspeaker and the box air stiffness:

6.66

ky = 3389 [N/m],
k, = 19500 [N/m7],

k, = 3.2210" IN/m) 6.67

The last parameter to be determined is the volce coil
sell-Inductance. The measurement of the voice coil
self-imductance was done by fiving the voice coil ata
kown excurdon L and mesyuting the magaitude and
phase of the electrical input impedance. This self
inductance was found (o depend both on the volee
coil excursion and the frequency. The coefTicients for
the series expansion of the seifvinductance in the
vacinity of 100 Hz were determined by 4 least-squares
curve fitting of the measured data:

bg, = 1.510 7 [H)

= <83107% £ 7107 " [H/m]|
l, 334 09 (M/md) 6,068
6.6.2 Harmonic and intermodulation distaortion:

The measured values in the series eapansion coefTi-
cients of the nonlipenr component chatacteristics
were used (o evaluate the second-order and third.
order distortion components of the volee coll accele-
ration, The first result s shown i Fig. 6.12

2 2.3 ~aa3d " A {'\ A & 2 o aaad 24
0 00 wm »n w
L L frorancy [HE] -

Fig 002 Maunured (righ) and calcualaved 1=ty curves of the lemesr
L segind Barmanic (A2) anid hitd Sarmonie | ) responses of (lie
voide coil acceleration (arbitrary vertical sceis)

The linear corves showa reasonable resemblance, but
although o resemblance can be seen in the qualitative
behavioe of the distortion curves, it will be clear thst
the quantitative agreement is not satisfactory, In the
preceding section it was argued thit some care has 10
be taken in using the measured values of the nonline.
ar component characteristics, because of the large
discrepancy between the stutically and dynamically
measured guantitics. Therefore the coefNcients of the
excursion-dependent terms in the nonlinexr charac:
teristics were modified 10 fit the sctual measured
distortion responses, This was done by first fitting the
second-order harmonic response data in a current-
dniven model, which eliminates the influence of the
seil-inductance, after which theself-inductance series
coclficients in the voltage-driven model were adjus-
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ted. Thin procedure was repeated for the third-order
harmonic distortion, The resultant responses are
shown in Fig. 6,17 and the gualitative agreement
between the distartion responae curves is reasonable
at frequencies below 200 Hz. The measured and
modified series expansion coefficients of the nonline:
ar component charpcteristics are listed in table 6.1,

- -

e — A

bS]
el y (Mg | Vagpenty M|~

Fg 600 Messured (nght ) wnd cwleutnred Uert gusvey of the Hinear
(L) vocand harmonic (42) andt thind harmon ke (63) respomacs of the
yoecr call scselerabion (Arblcrary weriical site)

parameter measured optimization  dimension

valve resull
by -2} ~230 (N/Am]
by — 45000 -1,0.10°  [NJAmd)
K, 24000 60000 (N/m?)
k, 322000 353100 (N/m")
l ~0.083 0150 [H/m)
8 33 50.0 {H/m?)

Table 6-1: Measured and madified series expansion
cocfficients.

The valee of k, shows a good agreemeat, the valuex
of by, k, and /| differ by about a factor of two and the
values of b, and Ly dilfer by mote than ane order of
magnitude.

The set of modified cocllicients wan used to evaluate
a second- and a third-order intermodulation distor-
tion. Fig. 6.14 shows the response at f, + /5 (im +2)
and 2,44, (im+3) for a fixed frequency f, at
50 Hz, ay a function of the second frequency f;.
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Fig 6 18 Meavared {rght) anct calostated Def 1) cirves of the Sinpus,
seopnd-aedee (im 4 2} and thied order (= + 1) imermodulation
pesponees of the voloe coll scceteraton wih an arblirary sertical
Make

Although no perfect agreement between cilculated
and measured responses is obtained, the resemblance
is reasonable.

6.7 Discussion,

The agreement between meusured and caloulated
distartion daty of the voice coll acceleration was
found to be reasonable at low frequencies belaw
about 250 Hz for second and thind-order harmonic
and intermodulation distortion components. It may
he concluded that the modol is reliable in describing
the second snd third-order distortion responses for
an electrodynamic loudspeaker at low lrequencies.
It was found necessary, however, to modily the
coefTicients in the series expansion of the nonlinear
component characterstics (by curvefilting of the
measured data) in arder (o improve the agreement
between the measured and cafculatod data, Possible
explanations for the discrepancies are
= The difference between statically and dynamically
measured dats raises questions as 10 the reliability
of such measurements.
= The model s too simple, but the distortion mecha-
ninms used are capable of managing other distors
thon mechanisma to some extent,
= The model in w00 smple because the nonlincar
compuonent characleristics exhibit hysteresis and
froquency dependence.



7. Conclusions

Chapter 2 of this thesis presents d descnption of a
lumped parameter model of an ¢lectrodynamic loud-
speaker, which is capable of describing the behavior
of the loudspeaker at low frequencies. The model fails
10 describe the loudspeaker behavior at higher fre-
quencies, L.e. above the trunsition frequency (cf. Eq.
2.4), Also the model cannot cope with the nonlinear
ties of an actual loudspeaker,

More sophisticated modehs of the |oudspeaker, which
supplement the simple lumped parameter model, ure
discussed in chapters 4, $ and 6.

In chapter 3 a new descniption af the transtent
respomse of a loudspeaker or loudspeaker system is
proposed: the Wigner distribution of its impulse
resporise. This Wigner distribution i shown 1o be &
powerful fool for evaluating the (trunsient) time-fre.
quency response of a loudspeaker,

The Wigner distribution allows the introduction of
objective optimization criteria for both a single trans-
ducer and a combination of transducers. Devistions
from the idesl behavior can be locited. For example,
the decaying ringing contributions of the beading
and membeane resomances of cone and dome loud.
speakers, 35 well as time defays and reflections, can be
recognized from the occurrence of spanous contribu-
tions.

Tosimplify the mierpretation of the dwtnbution or to
emphasize particular effects it may be convenient to
use an adapted representation. Examples are the use
of the analytical signal 10 suppress disturbing interfe-
rence contributions and the contour plot, in which
time delays are casily recogmized. In order to suppress
disturbing or irrelevant contnibutions one could hiso
average the distribution with 4 suitable window. It i
imporiant to note that although such processing may
make sense, we always have 10 return to the original
Wigner distribution of the signal if we have any
problem with the Interpretation of a particular repre-
sentation. It may be advantageous to carty oul a
conversion of the nxes, ¢.g 2 logurithmic frequency or
amplitude scaling This might be important when the
deviations of the timé-frequency behavioe from the
ideal behavior are to be emphastzed. This is closcly
related 10 the audibility of phenomenn, which is not
digcusned in this thess. 1t is clear that for a proper
evaluation of the significance of deviations from
ideal time-freguency responses, it s important (o
have more knowledge about the audibility of these
deviations. However, the audibility of many transiont
phepomena is not yet known

It & satisfactoey theory could be found for this
impartant domain of scoustical perception, it might
be possibleto uverage the Wigner distribution withan
uppropriate function, which would result in o repre.

sentation yhowing only the audible conteibutions of
the distribution. Given the state of the art concerning
our knowledge aboul the perception of acoustical
transient phenomena and our ability to formulate
mathiematical or physical modes of this beating
mechanism, this requires much additional research.
The Wigner distribution can be very useful in this
study, since #t gives i proper distribution of the energy
of the stimulus signal, which allows an accountable
application of werghting, avetaging and transforma-
tion.

Aho considered s the usefulness of a lingar-phase
loudspeaker design (not 1o be conlused with time-
alignment of separate transducers). Such an approxi-
mated lnear-phase behivior 5 oflen claimed to
uffect the transtent response of a loadspenker favora-
bly. From the Wigner distnibutions of the minimum-
phase and lincar-phase filter systems (Chaprer 3,
Figs. 18 and 21) ivis clear that the only differences are
the position of the "ears™ relative to the mountain
ridge nnd the delay of thiv mountamn ridge.

The “ears”™ in the graphical representation of the
Wigner distnbution ol an actusl loudspeaker system
are located in freguency regions that are assumed to
have hardly any effect on perceptional phenomena.
If these frequency regions are not considered to be
important, then there 15 no difference between the
minimam- and linear-phase systems. This ndicates
that the need to design a loudspeaker system with an
approximated linear-phase behavior is questionable.
The influence of a nontighd cone oo the sopund
radiation has been discussed in chapter 4. The sound
radiation from & nonrigid cone increases in the
brenk-up frequency region. The average incroase is
correctly predicted by the membrane model, i.¢. the
model in which the bending stifTness vanishes, In the
break-up frequency region the ideulized (lossicss)
membrane model differential equations show a sin-
gularity on the cone, the position of which moves
from the outer to the inner edge with increasing
frequency according to Eq. 4. 11, Aty pping of encrgy
at the singularity on the cone in the lossless membra-
ne model was reported by van der Pauw [32), which
effect results in o large transverse umplitude of the
vibration a1 this pomnt. This large transverse amplito.
de of the membrane vihration generates a bending
vibration at the site of the singularity, However,
hending waves cannot propagate at the inner cone
part (between the inner edge und the singularity
point), 25 shown m Rel. [25], and will decrease
exponentially with increading distance from the sin-
gularity point.

Al the outer conc parn (between the singulanty point
and the outer edge), bending waves do propagate and,
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alter reflection at the outer edyge, lead to stinding
waves. In effect, a1 the singularity we find & conver:
ston [rom membrane energy into bending enesgy (32)
The influence of the material damping on the mem-
brane vibration m the break-up frequency region
small, because the conversion of energy to bending
waves can be interpreted g 3 damping mechansm.
On the other band the bending waves are strongly
influenced by the material damping.

The yound radiation of the nonrigid cone can be split
into the contnbutions of the independent solutions of
the differential equations that describe ity vibration,
I contmst (o a piane plate, the membrane vibrations
in the cone have a transvense component in the
displacement and thus contribute 1o the sound radia-
tion. 10 the break-up frequency region the amplitsde
of the transverse membrane vibration is relatively
large, which results in & rise of the sound radiation in
the broak-up frequency rogion, At frequencics below
the break-up frequency region bending waves cannol
propagate and a generated bending wave will decay
expanentially. Therefore, the sound radiation below
break-up Is mainly determined by the membrane
solutions,

In the break-up frequency region the sound radiation
due 1o the membrane solutions of the conical-shaped
and concave cone show a considerable nse. The
contributions of the bending solutions to the sound
radiation of a cone with a conical shape are amall
compared with those of the membrane solutions and
cause a fine structure on the sound pressute curye.
The contributions of the bending solutions to the
sound radiation of a concave cone shape are even
smaller and can be neglected.

The convex cone shows only 2 small rise in the sound
raduation of the membrane solutions, The contribu:
tions of the bending solutions to the sound radiation
are much higher and can no longer be neglected. The
bending solutions yield a number of bending reso-
nmance peaks and dips in the break-up frequency
region,

The moving average of the sound radiation n the
breaksup frequency region, which is carrectly predic-
ted by the membrane model, is strongly mfTucaced by
the voice conl mawe. Such a mpss yields an additional
roll-off of the sound radiation in this frequency
region, Therefore, the sound radiation of u concave
cone with voice ¢oil mass shows a peak which
otiginates (rom the membrane solutions. These mem-
brane solutiony are not very sensitive 10 4 matesipl
damping in the bresk-up frequency reglon and (he
peak nmplitude is hardly affected by such a damping.
The sound radiation from a convex cone with a voice
coil mass shows & number of peaks and dips that
ongmate (rom the bending solutions, which vanish
after upplication of some suitibie smoothing, The
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amplitudes of these peaks and dipy can be decreased
by increasing the matenal damping.

The choice of a cone shape depends on the material
properties. For example, metal has a lange specific
mass and the thickness of a metal cone should be
small in order to limit the tots! moving mass, which
yields a small bending stiffness. The ratio E/p
celatively large compared with that of a commanly
used cone material sych as paper, so that the break-up
froquency rogion starts at relatively high frequencies
Furthermore the matersal damping of b metal is
small, Therefore the concave cone shupe s optimum
for a metal cone the influence of 1he beading reso
nances is minimal and the break-up peik i located at
relurively high feequencies,

A commonly used cone material, for example paper
o1 plastic (e.g. polypropylene) material, has a much
smaller ratio of E/p and a much larger material
damping, which is able to dampthe bending resonan.
cey effectively. Therefore the conver cone shape 18
optimum for such a cone material: the sound pressuce
response shows 4 smooth curve (provided that the
hending revonsnces are damped sufficiently) which
extends towards relatively high frequencies.

In Chapter 3 1wo topics wssociated with the transiens
behaviar of loudsprakers and loudspeaker systems
have been discussed. Section 5.1 considen the influ-
ence of the geometry of a radintor on the transient
behovior of the on-axis sound radiation. It i shown
that for a nigid axisymmetnic radintor the plane piston
has the best transient behavior. The transient beha-
vior of a domeahaped radiator is dlso redsonuhle,
especially if the ratio of dome height to equivalent
piston radius bt less than unity, The coneshaped
radiator, however, shows a considerable transient
distortion in the form of & widening or spreading of
the response in the time direction ut middie and lower
frequencies. This distortion s found with both the
straight cone-shaped radiator and the bent cone-sha-
ped radiator, like the convex and the concaye cone.
The effect of the transient distortion can be reduced
by fitting a dust cop. If the cone cavity volume is
decreased by increasmny the size of the dust cap, then
the transient distortion will be further reduced

The wpre of sections 52 and 53 s the transtem
behavior of some known crossover filters for oinci-
dent and noncaoincident deivers. The types of crasso.
ver filter functtons are the coastant-voltage, the
all-pass and the compromise filter function. Also
discissed m an optimum choice of the crossover
functions for noncoincident drivers, the all-pass
Linkwitz-Riley filter functions. It is concluded that
naneof these filter functions gives rise to any substan.
tial transient distortion with coincident drivers, pro-
vided thal the proper phasing ix used: In the case of
noncoincident drivers it s concluded that, for the



transient cexponse 100, the Linkwite-Riley filters are
the aptimum choice, provided that the proper pha-
sing i used. However, for all these filter functions the
proper alignment with respect 10 time is mamtained
only on a limited beamwidih in the plane of the two
drivers” axcs. This beamwidth can be increased if the
spacing between the drivers is decreased.

Finally in section 6 it is shown that the low frequency
distortion of an elecirodynamic loudspeaker ¢an be
predicted from a Volterma series model.

The agreement between medsured and calculinted
distortion data of the voice coil ncccleration is found
10 be réasonable for low frequencies below about 250
Hz for second and third-order harmonic and intet-
modulation distortion companents. It may be con-
cluded that the model is reliable in describing the
second and third-order distortion responses for an

ciectrodynamic loudspeaker at low frequencicy

1t 55 found necessary, howeser, 1o modify the coeff-
cients in the series expansion of the nonlinear compo-
nent characteristics (by curvefitng of the measuced
data) in order to improve the agreement between the
measured and calculated data, Possible explanations

for the discrepancics are

~ The difference between stationlly and dynamically
mgasred dath raines questions as to the rellatility
of such measurements.

~ The model 1t too yimple, but the distortion mecha-
nisms used dre capable of managing ather distor.
tion mechanisms (0 some extent.

~ The model is too smple because the nonlinear
componenit characteristios exhibit hysteresis and

frequency dependence,
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Appendix A: Matrices of the thin shell ditferential equations.

The matrices 4, A, and 4., of £q. 43 are given by:

2 in’ 2=Eh
M - @' pRxrh = an () con (@) 0
r
2xEh .
Ay ™ ﬂdn (@) cos (@) - cos’ () — 'pdmrh O
r
2z %
o 0 o8 (
- 12¢ " .
0 e " sin (®) |
Re ¢
Ay =(4y)T = =<k e and
R, .
! 0 veos (¢)
L h -
~ 0 0 0 gi
(1= 1
- i - 0
A2 Eh 2xr
1201~ 1
: 3 20-w 1
Eh  2mr 3]
where R is the radius of curvature in the meridional - yio0d (g1}
direction, Eisthe Young'smodulesand pthedensity 8, = 8,, = =L
of the shell material, @ i the angular frequency, @ o ’
the angle betwoen the normal on the shell surface and ( 1, vsin w)) E
the axis of symmelry, v 15 Poisson’s ralio, r is the R,
distance from a shell element 1o the axis of symmetry
and h is the shell thickness,
and
The coefficients B,,, B, By, Cyand G0l Eq. 413 o (1 -v) . ('_ vsin(@)\* r
are given by: ¥ 2wE  \R, ' 2T’
2rarpr iy
a” o ("?‘,’:- E)o

T (£’ (@) - ar'pr),

T @ @)
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E
G = — 5 sin (@) cou (9). Hys = Hy = veoth (3)

and ' and
= - 3 =

¢, = - (L+"“'('))L_ "zx" ol (5 (1= v)

R, ’ =T 2xcos (@ coth (3)
The coefficients H, ., H,, and H,, of Eq. 421 are
given by: whero 7 is the complex variable as defined in Eg

- 3 4,20

H" = —M {1 - Mh:(?”inz )]

cos (¢



Appendix B: The geometrical and matorisl
parameters of the loudspeaker cones that have
been used In the numerical calculations '

discussed in Chapter 4.
&
|
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Appendix C: Parameters of Eqs. 6.9, 6.18, .20, 6.22 and 6.23

a = kyRg B,

B= (R, + Kyl + BEVBY,
y=(mR, + LR,/ Bl

&= mLy,/Bl,

b= (k,R.Bl, + b kR 85

0= (bR R, + 2 k,Bl, + 2k L, Bl, + 3b BEV B
d={bmR;+ b L R, + ||R Bl)BE

e = (bymLy, + |, mBl) BE

J = (LR, Bly = bLy R VBE

g = (LmBl, ~ bmL, )/ BE

A= (=2b,8l, ~ ) BE

B o= (kyRpBiy + b

shoRy + bk R)BE

€= (BReR,, = bikoly, + 31:koBly + 3k;Lig, Bly + 36, B+ blkg + 3K 0Bl + bk Ly
+ 3 Bl BI,

D= (bymR; + byLg R, + LR, Bl, + bl R/ BE
= (bymby, + lymBly + bt m) BE

F= (2'=R~8’o p

2b,L, R,V BE

G= (2LmBl, — 2 bymL, ) 8

Yo = alagslpg) +

kPt glpamy)

¥y = IBAQpayPary) (Pl (PLPs) + (PGP PN

Yz

Ye=rc(py 4 pe *+ P

Mo"“’?"?g"'
+dipi + pi
+d@pl + B

2
P+ 2000 9 (P ax(pamt +
+ P} + 2 (gl ps) ax(poy)) *
& 15+ 200 [gy(y) 9P

o= alpl 4 3+ o} ¥ Ipapslpy + 5 {9y(py) Galpap +

¢e(pf+’§
vewi v

+ 05+ 3paniey + my) ey lp el +
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+ Upsipy * pa) by (e alpypo )
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+ g (plpy * ppd b ey v PaBy 4 200a) (6i(Py) 3Pl -
* 2iplpy * pop + pips = pard + 2mpeps) lag(ny) aa(popsh



¥y = 24 4qsp)aips) + a0 0q)(py) + 4 (piqite)

Y. = 68 {a,(pa,py) qiipyit

Yy = 2C(p = py + pdayiey) ,005) 4,(00)

Y- 20(1'? + fé * P{”‘h(h) i) a(p

Yo =2E(p! + £ + ey aupy) @uips) 440
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On the design of broadband electrodynamic loudspeskers and multiway loudspeaker systems

Summary

This thesss discasses the analysis and design of broadband ¢lectrodynamic
loudspeakers und multiway loudspeaker systems,

After an introduction in chapier |, chapter 2 presents a description of a
lumped parameter model of an electrodynamic lowdspeaker, in terms of an
analogous electric circuit, Such a simple model can be used (o derive many
properties of the lovdspeaker and serves as & bawi for further discussions
The application of the Wigner distribution in the analysis of the loud-
spesker response in discussed in chapter 3. The Wigner distribution of »
signal can be interpreted 4y a distribution of the signal energy in time and
frequency. It is & basic time [requency distabution, and it has properties
that allow sumple physical interpretations. Furthermore the Wigner distn-
bution facilitates the interpretation of other time-frequency distributions
since these distributions can be expressed as a convolution of the Wigner
distribution and a weight function determined by the particular distriby.
tion cansidered. The Wigner distribution of the impulse response of a
lovdspeaker can therefore provide useful information about the transient
behavior of the loudspeaker, and it enables a designer 10 formulate
optimization criterin for this bebavior.

The influence of the didphragm bresk-up on the sound radiation can be
predicied by calculating numerically the vibrations of a noarigid loud-
speaker diaphragm, which is the topic of chaprer 4,

In chapter 3 theinfluence of the cone depth on the sound radiation is treated
in section 1. In that section the sound radiztion from a radiating surface is
calculated by solving the Helmholtz equation numerically,

Sections 5.2 and 5.3 discuss the consequence of a Crossover nctwork in 2
multiway loudspeaker system for the transient response of the total system,
Finally chapter 6 gives an overview of possible noalinsarities in o practical
elocteodynamic loudspeaker and presents a model of the nonlinear loud-
speaker behaviar which can be used to predict the low frequency distortion

of a loudspeaker.



Samenvatting

Dit proefschnift beschrijit de analyse en het ontwerp van elektrodynami.
sche luidsprekers en meerweg luidsprekersystemen

Na een inleiding in hoofdstuk 1, geeft hoofdstuk 2 cen beschrigving van het
lumped-parameter model van cen elektrodynamische luidspreker in de
vorm van eecn elektrisch vervangingsschema. Een dergelijk eonvoudig
model kan gebruikt worden om eigenschappen van een hndspreker te
verklaren en dient als basiy voor de verdere diskussies,

Hoofdstuk 3 bevat cen diskussie van de toepassing van de Wigner-distribu-
tie in de analyye van de responaie van cen luidspreker. De Wigner diastributie
van cen signaal kunnen we interpreteren als de verdeling van de signaal-
energic naar tijd en frequentie: Het is een basis tijd frequentic verdeling en
heeft een aantal eigenschappen welke cen eenvoudige fysische interpretatie
van de distributie mogelijk maken. Verder is de Wigner disteibutie geschike
voor het interpréteren van andere tijd-frequentie distributies, omdat die
distributies geschreven kunnen worden als een konvolutie van de Wigner
distributic en een woegfunktie welke bepanld wordt door de specifieke
distributie. Daarom kan de Wigner distributie van sen luidspreker nuttige
informatic leveren omirent het trunsient gedrag van die Juidspreker en steit
het cen ontwerper in staat om optimaksatie keiteria voor dat gedrag te
formuleten

De invioed yvan het opbreken van het luldsprekermembrain op de geluids-
afstraling kan voorspeld worden door numenek de trillingen van een
niet-stijf luidsprekermembrann te berekenen, hetgeen beschreven wordt in
hoofdstuk 4.

De invioed van de konusdicpte op de geluidsafsiraling wordy beschreven
in hoofdstuk 5. In dat hoofdstuk wordt de geludsafsiraling van een stralend
oppervlak berekend door de Helmholtz vergelijking numerick op te lossen.
Hoofdstuk § behandelt ook de inviced van het overnamefilter in ecen
mecrweg-luidsprekersysteem op het transient gedrag van de totate systeem-
responsie

Als laatste geeft hoofdstuk 6 een model dat de niet lineanteten vin een
elektrodynamische luidspreker besshrijft, wasrmes de laapfraquente ver-
vorming van een luidspreker voorpeld kan worden.

Het ontwerpen van breedbandige elektrodynamische luidsprekers en meerwog-luidsprekersystamen
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Een geschikie groothesd vour het beoordelen van hel (2koestisch) transient
pedrag van cen luidspreker s een reflekticvrije ruimie is de Wigner distri-
butie van de (akoestische) ympulsresponsie van die lusdspreker in dic
ramite.

1INt proefacheif) hostdatun )

F;

e meest geschikie vorm van een luidspreberkonus wordt bepaald door de
mechunische eigenschappen van het konusmuterinal.

AN proefsahn () heofduiuk 43

3

Het maximale vermogen dat con luidspreker kan verwerken wordt gedefi-
nicerd als LS/R. De grootheid U s de effecticve wanrde van de maximaal
102 e laten spanning van het tesisignaal op de luidsprekerkiommen en R
is con door de fabrikant op e geven nominale weerstand van de spreck-
spoel. De waarde van R mag niet groter zijn dan 1,25 maal de minimale
waarde van de modulus van de ingan gsim pedantie van de luidsprekor in het
(frekwentie-jwerkgebiced. Wat echier ontbreek! 1 cen specifikatie van de
minimale waarde van R,

EC ]r ), punimn 1.3 gn 15.1)

4

Een clektrodynamische luidspreker wordt messtal zodanig ontworpen dat
in het werkgebled van de luldspreker de amplitude van de door de
lmdspreker geproduceerde geluidsdrut, gemeten in een punt in een reflek-
tievrije rulmte, als funktic van de frekwentie bij konstante elekieisehe
mgangsspanning 20 goed mogelik onafhankelijk is van de frekwentie. Dit
legt beperkingen op aun hed rendement van die ludspreker.

(L L Peranch, Acouticn, MuGiraw i1, New York, 1954

-

$

Voor het verminderen van de niet-lingaire vervorming in een elektrodyna-
mische luidspreker worde dikwifls gebruik gemaalt van een tegenkoppeling
gestuurd door de stroom door of dé spanming over de spreckspoel, Een



tegenkoppeling gestuurd door het signaal van ¢en aparte mechanische
bewegingsopnemer op de spreckspoeiioker hun echier betere resultaten
leveren, omdat deze ook de vervorming tengevalge van het plaatsathanke
lijke statische magneetveld onderdroke

(. Scharer and I Ddck, Cooteatling the summid pexsswrs by controfling

the mavement of the diagihragm, Proc. of tha TTth Coev. of 1he Audim
Eng Soc. po 2208, Hambarg, 1983)

6

De nelging van cen papieren lindsprekerkonus tov het genereren van
subharmonischen neemt toe met de malingsgraad vin het papier. Dit 20u
verband Xunnen houden met het feit dat papier met cen hogere malings
graad een grotere stijherd bezit,

(PO Pedersan, SubHarmonics m Forcod (Ossdlutions n O pnise

Systents, Dusmiarks Natirvidenshabelige Sumfund, Tngenionidentos
heliigis Shrifier A A3, Copenhagen, 1933 )

7

De eis dar, gemeten n een reflcktie-vrije ruimre, de modulus van de
overdrachtsfunktie van een elekiro-akoestisch weergavesysteem onafhan.
kelijk is van de frevwentic, Tijkt tegensirijdig te ziin met het feit dat de
overdrachtslunktic van een raimtc waann 2o oen systeem gebruikt worde,
zeer grillig iv. Men moet echter, gebaseerd op paycho-akoestache gronden,
onderscheid maken tussen het direkte gefuid en de galin,

(). Blnoeer, Spabal Hearimg, MIT Press 1921

8

De penetratic van digitale technicken i de totale elektro-akoestyche keten,
inclusiel de gencratic en de perceptic van geluid, hoeft cen natuurlijke geens:
cen gelusdspoll faut zich niet digitaliseren, het menselijk cor evenmin.

B Wigssey, Dupieulization of Audia, ). Audio Eag, Soe. yol 26, no 10,
pag 139,199

9

«The purpose of computmg 15 msight, not numbers,” (R W. Hiamming)
Duarom verdient het asnbeveling om in cen kollege numericke wiskunde
pan cen Technische Hogeschool ook enige aandacht te besteden aan et
gebruik van computeralgebra



10

Het gebruk van et FORTRAN programmeettalen wordt bemoalijki
doordat de meeste bestannde programmabibliotheken geschreven zijn in
FORTRAN. Het verdient daarom sanbeveling bij de specifikatie van een
programmeeriaal ook de aanrocpwifze van cen in FORTRAN geschreven
Programima op te nemen.

"

Her optimaliseren van de reaponsicfunktic van cen optoch aviteem in
gangbare cekenpaketten gebeurt via een minimalisatic van de golffrontfou-
ten of van de geometrische dwarsaberraties, Dit levert echter nogal
uiteeniopende cindresultaten ap, Het verdient dan ook aanbeveling om als
doelfunktie van de minimilisatic cen kombinatke van de genoemde fouten
(e nemen.

(Code V User's manunl, Chaptes & Optica! Reszanh Assocantes, Misy
dena Califoemls, 1982)

12

I de akoestiek en soartgelijke disciplines wordt gebruik gemaakt van soms
zeer verfiinde numericke analyse- en optimalisatictechnicken. Een systema-
tische synthese zoals we die uil de netwerkthoorie kennen, 2al echier bij
decgelijfke compliceerde continue fysische systemen, door het grote aantal
vipheidsgraden, veijwel onmogedijk 2. Daarom 23l de invoering van
numerieke technieken in het ontwerpproces nooit de vindingrjkheid van de
ontwerper overbodip maken.

P e Wit A LML Kuseer and F 3 O de teck, Numerical Optimicy-

ton of the CrommOver Filters in & Multisay Loudepeshetivatem,

Procesdings Mth Conermtion of the Awho Enginessing Society,
o 28T, Parg, (VR4 )

13

Bii het oplossen van knelpunien in om wogennet wardt vaak eerst gedachy
aan cen vergroting van de capaciteir. Echier, gezien & krapte in de
averheidsfinancién zouden alle middelen am de bezettingsgraad van auto’s
1e vergroten, bijvoorbeeld het  poolen™ m het woon-werkverkeer, eveneens
overwogen dienen te worden,



