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1. lntroduction 

A loudspeaker is a transducer that is designed to 
convert electric energy in to acoustic energy. lts object 
is to generate an acoustic pressure wave1, that resem-
bles the electric signa\ as closely as possible. 
This thesis discusses the design and optimization of 
an electrodynamic loudspeaker. The designer of such 
a loudspeaker can take advantage of a theoretica! 
model, from which the behavior of a specific loudspe-
aker can be predicted. At low frequencies this model 
is relatively simple: the loudspeaker behaves as a rigid 
piston and the sound radiation is al most equal to that 
of a plane piston in a rigid baffle [1]. At higher 
frequencies some deviations from this simple model 
occur: the loudspeaker diaphragm is not rigid any 
more, it shows a " break-up". Also the influence öf the 
cone depth on the sound radiation must be accounted 
for. Both effects exert an influence on the steady-state 
and transient response of the loudspeaker. 

Section 2 of this thesis presents a description of a 
Iumped parameter model of an electrodynamic loud-
speaker, in terms of an electric analogous circuit. 
Such a simple model can be used to derive many 
properties of the loudspeaker and can serve as a basis 
for further discussions. 

To judge the quality of a practical loudspeaker we 
. need one or more figure(s) of merit for its behavior 
and some criteria for an optimum design. 
To this end we consider a loudspeaker as a transmis-
sion system with the electrical voltage a t the terminals 
as the input signal and the sound pressure at a space 
point (throughout assumed to lie on the loudspeaker 
axis) as the output signal. The interrelation between 
the input and output signa[ is quantitatively characte-
rized by the impulse response or (equivalently) by the 
Fourier transform of this impulse response, the com-
plex-valued transfer function, under the assumption 
that the loudspeaker can be viewed as a linear, 
time-invariant system. 
The impulse response is defined as the sound pressure 
due to an electric Dirac impulse. An ideal loudspea-
ker can be defined such that its impulse response is a 
Dirac impulse itself. This implies that its acoustic 
response is a delayed replica of the electrical excita-
tion. As a consequence the magnitude of its transfer 
function has a constant va lue as a function of 
frequency, while the phase response is linear. 
However, these properties can be obtained in a 
limited frequency range only, because a nonvanis-
hing response from DC to infinite frequencies 1s 

1) The human ear is an acoustic pressure receiver (1,28]. 

physically unrealizable. Therefore we define a semi-
idea/loudspeaker as one for which the above require-
ments are satisfied only within the range of audible 
frequencies. 
Particularly the magnitude of the transfer function of 
a semi-ideal loudspeaker has a constant value for all 
audible frequencies. This requirement is widely ac-
cepted [1 ,2]; it is checked with the aid of a swept sine 
wave as an electric excitation signal [3]. 
As for the transient response of a seini-ideal loudspe-
aker, many measurement methods and representa-
tions have been developed, forexample the tone burst 
response and the cumulative spectra [4], but the 
interpretation and the formulation of an optimiza-
tion criterion is problematic. Nevertheless, all infor-
mation about the transient behavior of the loudspea-
ker is contained in its impulse response. The problem 
is then, how to extract this information from the 
impulse response, or to find a representation that 
allows the formulation of an optimization criterion 
for the transient behavior. 
A new a nd promising representation for the transient 
behavior of a loudspeaker is the Wigner distribution 
of the impulse response. The Wigner distribution can 
be used to recognize some physical processes in a 
loudspeaker and to define an optimization criterion 
for its transient behavior. This Wigner distribution is 
discussed in Section 3. 

The influence of the diaphragm break-up on the 
sound radiation can be predicted by calculating the 
vibrations of a nonrigid loudspeaker diaphragm 
numerically, which is the topic of Section 4. 
The influence of the cone depth on the sound radia-
tion is treated in Section 5.1. In that section we 
calculate the sound radiation from a radiating surfa-
ce by solving the Helmholtz equation numerically. 

The next point is the necessity to divide the total 
frequency range in to different parts that are covered 
by separate loudspeakers. This makes it necessary to 
design a loudspeaker for each separate frequency 
range and yields the problem of how to combine 
different loudspeakers. To increase the freedom in 
combining different loudspeakers in to one system we 
apply a n electrical crossover network. The conse-
quences of this network for the frequency response 
have been extensively discussed elsewhere [5,6]. A 
numerical technique for the optimization of the 
crossover network can be found in Ref. [34). The 
network may also, however, affect the transient 
behavior, and this is discussed in Sections 5.2 
and 5.3. 
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So far the loudspeaker has been assumed to be a 
linear system. However, an actual electrodynamic 
loudspeaker shows small nonlinearities that give rise 
to distortion com ponen ts in its response. An overview 
of possible nonlinearities in a practical electrodyna-

8 

mie loudspeaker is given in Section 6. This section 
also presents a model of the nonlinear loudspeaker 
behavior, which can be used to predict the low 
frequency distortion of a loudspeaker. 
Finally Section 7 presents some conclusions. 



2. The lumped parameter model of an electrodynamic 
loudspeaker 

The main part of ari electrodynamic loudspeaker is a 
vibrating diaphragm radiating sound in to space. The 
vibration of the diaphragm is maintained by an 
electrodynamic motor, i.e. an electrically driven voice 
coil in a statie magnetic field. The construction of 
such a loudspeaker is shown in Fig. 2.1 fora cone-sha-
ped loudspeaker. The diaphragm can be plane-, cone-
or dome-shaped, the last especially for high-frequen-
cy loudspeakers. 

cone-shaped 
diaphragm 

mag net 

outer cone suspension 
or Dm_ 

Fig. 2.1. Cross-section of an electrodynamic cone-type lo udspea-
ker. 

The diaphragm is suspended at the outer edge by 
means of a nexible surround or rim and at the inner 
edge by a so-called spider. This rotationally symme-
trical spider centers the voice coil in the air gap of the 
magnet system. It has a small stiffness for axial and 
a much larger stiffness for radial movements of the 
voice coil. The air gap has a statie radial magnetic 
field, which is maintained by a permanent magnet. 
The simplified mechanica( behavior of the loud-
speaker is that of a mass-spring system. The spring is 
formed by the outer edge suspension and the spider1• 

The mass is formed by the diaphragm, the voice coil, 
the eff ective sus pension moving mass and the mass of 
the air load. 
Again in a simplifying model, the sound radiation 
can be viewed as a one-port with a certain "radiation 
impedance". This view excludes the description of 
directional effects, but admits a correct interpreta-
tion in terms of power: the power dissipated in the 
one-port is the radiated sound power. 
The simple mass-spring model and the one-port 
model of the sound radiation together form the 
"lumped parameter model" of a loudspeaker. lt 
allows the formulation of some approximate analyti-
ca! expressions for the loudspeaker sound radiation 
due to an electrical input voltage. 

1) A loudspea ker is usua lly mounted in a closed box with a limited 
volume. This acoustic box volume at the back of the diaphragm 
acts as a mechanica! spring at low frequencies. In our model this 
spring, which cannot be neglected, is incorporated in the spider 
spring constan t. 

The lumped parameter model of the loudspeaker 
involves the following assumptions: 
- The diaphragm of the loudspeaker is rigid, i.e. the 

shape of the diaphragm does not alter when the 
diaphragm is in motion. 
The radiation impedance is equal to that of a plane, 
rigid piston in an infinite baffle, the innuence of 
the nonplane shape of the diaphragm on the 
radiation impedance being ignored. This is a good 
approximation at low frequencies, where the wave-
length is much larger than the cone depth or <lome 
height. 

The properties of such a rigid diaphragm loudspeaker 
can be represented in an electrical analogon, the 
so-called impedance-type analogous circuit of Fig. 
2.2 [7]. In the analogous circuit the relations between 
the electrical and mechanica( quantities are represen-
ted by a gyrator. 

E 
'--Cll>------u-'_ 

Ü=Bl ïJ 
-l==Bl î 

Fig. 2.2. lmpedance-type analogous circuit for an electrodynamic 
loudspeaker. 

The parameters in the circuit are: 
RE : electrical resistance of the voice coil [!l] 
LE : inductivity of the voice coil2 [H] 
I : voice coil current [A] 
U : induced voltage in the voice coil due to its 

motion [V] 
B : air gap flux density [T] 
l : effective length of the voice coil wire [m] 
F : Lorentz force on the voice coil [N] 
V : velocity of the voice coil [mi s] 

k, : total spring constant [N/m] 
m1 : total moving mass, without air load mass [kg] 
Rm : mechanica! damping (force over velocity) 

[N.s/ m] 
The mechanica! radiation impedance Zrad can be 
written in the form: 

2.1 

and its frequency dependence is shown in Fig. 2.3. 

2) This inductivity exhibits a weak frequency dependence due to 
eddy currents in the iron centra! pole. 
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Fig. 2.3. The normalized real and imaginary parts of the mechani-
ca! radiation impedance of a plane, circular and rigid piston in an 
intïnite baft1e versus frequency. kis the wave number and ais the 
radius of the piston. (After Beranek [1 ]). 

The quantity Xrad(w)/ w is the "air load mass" m1, 
which is constant at low frequencies. 
For a plane, circular and rigid piston in an infinite 
baffle the following low- and high-frequency ap-
proximations are valid [1,8]: 

p0w2na4 . 8p0 wa3 

zrad = + J ' for (l) w,, 2.2 
2 c0 3 

2p c2a 
Zrad = p0c0 na2 + j ____Q_Q_' for W >- wl' 2.3 

(l) 

where p0 is the density of air, c0 is the sound velocity, 
a is the radius of the piston and w is the angular 
frequency. 
The circular frequency where the acoustical wave-
length equals the circumference of the piston is the 
transition frequency: 

Co 
(l) = -1 a 

2.4 

If we add the air load mass m1 (due to the radiation 
impedance) to the transducer masses we get the total 
moving mass: 

m 1 = m 1 + m1. 2.5 

Many properties of the loudspeaker can be derived 
from this simplified model. As an example we derive 
an expression for the efficiency of the loudspeaker at 
low frequencies. Also we discuss the frequency de-
pendence of the sound power response under con-
stant-amplitude electrical excitation. 

2.1 The loudspeaker efficiency as a function of 
the frequency 

The transducer vibratory behavior cf. Fig. 2.2, is that 
of a simpte mass-spring system: 

10 

2.6 

The electrical source is loaded by the impedance 

(Bl)2 
2.7 

The influence of the inductivity LE is relatively weak 
and will be ignored throughout the remaining part of 
this section. 
The power supplied by the generator equals: 

where Re means "real part of' and Î = II 1 stands 
for the amplitude of the current. 
The radiated power is given by 

Combination of - F = Bl.Ï and Eqs. 2.6 and 2.9 
yields 

p = a 2. 10 

It is convenient to introduce three dimensionless 
variables: the mechanica!, electrical and acoustical 
quality factors Qm, QE and Qrad: 

1 
Q = -(km) 112 2.11 m t t ' Rm 

R Q = _E_ ( k m ) t /2 
E (B/)2 t t • 

2.12 

- 1 1/2 Qrad - -- (ktmt) ' 
Rrad 

2.13 

the last being frequency-dependent. 
The electrical quality factor Q Eis independent of the 
voice coil wire length /. It can easily be shown that the 
resistance RE equals 

2.14 



where ave and Vvc are the resistivity and the volume 
of the voice coil material respectively. Rewriting Eq. 
2.12 yields 

a 
Q = vc (k m )112 

E v B2 1 1 ' vc. 
2.15 

which is independent of the voice coil wire length. 
The resonance frequency of the mass spring system is 
given by 

- (k,)1/2 
COo - - • 

m, 
2.16 

Using Eqs. 2.8 and 2.10, regarding Eqs. 2.9 and 2.13 
through 2.16, and assuming Qrad::;;,. Qm, the following 
relation for the efficiency is found: 

pa 
TJ(CO) = - = 

PE 

{ 1 1 (CO co0 )
2
} QradQE Q2 +-Q Q + ---

m E m COo CO 

2.17 

2.2 The sound power response as a function of 
the frequency 

The next quantity of interest is the radiated power 
Pa(co) as a function of frequency. Using Eqs. 2.7 and 
2.11 through 2.13, we can rewrite Eq. 2.10 in the form: 

'2 1 Rraico). E 

pa= 2 ( %)'}, 2.18 

Qo % co 
where Q0 is the total quality factor defined by 
1 1 1 1 -=-+-+--. 2.19 

Qo Qm QE Qrad 
The acoustical quality factor is frequency-dependent, 
but its value is much larger than those of the electrical 
and mechanica! quality factors and we may write: 
1 1 1 - ::::;; - + -, 2.20 

Qo Qm QE 
which is independent of frequency. 
For frequencies co co, the radiation resistance Rrad 
is proportional to co2 (cf. Eq. 2.2): 

2.21 

The frequency-dependent part of Eq. 2.18 is given by 

co,, 2.22 

and its behavior as a function of f requency with 
parameter Q0 is plotted in Fig. 2.4. 

20 ..........,--.,............,,.........--.,..........., 
[dB] 1 0 

l..!o!. )2 t 0 l , :10 Jol _!!!lJ )21 
Oc2 "'O ... 

30 1--1...----+-t---+--+--+-t 

1 10 
--i.>/i.>o 

Fig. 2.4. The frequency dependence of the radiated power with 
parameter Q0. 

An actual loudspeaker is designed with co0 co, and 
Fig. 2.4 shows that Q0 :::::: 1 is an optimum choice if 
the power response should be flat. This flatness of the 
power response is due to the compensation of the 
decreasing diaphragm velocity (inversely proportio-
nal to the frequency for co > %) by the increasing 
radiation resistance (direct proportional to the squa-
red frequency for co w,). This flat part of the power 
response is the theoretica) operating frequency range 
of the 

W0 < CO < W 1 • 2.23 

At frequencies below the resonance frequency the 
diaphragm velocity is asymptotically proportional to 
the frequency and the radiated power will be propor-
tional to w4. 

At frequencies above the transition frequency the 
radiation resistance is constant and the radiated 
power will be inversely proportional to the squared 
frequency. 
Fig. 2.5 shows the behavior of Pa as a function of 
frequency with Q0 :::::: 1 in accordance with the rigid 
piston theory 

Pa 
[dB] 

t 
Wo Wt t.)__.,. 

Fig. 2.5 . The power P0 as a function of the frequency. 

The acoustic pressure expressed in dB will show the 
same frequency dependence as the acoustic power, 
provided that the directivity remains small. 

2.3 The need for a multiway loudspeaker system 

A theoretica! operating frequency range of the elec-
trodynamic loudspeaker is the constant part of 
P a(w), i.e.%< w < w" The lower limiting frequency 
of the range is determined by the resonant frequency 
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% of the mass-spring system of the loudspeaker in its 
enclosure and the upper limiting frequency is deter-
mined by the transition frequency w, (cf. Eq. 2.4), 
which is inversely proportional to the linear dimen-
sions of the loudspeaker. 
However, a small lower limiting frequency and a high 
upper limiting frequency make contrary demands on 
the size of the loudspeaker. 
The maximum radiated power of the loudspeaker 
equals (see Eqs. 2.2 and 2.9): 

p 
Umax 

2.24 
4 4 PoW 1r:a " 2 

= umax 

where vmax and ûmax are the maximum velocity and 
excursion capability of the loudspeaker diaphragm, 
respectively. 
Equation 2.24 shows that the radiation of a certain 
acoustic power requires a larger diaphragm excur-
sion capability, ifthe lowest frequency to be reprodu-
ced is decreased. The excursion capability of an 
actual loudspeaker is mechanically limited, which 
makes demands on the minimum diaphragm area. 
Such a minimum diaphragm area, however, puts a 
limit on the maximum frequency to be reproduced. 
Also the loudspeaker will show an increasing directi-
vity if we increase the frequency. Therefore the 
frequency range of a practical broadband loudspea-
ker system is divided into two or more frequency 
parts. Each of these parts is reproduced by a separate 
loudspeaker. The low frequency loudspeaker or 

12 

woof er is characterized by a relatively large radiating 
diaphragm surface and a large excursion capability. 
The high frequency loudspeaker or tweeter is charac-
terized by a relatively small radiating diaphragm 
surface and a small excursion capability. For a 
smooth transition between these two frequency re-
gions an intermediate loudspeaker can be used: the 
midrange loudspeaker or "squawker". 

2.4 Discussion 

The lumped parameter model is a useful tool in the 
design of an electrodynamic loudspeaker. However, 
it shows some shortcomings: 
- The sound radiation above the transition frequen-

cy is much larger than that predicted with the 
lumped parameter model. This is caused by the 
nonrigidity of the diaphragm at higher frequencies. 
Du ring movement, the shape of the diaphragm will 
vary as a function of time (break-up) and the sound 
radiation will be more complicated than that pre-
dicted from this model (Section 4). 

- The radiation impedance of a cone- or dome-
shaped diaphragm is not equal to that of a plane, 
rigid piston in an infinite baffle. The sound radia-
tion from such a nonplane diaphragm will show 
peaks and dips, which can not be predicted with the 
simple rigid piston radiation model (section 5). 

- The actual loudspeaker shows nonlinearities, white 
the lumped parameter model contains only linear 
elements (Section 6). 



3. Time-frequency distributions of loudspeakers: the application 
of the Wigner distribution * 

Chapter 3 contains a reprint of the article: 
C.P. Janse and A.J .M. Kaizer, Time-Frequency Distributions of 
Loudspeakers: the Application of the Wigner Distribution, 
JAES, vol 31, no. 4, April 1983. 

CORNELIS P. JANSE AND ARIE J. M. KAIZER 

Philips Research Laboratories, 5600 MD Eindhoven, The Netherlands 

The application of the Wigner disiribution in the analysis of loudspeakers is discussed. 
The Wigner distribution of a signa! can be interpreted as a distribution of the signa) 
energy in time and frequency. It is a basic time-frequency distribution , and it has 
properties that allow simple physical interpretations . Furthermore the Wigner distribution 
facilitates the interpretation of other time-frequency distributions since these distributions 
can be expressed as a convolution of the Wigner distribution and a weight function 
determined by the particular distribution considered. The Wigner distribution of the 
impulse response of a loudspeaker can therefore provide useful information about the 
transient behavior of the loudspeaker, and it enables a designer to formulate optimization 
criteria for this behavior. 

0 INTRODUCTION 

A loudspeaker is a transducer which converts electric 
energy into acoustic energy. An important quantity of 
such a transducer is the sound pressure at a point in 
space as a function of time as a result of the electric 
voltage applied to the loudspeaker connections. This 
function is determined both by the impulse response 
of the loudspeaker as well as by the Fourier transform 
of this impulse response, the complex-valued transfer 
function. 

The impulse response is defined as the sound pressure 
at a point in space as a function of time as the result 
of an electric Dirac pul se [ l J applied to the electrical 
connections of the loudspeaker. 

Although the impulse response fully determines the 
transient behavior of the loudspeaker, this information 
is not easily visualized by inspection of it, and this 
hampers the constitution of optimization criteria based 
on this function. To cope with this problem in the past 
many transforms or measurements have been developed 
for evaluation of the response of a loudspeaker. Their 
purpose is twofold: to give an insight into the physical 
processes that play a role in a loudspeaker and to de-
termine optimization criteria for the behavior of a 
loudspeaker. A short review of some functions and 

* Presented at the 71 st Convention of the Audio Engineering 
Society, Montreux, Switzerland , 1982 March 2 - 5 ; revised 
November 2, 1982 . 

measuring methods that have been used in audio en-
gineering follows . 

1) lmpulse Response. The impulse response can be 
approximated, fora limited bandwidth , by the response 
of the system to a pulse with a finite width [2], [3 J. 
However, as remarked before, it is difficult to extract 
relevant information or optimization criteria from the 
impulse response . 

2) Transfer Function. The transfer function contains 
the amplitude and phase characteristics as a function 
of frequency. The amplitude characteristic in particular 
has been used in order to optimize the steady-state 
response of a loudspeaker (flat curve). The amplitude 
and phase characteristics can be determined by means 
of a slowly swept sine wave [4], or dynamically by a 
rapidly swept sine wave or chirp [3], [5J. Also they 
can be calculated from the Fourier transform of the 
impulse response . 

3) Group Delay . The group delay is defined as the 
negative of the derivative with respect to frequency of 
the phase characteristic of the transfer function [ l J: 

t (w) = - d<f>(w) 
g dw 

The group delay can give an indication of the position 
of the acoustic center of the transducer. 

4) Tone-Burst Response [4 j . The tone-burst response 
determines the attack and decay response of a system 
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fora single frequency . 
5) Cumulative Spectra [2/. The cumulative spectra 

determine the attack and decay responses of the system 
fora frequency region. 

6) The White-Noise Autocorrelation Function. This 
function determines the transient behavior of a filter 
[6]. 

In this paper we introduce a new tool in the loud-
speaker field: the Wigner distribution. This distribution 
was proposed by Wigner [7]-as far back as in 1932-
for application in quantum mechanics. It was "redis-
covered" by Ville [8] and de Bruijn [9] who has given 
it a sound mathematica! foundation, and was recently 
recognized by Claasen and Mecklenbräuker [10]-(13] 
as being a powerful tool for time-frequency analysis 
of signals. lts potential application for audio systems 
was briefly mentioned by Gerzon in a comment [ 14]. 

Because the Wigner distribution of a signa! can, with 
some care, be interpreted as a distribution of signa! 
energy in time and frequency, it also has an interesting 
application in the description and interpretation of 
loudspeaker behavior, where both time and frequency 
response play such an important role. 

We will show that with the Wigner distribution it is 
possible to interpret the physical processes occurring 
in practical loudspeakers, and this leads the way to 
formulate criteria for optimizing the transient behavior 
of loudspeakers in an elegant way. 

The paper is divided into two parts. The first part, 
Section 1, gives a brief signal-theoretical review of 
the Wigner distribution and other time-frequency dis-
tributions . A very detailed description of the signal-
theoretical baékground of the Wigner distribution can 
be found in the references [ l 0]-[ 12]. Here we restrict 
ourselves to a formulation of the definition and the 
most important properties, which will allow the reader 
to understand the material of Section 2 without need 
to go deeply in to the references. Moreover we will 
give a discussion of the application of the Wigner dis-
tribution to study the transient behavior of filters and 
other linear systems. In Section 2 we will elaborate on 
the practical application of the Wigner distribution, in 
particular for loudspeaker systems. 

1 THEORETICAL PART 

In this part some theoretica! properties of genera! 
time-frequency distributions are described, while spe-
cific attention i.s paid to the properties of the Wigner 
distribution. 

Section 1.1 gives a genera! class of time-frequency 
distributions and a set of possible properties which can 
be useful when comparing different distributions. 

Several known time- frequency distributions are dis-
cussed in Section 1. 2 . The Wigner distribution appears 
to be a basic time-frequency distribution, in the sense 
that the other distributions can be described as a con-
volution of the Wigner distribution and some window 
function . The specific properties of the Wigner distri-
bution are described in Section 1.3. 
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Since most practical applications of the Wigner dis-
tribution will involve digital processing of sampled 
data, a numerical evaluation of this time-frequency 
distribution is required. This comprises the effects of 
windowing and sampling, which will be discussed in 
Section 1.4. In this section also a discussion is given 
of the analytic signa!, which will be used frequently 
when analyzing loudspeakers with the Wigner distri-
bution. ln Section 1.5 the relation between this Wigner 
distribution and two other distributions, of ten used in 
the field of audio engineering, namely, the cumulative 
spectrum and the spectrogram, is discussed. 

Some introductory examples of applications are given 
in Section 1. 6, where the Wigner distributions of well-
known filter responses are discussed. 

This theoretica! part is mainly based on the articles 
by Claasen and Mecklenbräuker [10]-[12]. Part 1 of 
their paper [ 1 O] discusses the properties of the Wigner 
distribution for continuous-time signals, and the prop-
erties for discrete-time signals are discussed in part II 
of their paper [ 11]. FinaHy, in part III of their paper 
[ 12] the relation is given between the Wigner distri-
bution and several other distributions. 

1.1. A General Class of Time-Frequency 
Distributlons 

In order to extract detailed information on the transient 
behavior of a system from its impulse response, several 
different time-frequency distributions have been pro-
posed. For example, the spectrogram and the cumulative 
spectrum in the audio field. These distributions generally 
have different properties . An efficient way to compare 
them systematically is to consider a general class of 
time-frequency distributions that includes them all. 

This genera! class of time-frequency- distributions. 
was introduced by Cohen [15], [16]. Each member of 
this class is given by 

wheref(u) is the time signal,f*(u) is its complex con-
jugate, and <f> is a so-called kemel function, repre-
sentative of the particular distribution function. 

In order t9 be able to give a particular distribution 
an interpretation as a distribution of its energy in time 
and frequency, the distribution has to possess certain 
properties. These properties prescribe certain constraints 
on the kemels. When we determine the kemel of a 
particular distribution that belongs to the Cohen class, 
it is possible to study its properties in a systematic 
way. A suitable set of properties was proposed by 
Claasen and Mecklenbräuker [ 12] . These properties 
and the corresponding constrairits on the kemels are 
listed in Table 1. 

The first two properties are very because they 



Table 1. Different properties P, and the corresponding constraints on the kemels. 
F(w) is the Fourier transform of the time signalf(I). 

P1 

P2 

P3 

p4 

P5 

p6 

Ps 

Properties 

w; <!>) dw = lf<rW 

w; <!>) dt = IF(w)i2 

If g(t) = f(t - to) 
then Cg(!, w; <!>) Cr(t 10, w; <J>) 

lf g(t) = f(t)è0' 

then Cg(!, w; <!>) = Cr(t, w - wo; <!>) 
Cr(I, w; <!>) = Cr*(I, w; <!>) 

If f(1) = 0 for lrl > T 
then Cr(l , w; <!>) = 0 for lrl > T 

If F(w) = 0 for lwl > f! 
then Cr(t, w; <!>) = 0 for lwl > f! 

w; <!>) dt 

Cr(I, w; <!>) dt 

f wC,(t, w; <!>) dw 

Cr(t, w; <!>) dw 

= ·18(w) 

!1(1) 

P10 Cr(t, w; <!>) 0 for all! and w 

enable us to consider the distribution as a distribution 
of energy. The integration of Cr over all frequencies 
at a fixed timet is the instantaneous power at that time, 
and the integration of Cr over all times at a fixed fre-
quency is the energy spectra) density at that frequency. 
If either of the properties is satisfied, then the integral 
over all times and frequencies will equal the total signa) 
energy. 

Properties P3 and P 4 state that shifts in time and 
frequency give corresponding shifts in the distribution. 
The next property, P5 , which is very convenient from 
a practical point of view, is that the distribution is real-
valued. 

The finite support properties P6 and P7 are important. 
They state that if a signal is bounded in time or fre-
quency, then its. distribution will also be bounded in 
the same time or frequency. 

The next two properties can be very useful for signa) 
analysis. Property P8 has the consequence that the center 
of gravity or average in the time direction at a fixed 
frequency of the distribution of the impulse response 
of a linear time-invariant system is equal to the group 
delay of the system at that frequency. The definition 
for the group delay of such a system can be found in 
the Introduction. The property P9 states that the center 
of gravity in the frequency direct ion at a fixed time of 
the distribution of a complex-valued signa! is equal to 
the instantaneous frequency. 

Constraint on Kemel 

<!>(Ç, 0) 1 for all Ç 

<j>(O, T) = 1 for all T 

<!>(Ç, T) does not depend on t 

<!>(Ç, T) does not depend on w 

<!>(Ç , T) = <!>*( - Ç, -T) 

T) dÇ = 0 for H < 2ltl 

f T) dT = 0 for li;I < 2lwl 

<!>(0, T) = 1 for all T 

<!>(Ç, T)I = 0 for all T a" t-o 

<!>(Ç , 0) = 1 for all Ç 

j_ <!>(Ç, T)I = 0 for all Ç aT T-o 

<!>(Ç, T) is the ambiguity function of some function w(t) 

The last property, PIO, is the positivity of the dis-
tribution for all times and frequencies. It can be stated 
that this property is one of the requirements that enable 
us to interpret the distribution as an energy distribution. 
However, this property is incompatible with the prop-
erties P6- P9 [ 12] . The corresponding constraint has 
been given in [ 17] and has the consequence that C r is 
a spectrogram with a window function w(t) . Therefore 
the only positive definite distribution functions of the 
Cohen class are the spectrograms. 

If we accept negative values in the distribution, it 
can be asked whether the distribution still has the phys-
ical interpretation of an energy distribution . The oc-
currence of negative values is consistent with Heisen-
berg's uncertainty relation which prohibits an arbitrarily 
sharp frequency discrimination with an arbitrarily sharp 
time discrimination [ 12]. Also, we can never assign 
an exact energy value to a time-frequency point of a 
distribution. We always have to satisfy Heisenberg's 
uncertainty relation which requires an averaging over 
a certain area in the time-frequency plane . In genera) 
we pref er the properties P6- P9 rather than the positivity 
property. 

Various distributions exist of which the kemel satisfies 
P 1-P9 [ 12], so to choose between these distributions 
we need an additional criterion. An important criterion 
is the spread of the square magnitude of Cr(t . w; <!>) 
which is di scussed in [ 18] . The spread of the square 
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magnitude is taken because large alternating contri-
butions can occur, as can be seen from the various 
formulas for the distributions of the chirp (see Section 
1.2) . In that case we can make our choice with the 
demand of a minimum spread of the square magnitude 
of Cr(t, w; <j>) . 

1.2 Some Known Time-Frequency Distributions 

In Table 2 some known time-frequency distributions 
with their kemels are listed . With the aid of Table 1 
the corresponding properties can be derived. From the 
set of properties we can judge the usefulness of the 
particular distribution . 

As an example we compare _the representation of a 
chirp, that is, a signa! with a linearly increasing fre-
quency: 

f(t) = (2) 

where o.t is the instantaneous frequency, for the Wigner 
and Rihaczek distributions. 

The Wigner distribution of the chirp is equal to [ 1 O]: 

Wr(t, w) = 21TÖ(w - o.t) . (3) 

This is exactly what we would intuitively expect: a 
distribution which is concentrated around the line 
w = o.t . 

The representation of the chirp signa! obtained by 
the Rihaczek distribution can be shown to be 

/21T ( · (w - o.t)
2 

. 1T) Cr(t, w; <!>) = exp J ·- 2o. - J 4 (4) 

while the real part of the Rihaczek distribution gives 

/21T ( ( w - at)2 1T) Cr(t, w; <!>) = V-;;- cos 20. - 4 · (5) 

Although the real part of the Rihaczek distribution has 
the same set of properties P 1- P9 as the Wigner distri -
bution, it has a large spread around the line w = o.t . 
This can be understood if we realize that a distribution 
may have large alternating contributions and still satisfy 
P 1-P9 . Therefore we also consider the spread S(t0 , w0 ) 

of the square magnitude at a point (t0 , w0 ) of the (t, w) 
plane: 

x ICr(t, w; <?)12 dt dw . (6) 

In [ 18] it is shown that this spread of the square mag-
nitude is minimal for the Wi gner distribution. This is 
especially clear when we compare the representation 
of both distributions for the chirp signa!. It can be 
concluded that the Wigner distribution is the better of 
the two . From Eq . (1) and Table 2 [or Eq. (9)] it can 
be found that any member of the Cohen class can be 
considered as a two-dimensiona l convolution of the 
Wigner distribution with a window function : 
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Cr(t, w; <!>) - T, W - Ç) 

x Wr(T,Ç)dTdÇ (7) 

where 

(8) 

This means that any other distribution of the Cohen 
class can be considered as a spread version of the Wigner 
distribution. Therefore the Wigner distribution can be 
considered as the basic distribution of the Cohen class. 
It is often easier to ex plain the properties of other dis-
tributions in terms of the Wigner distribution than di-
rectly from the distribution itself. This will be clear 
when we discuss the spectrogram and the cumulative 
spectra in Section 1 . 5. 

The Wigner distribution will be discussed further in 
Section 1. 3. 

1.3 The Wigner Distribution 

In this section the properties that are important for 
the application of the Wigner distribution to loud-
speakers will be emphasized. For this reason we shali 
discuss only the auto-Wigner distribution and not the 
more genera! cross-Wigner distribution [ 10]. 

The Wigner distribution can be evaluated both from 
the time signa! f(t) [ 1 O] : 

Wr(t, w) (9) 

and from the Fourier transform F(w) of the time signa! 
f(t) [10] : 

e+in
1F( w + 

x F* ( w - d!l . 

The two distributions have the relation: 

(10) 

( 1 1) 

The Wigner distribution has the properties P 1- P9 as 
discussed in the preceding sections, which makes it 
possible to interpret it, with some care, as a distribution 
of the signa! energy in time and frequency. 

Another remarkab le property is that the signa! f(t) 
can be recovered from its Wigner distribution at time 
t/2 by the inverse Fourier transform, up to a constant 
factor [JO] : 

f(t)f *(0) = ( eiw1wr( w) dw . (12) 

So apart from a constant calibration factor, no infor-
mation about amplitude or phase is lost in the Wigner 
distribution. (For complex-valued signals the constant 



Name 

Rihaczek 

Real part of 
Rihaczek 

Page 

Lev in 

Spectrogram 

Cumulative 
decay 
spectrum 

Cumulative 
attack 
spectrum 

Wigner 

Table 2. Some known time-frequency distributions with their kemels and corresponding properties. 

Cr(t, w; <!>) Kemel <J>(Ç, T) 
f*(t)F(w)eiw• 

Re{.f•(t)F( w )eiw•} cos( 

:
1
k-(w)l 2 = Re{2f(t)F,-(w)é'} e-it1,121 

- :t k -Cw) l 2 = Re{2f(t)F, • (w)é'} 

IF,(w)i2 

( 'TT8( -Ç) - k) e •it1,121 

( 'TT8(Ç) + __!_) e -;u,121 
jÇ 

Properties 
(Tab Ie 1) References 

[ 19], (20] 

(21) 

(22] 

(21] 

(12], (23] 

[2] 

[2] 

[9]-[13] 

Remarks 

Complex valued 

F,-(w) is the running spectrum 

F,-(w) = Lj(T)e-i- dT 

F,+ ( w) is the running spectrum 

F,·(w) = r j(T)e-i- dT 

Ww( -t, w) is the Wigner distribution 
of the window function w(t) 

F,(w) = f e-i-j(T)w(T - t) dT 

For F,+(w) see Levin 

For F,-(w) see Page 



will be complex.) 
Before discussing the numerical evaluation of Wigner 

distributions it is convenient to review the Wigner dis-
tribution of a combination of two signals. 

The Wigner distribution of the sum of two signals f 
and g is given by: 

Wr+g(t, w) = Wr(t, w) + Wg(t, w) 

+ 2 Re{Wr,g(t, w)} (13) 

where Re means real part of and Wr,g is the cross-
Wigner distribution defined by [ l 0): 

Wr.g(t, w) = e-i=/ (r + - dT . (14) 

The Wigner distribution of a convolution of two signals 
f and gis given by [10): 

Wr. 8(t, w) = Wr(T, w)W8(t - T, w) dT (15) 

and is equal to the convolution of the Wigner distri-
butions Wr and W8 in the time variable. 

The Wigner distribution of the product of two signals 
f and gis given by [10]: 

l Wrg(t, w) = 211' --"' Wr(t, Ü)W8(t, w - Ü) dü (16) 

and is equal to the convolution of the Wigner distri-
butions Wr and Wg in the frequency variable. 

As the last subject in this section we wil! discuss the 
occurrence of negati ve values in the Wigner distribution. 
It has been shown in [24] that the Wigner distribution 
of a function/(t) can only be nonnegati ve for the whole 
(t. w) plane if the function is a Dirac pul se or a Gabor 
function (fora reference to Gabor functions see [9, p. 
261]), that is, a function of the form : 

f(t) = ea/2+pt+-y' Re{a} < 0 ( 17) 

where a, 13, and"/ can be complex-valued . 
In Section 1. 1 it was explained that the occurrence 

of negative values in the distribution is consistent with 
Heisenberg's uncertainty relation which prohibits an 
arbitrarily sharp frequency discrimination with an ar-
bitrarily sharp time discrimination [ 12]. Moreover, for 
the Wigner distribution it can be shown that suitable 
averages of the distribution , in accordance with Hei-
senberg's uncertainty relation, always yield positive 
values [25]. 

The question arises whether it is such an advantage 
that the Wigner distribution gives a much sharper picture 
than the other distributions, as shown in Section l. 2. 
In our opinion the answer is affirmative because we 
have to realize that the other distributions always per-
form a fixed weighting, which depends on the particular 
transformation . 

The Wigner distribution allows one to choose any 
weighting function afterward. For example, it is even 
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possible to weight with a function whose dimension in 
the frequency direction is frequency-dependent and 
whose dimension in the time direction is in conformity 
with the uncertainty relation. This specific weighting 
procedure is of importance, for example, when a log-
arithmic frequency scale is used . 

1.4 Computational Aspects of the Numerical 
Evaluatlon of the Wigner Distribution: 
Windowing, Discrete-Time Signa!, 
and Analytic Signa! 

The practical calculation of the Wigner distribution 
from a measured impulse response cannot be performed 
directly: 

l) Due to the infinite integration boundaries the 
Wigner distribution can only be evaluated analytically. 
To be able to estimate the integral numerically , the 
signa! has to be weighted with a time-limited function, 
a so-called window function w(t) with the property that 
w(t) vanishes for ltl>T. 

2) In the preceding sections we only considered the 
Wigner distribution for continuous-time signals. To 
perform a practical measurement, where a digital com-
puter is used, we have to evaluate the Wigner distri-
bution from a discrete-time signa!. 

Therefore we have to window and to sample the con-
tinuous-time signa!, the effects of which will be dis-
cussed in this section. Also we will discuss the analytic 
signa!, because this signa! will be frequently used for 
the application of the Wigner distribution .to loud-
speakers . 

1.4.1 Windowing 

The windowed version of a continuous-time signa] 
f(t) is given by: 

.fi(T) = j(T)W('T - t) ( 18) 

where t gives the position of the window on the time 
axis. 

With Eq. ( 15) we can evaluate the Wigner distribution 
of the windowed signa!: 

x Ww(T - t, w - D) dü . (19) 

For each window position we get another Wigner dis-
tribution. Now consider only the cross sections where 
T = t. In this case the window is symmetrically located 
around T, and we obtain: 

x Ww(O, w - Ü) dü . (20) 

The new function of t and w is the so-called pseudo-
Wigner distribution proposed by Claasen and Meck-



lenbräuker (JO], (12]: 

PWD(t, w) = Wc.('r, w)IT=r (21) 

This pseudo-Wigner distribution closely resembles the 
original Wigner distribution when it is evaluated with 
a properly chosen window function. Compared with 
the Wigner distribution, the pseudo-Wigner distribution 
lacks the properties P2 , P7 , and P8 • From Eq . (19) we 
see that such a distribution is a spread version (leakage) 
in the frequency direction of the Wigner distribution. 
This spreading is equal toa convolution in the frequency 
direction of the Wigner distribution of the nonwindowed 
signal with the Wigner distribution of the window 
function. Therefore it will be clear that we do not have 
the finite support property P7 in the frequency direction. 
It can be shown [ 12] that windowing by means of w 
amounts to smoothing the Wigner distribution in the 
frequency direction . An important point is that the 
pseudo-Wigner distribution does not give a spread in 
the time direction as, for example, the spectrogram 
does, which will be discussed in Section 1.5 . 

When considering the inftuence of a window on the 
impulse response h(t) of a causa! system with h(t) "" 0 
fort > t 1, we see that the pseudo-Wigner distribution, 
evaluated with a window length T > t1, will closely 
resemble the Wigner distribution. In that case the 
pseudo-Wigner distribution almost has the properties 
P2, P7 , and P8, and this will improve further, without 
decreasing the time resolution, when we lengthen the 
window. The impulse response of a loudspeaker always 
satisfies the condition (h(t) "" 0 for t > t 1 where the 
window length T > t 1) on its impulse response and 
therefore we will refer to the Wigner distribution in 
Section 2, although we actually mean a pseudo-Wigner 
distribution. 

1.4.2 Discrete-Time Signals 

The transition from a Wigner distribution of a con-
tinuous-time signa] to that of a discrete-time signa] is 
not trivia!, and several definitions for the Wigner dis-
tribution for discrete-time signals are possible [ 11], 
(26], (27 J. We will use the definition given in [ 11]. In 
[ 1 O] it is shown that fora band-limited signa! [F(w) = 
0 for lwl > the distribution is completely determined 
by the samples: 

Wc(nT, w) = 2T L e -j2wkTJ((n + k)T)f*((n - k)T) 
f<.= -OC 

(22) 

where the sample time T satisfies T 7r/2wc, that is ; 
f c 4f, , where f , is the sample frequency:f, = llT. 
Eq. (22) is the bas is for the Wigner distribution of 
di screte-time signals . When T = 1 we obtain the 
Wigner distribution fora discrete-time signalf(n) with 
a unit sample period [ 11] : 

Wr(n , 8) 2 L e - i 2k8f (n + k)f*(n - k) . (23) 
k= .• QC 

For the case of a time-limited signa! it can be shown 
that Wr(n, 8) is completely determined by its samples 
in the frequency domain ( l l] . When the window w of 
the pseudo-Wigner distribution has a length M ;;;. 
2L - 1, w(k) = 0 for lkl;;;. L, then the pseudo-Wigner 
distribution is completely determined by its samples: 

( ) 

L-1 
PWD n, m ; = 2 L e-jkm 2"'1Mp(k)g(n, k), 

k= -L+I 

m = 0, · · -, M - 1 (24) 
where 

p(k) w(k)w*( -k) 

and 

g(n, k) = f(n + k)f*(n - k) . 

To evaluate the pseudo-Wigner distribution fora time 
n we can interpret Eq. (24) for M = 2L - 1 as a 
discrete Fourier transform (DFT) with respect to the 
variable k of the function p(k)g(n, k), which can be 
calculated efficiently using a fast Fouriér transform 
(FFT) procedure. However, such an FFT requires an 
even number of points. This can be solved easily by 
adding a zero to the series, so that M = 2L. 

The window p can be a known window like a Ham-
ming or a Kaiser window (28], or a rectangular window 
fora short impulse response . 

A detail is the fact that an FFT is mostly evaluated 
with the boundaries 0 and M - l. This is no problem 
if we realize that: 

e - jkm 2,,./M = e - j k(m +M)2,,. /M (25) 

If we rearrange the terms p(k)g(n, k) in Eq. (24) with 
respect to the k variable from -M/2 + 1, .. , 0, .. , 
M/2 into 0 , ." M/2, -M/2 + !, ." -1 , we can per-
form the FFT, which results in a frequency sequence 
from 0 to M - 1 (Fig. 1) . 

A more important point is the aliasing behavior of 
the Wigner distribution. The periodicity in the frequency 
variable of the Wigner distribution is 7T, whereas that 
of the Fourier transform is 27T. This difference is caused 
by the factor 2 in the exponent of Eq . (23). The re-
strictionfc 4f, in Eq. (22) indicates that we have to 
use a sampling frequency which is twice as high as 
that used fora Fourier transform. 

For an analytic signa! we can use the usual sampling 
frequency according to the Nyquist criterion , because 
the frequency spectrum of the analytic signa! vanishes 
for negati ve frequencies . 1t can be shown [ 11] that the 
Wigner di stribution has no alias ing contributions for 
any signal whose spectrum is nonzero on an interval 
smaller than or equal to 'IT (Figs. 2 and 3). 

In Section 1.3 it was stated that the Wigner distri-
bution can be evaluated both from the time signa! f(t) 
and from its Fourier transform F(w). Without going 
into details, we note that the requirements for evaluating 
a distribution from F(w) are similar to those described 
above for the evaluation from the time signalf(t). First 
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we have to start with a time-limited signal/(t), where 
f(t) = 0 for ltl > t0 . If t0 ,,;; 4/dr, then the frequency 
behavior of the distribution is completely defined by 
samples at distance dr in the frequency domain. 

After this a band-limited signa! is assumed, and it 

start 

n: = nmin 

for k : = -(L - 1) to (L - 1) do 
g(n, k) : = f(n + k) · f *(n - k) 

Windowing 
for k : = -(L - 1) to (L - l) do 

y(k) : = p(k) · g(n, k) 

Rotate and renumber 
for k : = ( -L + 1) to -1 do 

x(2L + k) : = y(k) 
for k : = 0 to (L - 1) do 

x(k) : = y(k) 
Add zero 

x(L) : = 0 

FFT 
{X(m)} : = DFT2L {x(k)} 

for m : = 0 to 2L - 1 do 

Wr(n , m : = 2 X(m) 

n: = n + 1 

yes 

stop 

Fig. 1. Flow diagram of the calculation of the Wigner dis-
tribution. 

ttx 1 xJ 
-n 0 n 

----0>- 8 

Fig. 2. Wigner distributio n alia s ing of a reaJ-valuéd time 
signa!. 
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can be shown that the time behavior of the distribution 
is completely defined by samples in the time domain, 
which are of the form WF(m1TIM , n) . If the requirement 
t0 ,,;; 41dr cannot be fulfilled, aliasing contributions in 
the time direction will result. However, this requirement 
is practically always fulfilled when considering an im-
pulse response of a filter or a loudspeaker. 

The evaluation of the Wigner distribution in the fre-
quency domain is sometimes more convenient for an 
analytically known system, in particular when its rep-
resentation in the frequency domain is simpler than 
that in the time domain . This is the case, for example, 
with filter systems. 

A practical measurement usually starts more con-
veniently from the time domain impulse response. Then 
the analytic s igna! is determined in the frequency do-
main. Again we have to be aware of aliasing in the 
time direction . 

1.4.3 Analytic Signal 

In Section 1.4.1 it was shown that the pseudo-Wigner 
distribution gives a spread in the frequency direction . 
A spread in the time direction is obtained by using the 
analytic signa! associated with a real-valued/(t) . This 
is a complex-valued time signa! J. (t) in which the real 
part equals f(t) and the imaginary part is the Hilbert 
transform of f(t). The relation bet ween the spectrum 
F(w) of the original signal/(t) and the spectrum F.(w) 
is given by : 

{ 

2F(w) , 
F.(w) = F(w), 

0, 

w > 0 
w 0 
w < 0 (26) 

In [ 1 O] it is shown that the rel ation between the Wigner 
distributions of f(t) and/.(t) is given by: 

-
Wr.(t , w) = 

0, 

) sin(2wT) d T, W T T, 

w > 0 (27) 

w < 0 

This relation can be interpreted as fol lows [ 1 O] . The 
Wigner distribution of the analytic signa! at a fixed 
positive frequency can be obtained by filtering the cross 
section at frequency w, which is in fact a function of 
time , with an ideal low-pass filter with cut-off frequency 
2w . 

To give an example we consider the Wigner di s tri -
butions of the sine wave f(t) = cos(w01) and the as-
socia ted anal ytic s ignal/.(1) e iwo'. The Wigner dis-
tributions are 

Wr(t , w) 
1T l (O(W - Wo) + O(W + Wo) 

+ 2o(w)cos(2w0t)] 

Wr. (t , w) = 27TO(w - w0 ) . (28) 

In the firs t case we obtain a stationary contribution 



at w = ± w0 and a varying contribution at w = 0, 
which is caused by the variations of the instantaneous 
power. In the second case we only obtain a contribution 
at w = w0 . 

The varying contribution in the first part can be in-
terpreted as the interference between the positive and 
negative frequencies. This is a more genera! property 
of the Wigner distribution. When the Wigner distri-
bution has two contributions in the (r, w) plane, then 
there will be an alternating contribution due to inter-
ference in between. This will occur for two contributions 
in any direction of the (t, w) plane [ 18] . 

By evaluating the Wigner distribution from the an-
alytic signa! rather than the signa! itself, we avoid the 
interference between positive and negative frequencies . 
This is important for the application of the Wigner 
distribution to loudspeakers , since the contributions 
due to interferences give no additional information and 
are disturbing when formulating optimization criteria . 
This is the reason why we frequently use the analytic 
signa! in the application of the Wigner distribution to 
loudspeakers. However, we have to realize that the 
finite support property in the time direction no Jonger 
holds because of the spreading-out effects in the time 
direction according to Eq. (27). 

1.5 Relations between Wigner Dlstribution, 
Spectrogram, and Cumulative Spectra 

The spectrogram is used in the field of speech analysis 
[ 12], [23], while the cumulative spectra are used in 
the designing of loudspeakers [2]. They can be con-
sidered as members of the Cohen class, as was shown 
in Table 2. The spectrogram can be calculated from 
the short-time Fourier trans form (SFT) . The SFT is the 
Fourier transform of the original signa! f(t) windowed 
with a window function w(t): 

F,(w) = e - i"""'/(T)w(T - t) dT (29) 

where t indicates the position of the window on the 
time axis. 

The spectrogram Sr is obtained by: 

(30) 

and the relation to the Wigner distribution is given by 
[ 12]: 

Sr(t, w) 

X Ww(T - l, W - fl) dTdfl . (3 J ) 

1 

- n -1n 0 +in 1' 
----3>- 8 

Fig . 3 . As F ig . 2 . but with an ana lyti c si gna! (without 
a li asing ). 

From Table 2 it follows that the spectrogram has the 
properties P3 , P4 , P5 , and PIQ, that is, the shift properties 
and the positivity of the distribution . It can also be 
shown (12] that the relations which give the group 
delay and the instantaneous frequency for the Wigner 
distribution now give an average group delay and an 
average instantaneous frequency over the length of the 
window. This means that the spectrogram can provide 
useful information for signals that are almost stationary 
over the window length . Since the impulse response 
of a loudspeaker is not stationary at all during the win-
dow length , it is generally better to use the pseudo-
Wigner distribution instead of a spectrogram in the 
field of loudspeaker design (see also Section 1.4. l). 

Comparing the pseudo-Wigner distribution with the 
spectrogram we see that the til st distribution does not 
have the positivity property , but it has the properties 
P 1 and P6• From Eqs. (19) and (31) it is clear that the 
spectrogram does not have the finite support property 
in the time direction while the pseudo-Wigner distri-
bution does have this property. Both the pseudo-Wigner 
distribution and the spectrogram are spreaded versions 
of the Wigner distribution, but with the pseudo-Wigner 
distribution the spreading is only in the frequency di-
rection . When the frequency resolution is increased 
(by increasing the window length), the time resolution 
decreases in the spectrogram. This is not the case for 
the pseudo-Wigner distribution, where we are free to 
increase the frequency resolution without affecting the 
time resolution . 

The cumulative spectra [2] can be divided into a 
decay and an attack spectrum . These are in fac t special 
cases of the spectrogram. and the points in the cu-
mulative spectrum have values which are equal to an 
integral over a cross section of the Wigner distributions 
of the windowed signals. The difference is the fact that 
the window is a step function U(t) : 

U(t) = { 
T 0 
1 < 0 (32) 

The kemels and properties of the cumulative spectra 
can be found from Table 2 , and it is clear that the 
derivative of the decay spectrum (with respect to the 
variable t which indicates the position of the window 
on the time axi s) is equal to the distribution of Levin, 
while the derivative of the attack spectrum is equal to' 
the distribution of Page . The set o f properties of these 
distributions is limited. 

When evaluating the cumulative spectra numerically 
it is not possible to e xtend the integration boundary to 
infinity. Therefore the impulse response is not weighted 
with a step function but with a finite window. In tha t 
case the spectrogram , the cumulative decay, and the 
cumulative attack spectra only differ in the time defi-
nition . In Eq. (3 J) the relation between the spectrogram 
and the Wig ne r di stribution is given , where the time t 
indicates the center of the window. With the cumulative 
spectra the time definition is shifted over half the win-
dow leng th . T he re lation between the Wigner dis tri-
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bution and the cumulative decay spectrum is: 

(33) 

where T indicates the window length. For the attack 
spectrum this relation is: 

O)ww(T - t 

- 11i r, w - n) dT dn . (34) 

In a practical case the length of a window used with a 
spectrogram is relatively short, while the window length 
fora cumulative spectrum is relatively long. 

Since the cumulative spectrum is used frequently for 
the evaluation of loudspeakers, we will discuss another 
aspect of the cumulative spectrum. In [2] it is shown 
that the cumulative spectrum can be interpreted as the 
square magnitude of the system response to a starting 
or a stopping sine wave . If we have an input signa! of 
a linear time-invariant system of the form el"'' U(t), where 
U(t) is the step function, then the response of the system 
is given by: 

8w(t) = eiw(HlU(t - T)g(T) dT 

eiw1 e-i=uu - T)g(T) dT (35) 

where g(t) is the impulse response of the system. 

located in the stopband of the system. 
A similar discussion can be given for the decay spec-

trum. We note that these spreads are in conformity 
with those of the distributions of Page and Levin, which 
are not band-limited either. The above aspects will be 
clearly visible when we evaluate the cumulative spec-
trum of a band-pass filter (Section 1.6) or a loudspeaker 
(Section 2 . 3). 

From the above discussion it will be clear that we 
prefer the Wigner distribution over the cumulative 
spectrum in the field of loudspeaker engineering. 

1.6 The Wigner Distributions of Some Filters 

In this section, which is in fact an introduction to 
the application of the Wigner distribution to loud-
speakers (Section 2), Wigner distributions of some filters 
will be discussed. All calculated distributions are 
pseudo-Wigner distributions, but we will nevertheless 
call them Wigner distributions in this section, since 
the Wigner distribution and the pseudo-Wigner distri-
bution are almost indistinguishable for the signals used 
(see Section 1.4). 

In Fig. 4 the Wigner distribution of the impulse re-
sponse of a Butterworth low-pass filter of order 3 is 
shown. The cut-off frequency (-3 dB) is l kHz. Fig. 
5 gives the corresponding contour plot. The group delay, 
the frequency characteristic, that is, the magnitude of 
the transfer function, and the impulse response of this 
filter are shown in Figs. 6-8 . 

It can be seen that the Wigner distribution has a 
mountain ridge parallel to the frequency axis and, at 

From Table 2 and Eq. (35) it is clear that: G. c 

Thus at any frequency w0 , the attack spectrum is the 
square magnitude of the response of a starting sinusoidal 
oscillation with frequency w0 . However, we have to 
realize that when the sinusoidal oscillation starts, this 
is associated with a transient phenomenon which has 
appreciable CO.OtributiOOS at frequencies Other than Wo. 
The Wigner distribution of the input signal is given 
by: 

{

--2-- sin[2(w - w0 )t], 
Wr(t, w) = w wo t ;.: 0 

0, t < 0 

(37) 

For small va lues of t, Wr has a large spread in the 
frequenéy direction. This means that for small t the 
cumulative spectrum will have appreciable contributions 
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Fig . 4. Wigner distribution of a low-pass Buuerworth filter. 

--- ------------

C. _ l_;._Hz-'-:- - --'---___J 

Fig. 5. Contour plot of Fig. 4. 



the cut-off frequency, a ridge parallel to the time axis. 
This latter ridge will be called "ear" in the remaining 
part of the paper . The distribution is only given for 
pos-itive frequencies since it is symmetrie with respect 
to the time axis for real-valued signals . The mountain 
ridge is delayed with respect to the time of excitation, 
and this delay is in conformity with the Bode relations 
[38]. Bode showed that this delay is inversely propor-
tional to the cut-off frequency and proportional to the 
slope of the filter . The Jatter is clearly visible in Figs. 
9 and 10, where the Wigner distribution is shown of a 
corresponding filter of order 6 with the same cut-off 
frequency . 

We observe also that the length of the ear increases, 
which agrees with the fact that the group delay of the 
filter at the çut-off frequency increases when the steep-
ness of the filter slope increases. The group delay, the 
frequency characteristic, and the impulse response of 
this filter are shown in Figs. 11-13. 
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Fig . 6 . Group delay of filter of Fig. 4. 
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Fig. 7 . Magnitude of the transfer function of filter of Fig. 4. 
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Fig. 8. Impulse response of filter of Fig. 4. 

The alternating contributions in Figs. 4 and 9 are 
interferences between the ears at positive and negative 
frequencies, as discussed in Section 1.4.3. 

From the previous discussion it is clear that we have 
to take care when determining the delay of, for example, 

Fig . 9 . Wigner distribution of filter of Fig . 4 with a steeper 
slope . 
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a woofer or tweeter loudspeaker with different anti-
aliasing filters. These antialiasing filters introduce an 
additional de lay, which can disturb a proper interpre-
tation of the delays . 

In Figs . 14-17 the Wigner distribution, the group 
delay, the frequency characteristic, and the impulse 
response fora Butterworth band-pass filter are shown. 
This band-pass filter is a series combination of a low-
pass filter of order 10 with a cut-off frequency of 4000 
Hz and a high-pass filter of order 2 with a cut-off fre-
quency of 1000 Hz. The ear at the high frequency cut-
off is comparable with that of the low-pass filter shown 
in Fig . 4. However, the large number of interferences 
make it difficult to interpret the distribution . 

Figs. 18 and 19 show the Wigner distribution of the 
analytic signa! of the same band-pass filter (F.(f) = 
0 forf < 0). 

It is clear that the interferences between positive and 
negative frequencies, which impede an interpretation 
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Fig . 13. lmpulse response of filter of Fig . 9 . 
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Fig. 14. Wigner distribution of a Butterworth band-pass filter. 

Fig . 15. Group delay of filter of Fig. 14 . 
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of the d istribution , have disappeared . 
The length of the ears is proportional to the filter 

shape on a linear frequency scale . For audio purposes 
filters are generally used which have a certain decay 
per octave. For filters with the same decay per octave 
the length of the ears will increase with decreasing cut-
off frequency. 

The magnitude of the analytic signa! can be interpreted 
as the envelope of the original signal [29), and it can 
be shown [ l] that the envelope of the response of a 
symmetrie band-pass filter equals the impulse response 
of a low-pass filter with a cut-off frequency equal to 
the bandwidth of the band-pass filter. The distribution 
in Figs. 18 and 19 indeed resembles the distribution 
of a low-pass filter shifted in the frequency direction. 
The distributions are not exactly the same because we 
did not use asymmetrie band-pass filter. 

In Section 1.4.3 it was shown that for each w the 
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Fig . 16. Magnitude of the transfer function of filter of Fig . 
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Fig. 17. lmpulse response of filter of Fig. 14. 
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Fig . 18. Wigner distribution of filter of Fig. 14 evaluated 
with the analytic signa!. 



Wigner distribution of the analytic signa) is related to 
the Wigner distribution of the original signa) by a con-
volution in the frequency variable of the Wigner dis-
tribution with an ideal low-pass filter with cut-off fre-
quency 2w . This means that we get spreading-out 
effects, especially at low frequencies. This becomes 
very clear in the contour plot of the Wigner distribution 
of the analytic signa) of a low-pass filter (Fig. 20). 
Even at times t < 0 the distribution gives nonzero 
contributions, which are such that the group deJay is 
constant in the passband of the filter. (Contributions 
for t < 0 can occur since the Hilbert transform used 
to determine the imaginary part of the signa) is a non-
causal transform.) 

The filter used in Figs. 18 and 19 is a minimum-
phase band-pass filter. It is important to note that a 
linear-phase filter, which has a constant group delay, 
also has ears in the time direction, as can be seen in 
Figs. 21 and 22. The group delay, the frequency char-
acteristic, and the impulse response of this filter are 
shown in Figs. 23-25 . 

The next example in this ·section is the combination 
of two Butterworth band-pass filters with a slope of 
order n = 3 in the crossover frequency region as de-
scribed by Link witz (30) . This combination has a pass-

. band from 500 to 4000 Hz, with a crossover at 2500 
Hz. The low-frequency band-pass filter is a series 
combination of a band-pass filter of order n = 2 at 
500 Hz and a high-frequency rolloff of order n = 10 
at 4000 Hz followed by a third-order Butterworth 2500-
Hz low-pass filter. The high-frequency band-pass filter 
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Fig . 19 . Contour plot of Fig . 18 . 
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Fig . 20. Contour plot of Wigner distribution of a low-pass 
filter of order n = 6 evaluated with the analytic signa! . Cut-
off frequency 2500 Hz . 
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Fig . 21. Wigner distribution of a linear-phase finite impulse 
response (F.l.R.) filter with a length of 51 samples. 
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is a similar combination of the same 500-4000-Hz 
band-pass and a third-order Butterworth 2500-Hz high-
pass filter. If we connect one of the two filters in an-
tiphase, then the group delay is smaller in the passband 
than if we connect both filters in phase, as shown by 
Linkwitz [ 30]. The differences are not very large. 
However, the impulse responses are quite different, 
but these differences cannot be interpreted easily. What 
happens can be seen more clearly in the Wigner dis-
tribution of the two combinations, because now we can 
study the attack of the response in more detail. Con-
necting the two filters in phase gives an additional delay 
of the distribution around the crossover frequency (Figs. 
26-34). 

The group delay is often misused. In [ l] it was shown 
that the group delay has a proper interpretation as the 
delay of a narrow-band modulated signa!. The Wigner 
distribution indicates when the group delay provides 
useful information for a broadband system. For the 
band-pass this is the case at the mountain ridge, and 
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Fig. 25. Impulse response of filter of Fig. 21. 

Fig. 26. Wigner distribution of a third-order crossover. The 
two band-pass filters are connected in phase. 
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Fig. 27. Contour plot of Fig. 26. 
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it is questionable at the ears because the group delay 
does not give information on the spreading-out effects. 
An example is the linear-phase filter with a constant 
group delay in the passband. The constant group delay 
tells us nothing about the concentration of the energy 
around this time. It is clear that in the regions of the 
roll-off frequencies the energy is more spread (in the 
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Fig. 28. Impulse response of filter of Fig. 26. 
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time direction) than in the passband region. The group 
delay has a constant value only because the energy is 
spread symmetrically around the delay time. The inter-
pretation of group delay as a delay of the signal energy 
is certainly wrong in the stopband, because there even 
causal systems can possess a negative group delay [ 1 O], 
[31]-[33]. 

Another example of the group delay providing wrong 
information is the case where we have two spaced time 
responses, for example, a reflection . The center of grav-
ity in the time direction of the Wigner distribution, 
which equals (Tab Ie l) the group delay of the total 
signa!, lies between the two ridges when the size of 
the ridges is of the same order. Thus the value of the 
group delay gives no information about the delay of 
the separate contributions. 

In our opinion, the Wigner distribution gives more 
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Fig. 32. Impulse response of filter of Fig . 30 . 
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Fig . 34. Magnitude of transfer function of filters of Figs. 26 
and 30. 

and better information about the time delays of a system 
than the group delay. 

To conclude we give a comparison of several time-
frequency plots of other distributions of the impulse 
response of one and the same Butterworth 500-4000-
Hz band-pass filter with a low-frequency rolloff of order 
3 and a high-frequency rolloff of order 10 (Figs . 35-
37). The corresponding Wigner distribution is given 
in Fig. 43. 

We note the fact that the cumulative decay spectrum 
also has appreciable contributions in the stopband, 
which agrees with the discussion in Section l. 5 . 

2 APPLICATION OF THE WIGNER 
DISTRJBUllON TO LOUDSPEAKERS 

In Section 1 some fundamental issues of the Wigner 
distribution were discussed. It was shown that this dis-
tribution can be interpreted, with some care, as a dis-
tribution of the signal energy in time and frequency. 
The Wigner distribution can be considered as a basic 
time-frequency distribution . Since the Wigner distri-
bution compared with other distributions is optimum, 
it can more easily be interpreted than other distributions. 
Also, the properties of other distributions can be studied 
conveniently using the Wigner distribution. The neg-
ative values that occur in the Wigner distribution were 
shown to be in accordance with Heisenberg's uncertainty 
relation. Averages of the Wigner distribution, taken 
with a weighting function whose dimensions are in 
accordance with Heisenberg's uncertainty relation, al-

o. c 

Fig. 35. Real part of Rihaczek distribution of a Butterworth 
band-pass filter. 

o.o 

Fig. 36. Real part of Rihaczek distribution of a Butterworth 
band-pass filter evaluated with the analytic signa!. 
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ways yield a positive value [25]. It was shown that a 
transform that has positive values at all time and fre-
quency points in its distribution lacks some very im-
portant properties. 

In order to evaluate the Wigner distribution numer-
ically it was necessary to introduce the pseudo-Wigner 
distribution [ l 0], [ 12]. Because this distribution uses 
a weighted version ofthe impulse response, it is possible 
to restrict the integration to an interval with finite 
boundaries. 

The pseudo-Wigner distribution was found to be a 
frequency-spread version of the Wigner distribution. 
However, the pseudo-Wigner distribution closely re-
sembles the Wigner distribution when the system under 
study has a rapidly decaying impulse response and when 
a suitable (sufficiently long) window is used. This is 
nearly al ways the case for the impulse responses of 
practical filters or loudspeakers. For that reason, we 
need not bother to refer to the Wigner distribution in 
this part of the paper, when we actually mean the pseudo-
Wigner distribution. 

In this section we discuss the application of the Wig-
ner distribution to loudspeakers. It will be shown that 
the Wigner distribution enables us to formulate opti-
mization criteria for the time-frequency (transient) re-
sponse of a transducer or a combination of transducers. 

In Section 2. l the application of the Wigner distri-
bution to the evaluation of a single transducer is dis-
cussed, and in Section 2.2 a similar discussion about 
combinations of transducers is given. In Section 2.2 
we wil! also devote some attention to the role of the 
geometrical mounting of the single transducers in the 
loudspeaker box and to the infiuence of the crossover 
on the time-freguency behavior of a single transducer 
and a combination of transducers. 

In Section 2. 3 we discuss some points concerning 
the practical use of the Wigner distribution and in Sec-
tion 2.4 we compare the Wigner distribution and the 
cumulative spectra that are commonly used in the field 
of loudspeaker engineering. Finally Section 2. 5 contains 
a concluding discussion of the results obtained, and of 
perspectives for future research. 

2.1 Application of the Wigner Distribution to the 
Evaluation of a Single Transducer 

A defini tion of an ideal transducer could be: A trans-
ducer is an ideal transducer if its impulse response is 
a Dirac pulse. This means that its frequency charac-
teristic has a constant value for all frequencies and the 
acoustic response will be a (delayed) copy of the electric 
signa!. 

However, this definition is not very realistic, since 
a transducer with an infinitely extended frequency 
characteristic or with a response at direct current cannot 
be physically realized. Therefore, amore practical def-
inition is the following: An "ideal" transducer is one 
of whic.h the time-frequency behavior resembles that 
of a smooth band-pass filter. 

The type of filter that we take for the prototype is 
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somewhat arbitrary, but the smoothness condition hints 
toward Butterworth or Bessel filters. (The Wigner dis-
tributions of these two types of filters are similar for 
low-order filters.) The location of the rolloffs of the 
filter and their shapes can be defined in detail, and the 
filter has a fiat response in the pass band. 

The comparison with such an "ideal" band-pass filter 
gives us a manageable criterion for the time-frequency 
behavior of a transducer and allows an easy visual in-
spection. 

In view of the preference for the Wigner distribution 
discussed in Section l, this means that-in the ideal 
situation-the Wigner distributions of this filter and 
transducer should be very similar. 

The Wigner distribution of the impulse response of 
a Butterworth band-pass filter is shown in Fig. 38. This 
filter has a low-frequency cutoff at 500 Hz with a slope 
of order 2 and a high-frequency cutoff at 4000 Hz with 
a slope of order 10. Figs. 39-42 give the contour plot 
of Fig. 38 and the group delay, the frequency char-
acteristic, and the impulse response of the same filter. 

The Wigner distribution was evaluated for the analytic 
signa! (see Section 1.4). The time-frequency picture 
of the band-pass filter contains a mountain ridge parallel 
to the freguency axis and two ears (ridges) parallel to 
the time axis located at the cut-off frequencies. This 
means that the signa! energy located around the tran-
sition bands of the filter is spread in the time direction. 
The alternating (positive and negative) contributions 
are the interferences between the ears as discussed in 
Section 1.4.3. The integration over all times at a fixed 

o. c 

Fig. 37. Cumulative decay spectrum of a Butterworth band-
pass filter. 

Fig. 38. Wigner distribution of an "ideal" band-pass filter 
evaluated with the analytic signal. 



frequency is equal to the energy spectra! density IF( w )12. 
The center of gravity in the time direction is the group 
de lay tg( w) (Tab Ie 1). The plots of the Wigner distri-
bution show that the group delay at the transition bands 
is larger than in the pass-band, which is a well-known 
fact. The length of the ears increases if the steepness 
of the roll-off slopes increases, as can be seen in Fig. 
43, which is a filter with the same cut-off frequencies 
as that of Fig. 38 , but with a low-frequency slope of 
order 3. The grou p de lay, the frequency characteristic, 
and the impulse response of the same filter are shown 
in Figs. 44-46. 

The length of the ears is proportional to the steepness 
of the filter slope on a linear frequency scale. The filters 
that are used in the field of audio engineering have a 
steepness defined as a number of decibels per octave, 
that is, on a logarithmic frequency scale. The length 
of the ears decreases as the corresponding roll-off fre-
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quency of a filter increases. 
For the comparison of the time-frequency behavior 

of a transducer with that of an "ideal" band-pass filter 
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Fig. 42 . Impulse response of filter of Fig. 38 . 

o. c 

Fig. 43. Wigner distribution offilter of Fig. 38 with a stee per 
slope. 
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Fig. 44 . Group delay of filter of Fig . 43 . 
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Fig. 45. Magnitude of the transfer function of filter of 
Fig. 43. 
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it is helpful to distinguish some typical deviations from 
the ideal time-frequency behavior observed in actual 
transducers: 

· l) The occurrence of additional ears that are not 
Iocated at the cut-off frequencies. 

2) The mountain ridge not being parallel to the fre-
quency axis, which means that the acoustic center of 
the transducer shifts with frequency. 

3) The occurrence of reflections in the time direction, 
for instance , reflections inside the cabinet or diffraction 
effects at the edges of the transducer or the cabinet. 

Let us consider some practical examples of these 
typical deviations and, for comparison, an example of 
an almost ideal time-frequency behavior of a tweeter 
loudspeaker. 

1) Additional Ears . Fig . 47 shows the Wigner dis-
tribution of a woofer cone loudspeaker. The additional 
ears are clearly visible. These ears are the ringing con-
tributions, in the time direction, of the bending reso-
nances in the break-up region of the loudspeaker. These 
are typical of cone loudspeakers [34} . 

Figs. 48 and 50 give the Wigner distributions of two 
almost identical woofer loudspeakers. The woofers are 
made of a different cone material with a different ma-
terial damping. The log magnitude of their transfer 
functions are shown in Figs. 49 and 51. 

The influence of the damping on the bending reso-
nances is clear. Although the differences of the reso-
nance in the two loudspeakers also manifest themselves 
in a different transfer function, we maintain that the 
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Fig. 46. lmpulse response of filter of Fig. 43. 

Fig . 47 . Wigner distribution of a woofer cone loudspeaker 
evaluated with the analytic signa!. 
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Fig. 48 . Wigner distribution of a woofer cone loudspeaker. 
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Fig . 49 . Log. magnitude of the transfer function of the woofer 
of Fig. 48 . 
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Fig . 50 . Wigner distribution of a woofer cone loudspeaker. 
The d;1 mping coefficient of the cone material is higher than 
th at of the cone material of the woofer shown in Fig . 48. 
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Fig. 51 . Log. magnitude of the transfer function of the woofer 
of Fig. 50. 



effect is much more clearly visible in the Wigner dis-
tribution. The woofer with the higher material damping 
has a ringing contribution (ears) that decays more rap-
idly, as can be expected. 

A further example of the occurrence of additional 
ears is the time-frequency behavior of a do me tweeter . 
lts Wigner distribution is shown in Fig. 52. The ear at 
high frequencies is not a normal roll-off ear; its size 
is too large at these frequencies. lt is ca.used by the 
ringing of the first membrane resonance of the <lome 
[34] and is typ ic al of <lome loudspeakers. Dome tweeters 
with a soft <lome material (rubber-impregnated textile 
material) have a more rapidly decaying ear at this fre-
quency than döme tweeters with a hard (polymer) <lome 
material. îhe larger material dam ping of the soft dome 
is the reason for the faster decay. 

2) Frequency-Dependent Acoustic Center . Fig . 53, 
showing the contour plot of the Wigner distribution of 
a squawker loudspeaker, is an example of a frequency-
dependent acoustic center. The acoustic center of this 
transducer shifts at the high-frequency end of its pass-
band. This means that the crossover frequency between 
squawker and tweeter has to be shifted to lower fre-
quencies in order to get an optimum combination . This 
has indeed been done in the practical applications of 
this squawker, presumably as a result of listening tests. 
However, this effect restricts our freedom in the design 
of a loudspeaker combination. 

3) Refiections in the Time Direction. The next example 
is a tweeter loudspeaker which is incorrectly mounted 

o.c 

Fig. 52 . Wigner distribution of a dome tweeter calculated 
with the analytic signa!. 
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Fig. 53 . Contour plot of the Wigner distribution of a squawker 
loudspeaker with a frequency-dependent acoustic center . 

in a baffle . The front si de of the tweeter protrudes from 
the baffle, which causes a (diffraction) retlection from 
the edge . This retlection can be seen in the contour 
plot of Fig . 54. 

4) loudspeaker with an Almost !deal Time-Frequency 
Behavior . The last example in this section is the Wigner 
distribution of the impulse response of a newly devel-
oped tweeter loudspeaker, which is shown in Fig. 55 . 
Fig. 56 gives the contour plot of this Wigner distri-
bution, and the group de lay, the frequency character-
istic, and impulse response of this tweeter are shown 
in Figs. 57-59. The time-frequency behavior is almost 
equal to that of an "ideal" band-pass filter, which can 
be found in Fig. 38. The result of this nearly ideal 
situation is considerable freedom in choosing the 
crossover frequency and the filter. lt also may be con-
cluded that further development of this tweeter can 
hardly improve its transient behavior. 
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Fig. 54 . Contour plot of the Wigner distribution of a tweeter 
loudspeaker with an improper (protruded) mounting. 

Fig. 55. Wigner distribution of a newly developed tweeter 
loudspeaker. 
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Fig . 56 . Contour plot of Fig. 55 . 
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From these examples it can be concluded that the 
Wigner distribution is a powerful tool for the evaluation 
and optimization of the time-frequency behavior of a 
single transducer. The Wigner distribution enables us 
therefore to formulate optimization criteria for the 
transient behavior of the transducer. Deviations from 
this ideal behavior, caused, for example , by diaphragm 
resonances or by unwanted refiections , can easily be 
identified and examined . Furthermore , the Wigner dis-
tribution gives important information on the position, 
as a function of frequency, of the acoustic center of 
the transducer. 

2.2 Application of the Wigner Distribution to the 
Evaluation of a Combination of Transducers 

The combination of different transducers in one sys-
tem introduces two new problem areas where the Wigner 
distribution can be of help: the geometrical separation 
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Fig . 57. Group de lay of tweeter of Fig. 55. 
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Fig . 58 . Log . magnitude of the transfer function of tweeter 
of Fig . 55 . 
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Fig. 59 . lmpulse response of tweeter of Fig. 55. 

of the transducers and the excitation of the transducers 
via an electric crossover network . Starting from a single 
ideal transducer it is clear that the optimization criterion 
for a combination of transducers is a time-frequency 
behavior (Wigner distribution) that equals that of a 
single "ideal" (smooth) band-pass filter. This means 
that the mountain ridges of the different transducers in 
the Wigner distribution have to be aligned in the time 
direction. Also, the ears of the various transducers in 
the crossover frequency region have to cancel each 
other. In principle this can be achieved, since the Wigner 
distribution of the sum of two transducers equals the 
sum of the Wigner distributions of the separate trans-
ducers plus an additional contribution , the cross-Wigner 
distribution of the two transducers [Eq . (14)] . With a 
first-order crossover it is indeed possible to obtain a 
complete cancellation of the ears . To optimize the time-
frequency behavior of a combination of transducers we 
have the following degrees of freedom : 

1) The crossover frequencies can be shifted . 
2) The roll-off slopes in the crossover frequency 

regions can be adjusted . 
3) The amplitude levels of the signals of the different 

transducers can be adjusted. 
4) A time delay between different transducers can 

be obtained, for example, by choosing another geo-
metrical mounting. 

The range over which quantities can be varied de-
pends, among other things, on the regions at which the 
separate transducers can be considered to be an adequate 
approximation of a band-pass filter. 

Some typical deviations from the "ideal" band pass 
behaviorofthe combination oftransducers are as follows 
( other deviations are of course the deviations of the 
separate transducers): 

1) The transducers are not aligned in the time di-
rection. 

2) The crossover network shifts the acoustic conters 
of the individual transducers . 

3) The amplitude levels of the signals of the different 
transducers are not equal to each other. 

Let us consider now some examples of these typical 
deviations, and also have a look at the Wigner distri-
bution of a system whose behavior is approximately 
linear-phase . 

1) /mproper Alignment. An example of an improper 
alignment is given in Figs. 60 and 61, where the Wign(fr 
distributions of a woofer and a squawker loudspeaker 
are shown. 

This improper alignment can easily be corrected by 
shifting a transducer in the time direction, for example , 
shifting mechanically in the direction parallel to the 
axis of the transducer. It is clear that especially the 
contour plot of the Wigner distribution is a powerful 
tool for investigating the influence of time-delay dis-
tortion, a!so commonly known as phase distortion . (A 
discussion of phase distortion can be found in (33], 
(35], and (36) .) 

It is worth remarking that the time delays are not 
necessarily caused by differences of path length or by 



an incorrect mechanica! alignment of the different 
transducers. Bode has shown [38] that any high-fre-
quency attenuation gives a time delay of the low-fre-
quency components. This time delay increases when 
we decrease the cut-off frequency or increase the 
steepness of the attenuation curve . It means that a woofer 
always has a relative delay when we compare its time-
frequency behavior to that of a squawker or a tweeter 
loudspeaker. 

It is important to pay attention to the influence of a 
crossover filter, which causes an additional delay. The 
choice of a crossover filter also has consequences for 
the mounting of a transducer. 

Another filter which causes an additional delay is 
the antialiasing filter that was used when we measured 
the impulse response of the transducer. This complicates 
the determination of the relative time delay of two 
transducers whose impulse responses were measured 
using different antialiasing filters. 

2) Jnjluence ofCrossover Filter. An example of an-
other deviation from the ideal time-frequency behavior 
which is caused by a crossover filter is shown in Figs . 
62 and 63. The Wigner distribution of the single 
squawker loudspeaker resembles that of an "ideal" 
band-pass filter, but the combination with a crossover 
filter causes large deviations at the low-frequency side 
of the time-frequency response. The response in the 
time direction of these frequencies consists of three 
separate contributions. 

• "'î "' ..... 
0· _____,.. 

Fig. 60. Contour plot of the Wigner distribution of a woofer 
loudspeaker. The woofer is mounted in the same baffte as 
the squaw ker. in Fig . 61. 
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Fig . 61 . Contour plot of the Wigner distribution of a squawker 
loudspeaker. The squawker is mounted in the same baffte as 
the woofer in Fig. 60. 

3) Transducers with Different Levels . Although the 
Wigner distribution of the combination contains the 
information c.oncerning the levels (the integral of the 
Wigner distribution over all times at a fixed frequency 
equals JF(w)J 2), it is not always easy to retrieve this 
information from the distribution. The easiest way to 
check the levels is to determine JF(w)J directly from 
the impulse response. 

4) Linear-Phase System. The previous examples of 
single transducers or combinations of transducers were 
all minimum-phase systems. However, it is also possible 
to design a combination of transducers as an approx-
imation of a linear-phase system . Fig. 64 shows the 
Wigner distribution of a combination designed as a 
linear-phase system (note the reversed time direction) . 
The corresponding contour plot is shown in Fig . 65 . 
The ears start at earlier times than those of a minimum-
phase system as was expected, but they are not parallel 
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Fig . 62. Contour plot of the Wigner distribution of a 
squawker. 
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Fig . 63. Contour plot of the Wigner distribution of the same 
squawker in combination with a crossover filter. 
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Fig. 64 . Wigner distribution of a linear-phase loudspeaker 
design . 
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to the time axis . In Section 2.5 we wil! discuss the 
usefulness of a loudspeaker system designed as a linear-
phase system. 

· Again, these examples indicate that the Wigner dis-
tribution can aiso be a powerful tool for optimizing 
the time-frequency behavior of a combination of trans-
ducers or a loudspeaker box. The Wigner distribution 
gives important information on the time alignment of 
the individual transducers and on the infiuence of the 
crossover network on the transient response. 

2.3 Some Remarks Concerning the Practical 
Use of the Wigner Distribution 

In this section we will make some remarks concerning 
the practical use of the Wigner distribution which would 
not have been relevant in the previous sections. 

The first remark concerns the measurement of an 
impulse response, which is necessary for the evaluation 
of the Wigner distribution . Unfortunately a Dirac pulse 
cannot be physically realized. Instead we excite the 
system with a pul se ha ving a finite width. The response 
of the system to this pulse has a close resemblance to 
the true impulse response of the system for those fre-
quencies where the Fourier trans form of the pulse has 
(almost) a constant magnitude. The extent of this fre-
quency region to higher frequencies is inversely pro-
portional to the width of the time pulse. Huwever, the 
signal-to-noise ratio increases as the pulse is made 
wider. A good compromise between a broad frequency 
region and a reasonable signal-to-noise ratio is a pulse 
width of approximately 10 µ,s [2]. In that case the 
useful frequency range is about 20 kHz. To improve 
the signal-to-noise ratio further we have to apply signa] 
averaging [37] . If the measurement is carried out in 
an anechoic room, the number of averages can be re-
duced because of the low background level. Also, the 
repetition rate can be increased due to the low rever-
beration time, sa ving time for the total measuring pro-
cedure. A disadvantage of this direct method is that 
the response includes the characteristics of the power 
amplifier. This must, tfie.rsiore, be of a very high quality. 

This requirement can be determine the 
transfer function between the electrical inpJJt of the 
loudspeaker and the pressure of the measuring micro-
phone . (The Wigner distribution can also be evaluated 
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Fig . 65 . Contour plot of F ig. 64 . 
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from frequency domain data.) In that case it is possible 
to use white noise or pseudo-random noise, which pro-
vides the excitation signa! with a larger energy content. 

But even then signa] averaging has to be applied. A 
disadvantage is the need for a larger amount of com-
putational power which may increase the measuring 
time . A hardware two-channel analyzer might be ad-
vantageous in this case. Another possibility for deter-
mining the transfer function, with a good signal-to-
noise ratio and a small number of averages, is the ap-
plication of a chirp signa! [3] . However, we must realize 
that the sweeping filter necessary for this method ef-
fectively causes an averaging of the time- frequency 
response. 

Another remark concerns the aliasing that might occur 
when evaluating the Wigner distribution. In Section 
1.4.2 it was shown that the evaluation of the Wigner 
distribution from the time domain data requires a sam-
pling rate four times greater than the largest frequency 
component of the signa] . This can be obtained by ad-
justing the cut-off frequency of the antialiasing filter. 
Also, the antialiasing filter affects the measured value 
of the acoustic center of the system as discussed in 
Section 2.2. This cannot be neglected since antialiasing 
filters have a large roll-off rate. A similar problem 
arises when the Wigner distribution is evaluated from 
frequency domain data. In that case an aliasing in the 
time direction might occur. 

Another point that requires attention is the repre-
sentation of a Wigner distribution of a system with a 
broad frequency range . At lower frequencies the energy 
of the system is spread over a Jonger time period than 
at higher frequencies, resulting in a lower level of the 
distribution at lower frequencies when the magnitude 
of the frequency response of the system has a constant 
or an almost constant value. The reason is that the 
integral over all times at a fixed frequency equals the 
energy spectra! density IF(w )j2 . This might cause some 
difficulties when we interpret such a distribution, since 
variations at the lower frequencies are not always visible 
due to their low level . 

Several methods can be used to improve the display 
of such a distribution , but some of them introduce ad-
ditional difficulties. 

1) When the frequency region of interest is not very 
large, the best method is to display a constant time 
interval with a linearly varying w and t . The plots in 
this paper were made with this method. 

2) When the frequency range of interest is large, it 
makes sense to split the frequency axis into several 
parts which can be displayed with an appropriate time 
and frequency interval. 

3) The time scale can be converted into a fixed num-
ber of periods . Instead of a linear time scale we get a 
period scale. The time compression must be accom-
panied by a (corresponding) scale of the amplitude ac-
cording to the amount of time compression, so that the 
integral over all periods at a fixed time equals the energy 
spectra! density. A disadvantage of this representation 
is that time de lays are difficult to interpret. 



4) It is possible to plot the va lues of the distribution 
on a logarithmic scale, so that a small value is more 
easily visible. However, the interpretation of the al-
ternating interferences is more difficult. Positive and 
negative parts cancel when averaging over an area with 
appropriate dimensions, which is difficult to see on a 
logarithmic scale. 

The purpose of studying different methods of display 
is to find a representation which is able to emphasize 
those aspects of the distribution in which we are in-
terested. An example of this is the level of a transducer, 
which can be determined more easily from the mag-
nitude of its frequency response than from the Wigner 
distribution, although this distribution contains all the 
information required. It is important to realize that, 
although all representations or averages of the Wigner 
distribution are allowed, the problems with the inter-
pretation have to be solved with the original Wigner 
distribution . 

An example is the attack of the time-frequency re-
sponse of a loudspeaker. The Wigner distribution of a 
loudspeaker is mostly determined from the analytic 
signa!. However, the analytic signa! gives a spreading 
in the time direction, especially at low frequencies. In 
most cases this results in a small disturbance in the 
attack of the time-frequency response of the loud-
speaker. lf we wish to observe the effect of the attack 
in more detail, we have to return to the Wigner distri-
bution of the original real-valued signa!. 

2.4 Cumulative Spectra 

Cumulative spectra have frequently been used in re-
cent years for the evaluation of loudspeakers [2]. In 
Section 1.5 it was shown that the cumulative spectrum 
is in fact a special type of spectrogram. It is a special 
type because the window function is a step function . 
It was shown that the spectrogram for any point (t, w) 
of the time-frequency plane is the value of an integral 
in the time direction of the Wigner distribution of the 
weighted signa!. This means that the derivative of the 
cumulative spectrum with respect to time has a closer 
resemblance to the Wigner distribution than the cu-
mulative spectrum itself. An important point is the 
difference in physical interpretation of the Wigner dis-
tribution and the cumulative spectrum . The Wigner 
distribution shows a distribution of the signa! energy 
into time and frequency, white the cumulative spectrum 
shows, at any w, the square magnitude of the system 
time response toa sudden started or stopped sine wave. 
In Section l . 5 it was shown that the suddenly starting 
or stopping of the signa! yields a broadening of the 
frequency spectrum . Thus we are dealing in fact with 
the response of the system to a combination of a sine 
wave and a broadband signa!, which hampers the inter-
pretation. This is the reason why appreciable contri-
butions always are found in the stopband of the system. 
If we corppare the Wigner distribution and the cumu-
lative spectrum of a loudspeaker (shown in Figs . 66 
and 67 for a dome tweeter) this is clearly visible . 

lt is our opinion that because the Wigner distribution 
is a distribution of the signa\ energy in time and fre-
quency, it gives us greater insight into the physical 
processes which take place in a loudspeaker than the 
cumulative spectrum, which shows the response of the 
system to a suddenly started or stopped sine wave, 
with the above-mentioned disadvantages. More or less 
similar remarks hold for other representations. 

2.5 Discussion 

In Section 2 we have discussed the application of 
the Wigner distribution to loudspeakers . It is known 
that the impulse response function of a loudspeaker is 
a rapidly decaying function of time, and this has the 
great advantage that the practically evaluated pseudo-
Wigner distribution resembles the theoretica! Wigner 
distribution very much. Furthermore the impulse re-
sponse is intrinsically a nonstationary signa!, and 
therefore we cannot use the spectrogram which was 
shown to give useful information only if the signa! is 
stationary during the window time. The pseudo-Wigner 
distribution is capable of coping with such nonstationary 
signals, and it was shown to be a powerful tool for 
evaluating the (transient) time-frequency response of 
a loudspeaker. 

The Wigner distribution allows the introduction of 
objective optimization criteria for both a single trans-
ducer and a combination of transducers . Deviations 
from the ideal behavior can be located . For example, 
the decaying ringing contributions of the bending and 
membrane resonances of cone and dome loudspeakers, 
as well as time delays and reflections, can be recognized 
from the occurrence of spurious contributions. 

To simplify the interpretation of the distribution or 
to emphasize particular effects, it may be convenient 
to use an adapted representation. Examples are the use 
of the analytic signa! to suppress disturbing interference 
contributions and the contour plot, in which time delays 
are easily recognized. In order to suppress disturbing 
or irrelevant contributions, one could also average the 
distribution with a suitable window. lt is important to 
note that although such processing may make sense, 
we always have to return to the Wigner distribution of 
the original signa! if we have any problem with the 
interpretation of a particular representation. It may be 
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Fig . 66. Cumulative decay spectrum of a dome tweeter. 
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advantageous to carry out a convers ion of the axes, 
such as a logarithmic frequency or amplitude sealing. 
This might be important when the deviations of the 
time-frequency behavior from the ideal behavior are 
to be emphasized. This is closely related to the audibility 
of phenomena, which is not discussed in this paper. It 
is clear that fora proper evaluation of the significance 
of deviations from ideal time-frequency responses it 
is important to know something about the audibility of 
these deviations. Ho wever, the audibility of many 
transient phenomena is not yet known. 

If a satisfacto.ry theory could be found for this im-
portant domain of acoustical perception, it might be 
possible to average the Wigner distribution with an 
appropriate function, which would result in a repre-
sentation showing only the audible contributions of the 
distribution. Given the state of the art of knowledge 
about the perception of acoustical transient phenomena 
and the ability to formulate mathematica! or physical 
models of this hearing mechanism, this requires much 
additional research. 

The Wigner distribution can, in our opinion, be very 
useful in this study , since it gives a proper distribution 
of the energy of the stimulus signa!, which allows an 
accountable application of weighting, averaging , and 
transformation. 

Another point that requires much attention is the 
infiuence of the directivitity of a loudspeaker. An im-
pulse response on the axis is nota complete description 
of a transducer. Any point in space will give a different 
impulse response and Wigner distribution . Many im-
pulse responses and many Wigner distributions can be 
determined , but it is difficult to assign priorities to 
these Wigner distributions . 

A possible solution is to place the transducer in a 
normal listening room and to measure the impulse re-
sponse of the transducer at the listening position. This 
impulse response contains relevant information about 
the system performance, the directivity, and the room 
parameters . The interpretation of the Wigner distribution 
of this impulse response, however, requires more ad-
ditional research . 

As a: last point we shall consider the usefulness of a 
linear-phase loudspeaker design (not to be confused 
with time alignment of separate transducers). Such an 
approximated linear-phase behavior is often claimed 
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Fig. 67. Wigncr distribution of the dome tweeter of Fig. 66. 
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to affect the transient response of a loudspeaker fa-
vorably. From the Wigner distributions of the minimum-
phase and linear-phase filter systems (Figs. 18 and 21) 
it is clear that the only differences are the position of 
the ears relative to the mountain ridge and the delay 
of this mountain ridge. 

The ears of a practical loudspeaker system are located 
in frequency regions that are assumed to have almost 
no infiuence on perceptional phenomena . If these fre-
quency regions are not considered to be important, 
then there is no difference between the minimum-phase 
and the linear-phase systems . Also it is known that the 
stereo image is determined mainly by the "attacks" in 
the music [39] . If the lowest and highest frequency 
regions would be important for the stereo imaging, 
then the ears of a linear-phase system would infiuence 
strongly the attacks of the music. In our opinion this 
indicates that the need to design a loudspeaker system 
with an approximated linear-phase behavior is ques-
tionable. 
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4. Numerical calculation of the vibration and sound radiation of 
nonrigid loudspeaker cones 1 

In Section 2 the lumped parameter model of the 
electrodynamic loudspeaker was discussed. This mo-
del assumes that the sound radiation of a loudspeaker 
resembles closely that of a plane, rigid piston in an 
infinite baffle. Because of this assumption it predicts 
the sound radiation of an actua l loudspeaker with an 
acceptab\e accuracy only at low frequencies . At 
higher frequencies the vibrational behavior of the 
diaphragm itself comes in to play as welt. In fact, the 
radiated sound power above the transition frequency 
is much larger than that predicted by the lumped 
parameter model. This is illustrated in Fig. 4.1 for a 
cone-type diaphragm. 

Pa 
[dB] 

1 
"'t"'-

Fig. 4.1. Measured radiated power Pa of a cone-type loudspeaker 
as a function of the frequency (cf. Fig. 2.5). 

Cone-type loudspeakers (cf. Fig. 4.13) are the most 
common in use, and we will therefore concentrate on 
this type of diaphragm geometry in our discussion. 
The dynamic behavior of a nonrigid loudspeaker 
cone can be calculated using thin shell theory [9-12], 
as proposed by Frankort [13]. The cone is a thin 
curved plate or shell, which is excited at one side. The 
diff erential equations that describe the dynamic be-
havior of a cone or dame are then derived using thin 
shell theory. 
Throughout the remainder of this section we will 
restrict ourselves to shells of revolution with an 
axisymmetric excitation. Furthermore, all the geome-
trical parameters refer to the middle surface of the 
(thin) shell. 
A cone-type shell of revolution is shown in Fig. 4.2.a 
and its geometrical parameters are defined according 
to Figs. 4.2.b and c. The parameter R<t> is the radius of 
curvature2 in the meridional direction, Ç is the meri-
dional coordinate, i.e. the distance measured from an 
arbitrary origin along the meridian, <p is the angle 
between the normal on the shell surface and the axis 

1 In this section the bars above the symbols for the indication of 
a compleic-valued variable will be omitted . 
2 This radius of curvature can assume a negative value as is the case 
with a convex cone shown in Fig. 4.2b. 
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of symmetry, ris the distance of a shell element from 
the axis of symmetry and R = r/ sin( <p). The parame-
ter R<f> is related to the meridional coordinate Ç by 
d<p = 1 / R<t>. dÇ. In the case of a straight conical shell 
(Fig. 4.13b) R<t> is infinite and its inverse vanishes: 
1/ R<t>=0. For a plane plate bath 1 I R<t> and <p equal 
zero. 

Q. 
(c) 

Fig. 4.2. A cone-type shell of revolution (a) and cross-sections of 
this shell parallel toa meridian (b) and perpendicular to the axis 
of symmetry (c). 

The stresses acting on a shell element are depicted in 
Fig. 4.3a, where er.;, cr0 and crz are norm al stresses and 
the other are shearing stresses. The azimuthal coordi-
nate is denoted by e and the transverse coordinate by 
z. ( - h/ 2 < z < h/ 2, where h denotes the shell thic-
kness.) 

cone axis 
1 N 

Ne 

(b) 

Fig. 4.3. An element of the shell of revolution of Fig. 4.2. 

In the analysis we use a set of diff erential equations, 
derived by Reissner [12, 19], that describe the vibratio-
nal behavior of a thin shell. This author started from 
four basic assumptions, which were proposed by 
Love [14]: 
1. The shell is thin, i.e. the thickness of the shell is 

small compared with its radii of curvature. 
2. The displacements of the shell are small. The 

equilibrium conditions for deformed elements are 
the same as if the elements we re not deformed. This 
causes the differential equations to be linear. 



3. The transverse normal stress az is small compared 
with the other normal stress components and may 
be neglected. 

4. The normals of the undeformed surface are defor-
med into the normals of the deformed surface, 
which means that transverse shear deflections can 
be neglected. However, the integrated effect of the 
transverse shear stress, which is given by Eq. 4.3, is 
not neglected3 . 

In the diff erential equations the stresses in the shell 
are replaced by their resultants, which are assumed to 
act on the middle surface of a shell element. The 
nonvanishing resultant forces N, N8 , Q and the 
moment M [9], are given below. 
The symbol N denotes the resultant force in the 
meridional direction per unit length, defined by: 

h/2 

N = f aç dz, 
-h/2 

where h is the shell thickness. 
Similarly we find 

h/2 
N8 = f a8 dz, 

-h/2 

h/2 

and Q = f al;z dz. 
-h/2 

The bending moment per unit length is given by 
h/2 

M = f açz dz. 
-h/2 

4.1 

4.2 

4.3 

4.4 

The displacements and rotation of and the resultant 
forces and moment acting on a shell element are 
depicted in Fig. 4.3b. The symbols U and W denote 
the displacements in the meridional and transverse 
directions, respectively, and f3 is the rotation of the 
shell element in the U, W plane. 
The fol lowing analysis makes use of some additional 
assumptions: 
- The influence of the sound radiation on the mecha-

nical vibration is accounted for in a simplified way. 
The radiation impedance of a plane rigid piston 
with the same maximum radial dimension is assu-
med to be equally distributed over the diaphragm 
surface. This radiation impedance consists of a 
radiation resistance and an imaginary part. The 
first is combined with the diaphragm material 
damping and the Jatter leads to a radiation load 
mass, which can be combined with the piston mass. 
The radiation load mass of a rigid piston with 

3 It should be noted that the vanishing transverse shear strain (no 
transverse shear deflection) is inconsistent with the presence of 
transverse shearing stresses, but these Love assumptions are 
nevertheless almost universally accepted by others in the field of 
thin shell theories [9-12]. 

radius a, for frequencies below the transition 
frequency, equals (cf. 2.2): 

_ 8 p0 a3 
mi---. 

3 
4.5 

On the other hand the mass of a piston with 
thickness h and density Pc equals 

4.6 

For a typical piston with a = 80 mm, h = 0.5 mm 
and Pc= 600 kglm3, the ratio m/mp equals 0.26. 

- The material is isotropic in the plane of the diaph-
ragm, i.e. the Young's modulus is the same in all 
directions. If there is no preferred direction in the 
manufacturing of the material, this assumption is 
reasonable. 

- The Young's modulus and the loss factor of the 
diaphragm material are assumed to be constant in 
the frequency range of interest. The eff ects of 
internal material damping and of the radiation 
resistance have been incorporated in to the Young's 
modulus, which can be written in the complex form 
(assuming harmonie vibrations) [15, 17]: 

E(w) = E' (ro) + j E"(w) = E' (ro) (1 + )8 (ro)), 
4.7 

where 8 ( ro) is the loss factor. 
For many materials the loss factor 8 is constant in 
a broad frequency range [18]4 . 

- The eff ects of rotatory inertia are neglected in the 
thin shell diff erential equations. Thin shells are 
characterized by the condition hl R1 < 1, where h 
is the shell thickness and R1 is the smallest radius 
of curvature of a shell element [9, 1 O]. For an actual 
loudspeaker cone the factor hl R 1 is typically 
smaller than 0.01. 

With these assumptions we can formulate the diffe-
rential equations that describe the vibrational beha-
vior of a shell. 

4.1 The differential equations that describe the 
cone vibrational behavior. 

The axisymmetric transverse vibration of a rotatio-
nally symmetrie plane shell or plate (zero curvature) 
can be described by a fourth-order differential equa-
tion [16]. This transverse or "bending" vibration (for 
which the middle plate surface does not stretch: 
inextensional vibration), is responsible for the sound 
radiation of a plate. On the other hand the in-plane 

4 In genera( the real and the imaginary part of the Young's modulus 
as a function of frequency cannot be chosen independently, but 
have to satisfy the Kramers-Kronig relations: the real and imagina-
ry parts of the Young's modulus are Hilbert transform pairs [29]. 
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or "membrane" vibration for which there is no 
transverse component (the stretching of the middle 
surface of the plate is dominating: extensional vibra-
tion) does not contribute to the sound radiation. 
Bending and membrane vibrations are independent 
in thin plate theory. 
In contrast to a plane plate, the membrane vibration 
in a curved plate or shell has a transverse component 
in the displacement. Therefore, the membrane vibra-
tion contributes to the sound radiation of the curved 
shell and cannot be neglected, as will be seen in 
Section 4.4. 
An element of a shell of revolution possesses three 
degrees of freedom for axisymmetric vibrations: the 
displacements U and Win the meridional and the 
transverse direction, respectively, and the rotation f3 
of the shell element. The axisymmetric vibration is 
then described by a single sixth-order differential 
equation or, equivalently, by a set of six coupled 
first-order diff erential equations [19]. 
The six first order diff erential equations can be 
written as two coupled vector equations: 

dG 

dX 
dÇ 
with the property that 

where T denotes a transposed matrix. 

4.8 

The matrices A 11 , A12 and A 22 depend upon frequen-
cy and material and geometrical parameters of the 
shell, as can be found in Appendix A. 
The vector G is formed by the two forces and the 
moment acting on a shell element,.!_ is a vector whose 
elements are the displacements in the meridional and 
transverse directions and the rotation of a shell 
element and Ç is the meridional coordinate, as shown 
in Fig. 4.2. 

Q= J 27rrN 
27rrM! h 

4.9 

X= 

where h denotes the thickness of the shell. 
lf we put 1/ R"'=0 and <p = 0 in Eqs. 4.8, the diff eren-
tial equation describe the axisymmetric transverse 
vibration of a circular plate, which can be written in 
the form: 
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v 4 w = !!_ { r !!_ !!_ ( r d W) J} = 
r dr dr r dr dr 

oiph 
--W 

Db ' 
4.10 

where Db is the bending stiffness as defïned by Eq. 
4.12. Eq. 4.10 is the well-known equation for harmo-
nie motion of the plate [8,9]. 

4.1.1 Membrane (extensional) differentia/ 
equations. 

The set of six coupled first-order differential equa-
tions that describe the vibrational behavior of the 
shell of revolution has six linearly independent solu-
tions. 
From the asymptotic analysis put forward by Ross 
[20,21] for the set of diff erential equations ( 4.8), it 
appears that these solutions (if properly chosen) can 
be classifïed in to two classes, except in the "transition 
area'', i.e. in the vicinity of a ring on the shell for 
which the equation 

wR yP/Ë = 1 , 4.11 

hol ds. 
The first class consists of four solutions for which 
bending is the dominating mechanism. These ben-
ding solutions show a rapid spatial variation and are 
strongly dependent upon the shell thickness. The 
second class has two solutions for which the effect of 
bending is quite negligible. These membrane solu-
tions are rather slowly varying functions of position 
and have only a weak dependence on the cone 
thickness. 
Ross also showed [20] that the membrane solutions 
are well approximated by means of the membrane 
model5, which is the model in which the bending 
stiff ness Db, given by 

E h3 

Db = , 4.12 
12(1 - v2) 

where vis Poisson's ratio, is assumed to vanish. 
Setting Db = 0 implies that the moment M and the 
shear force Q vanish [9] and the number of differenti-
al equations reduces to two. The differential equa-
tions for the membrane model are found by substitu-
ting Q=O and M=O in Eq. 4.8: 
dS 
dÇ 

5 When speaking about membrane theory, membrane stress or 
membrane force we do not mean that the forces are necessarily 
tensile forces, they can also be compressive forces. 



dU 
4.13a 

where B12 = B21 and S=2'!rrN/h. The transverse 
displacement Wis given by: 

4.13b 

The coefficients B11 , B12, Bw C1 and C2 are listed in 
Appendix A. 
If the bending stiff ness vanishes, the resultant set of 
differential Eqs. 4.13 exhibits a singularity at a ring 
on the cone whose position is frequency dependent. 
The location of this singularity on the shell, which is 
called the "transition point'', is given by Eq. 4.11. 
There is a lowest and a highest frequency where this 
ring coincides with the shell outer and inner circle, 
respectively. With a nonzero bending stiff ness we get 
a "transition area" in the vicinity of the "transition 
point'', in which bending and stretching eff ects are 
coupled to each other. 
Van der Pauw has reported [32] that in the lossless 
membrane model an accumulation and trapping of 
vibrational energy at the "transition point" occurs. 
This results in a dissipative driving-point admittance 
at the apex of a truncated conical membrane, even in 
the complete absence of mechanica! dam ping in the 
membrane material. This phenomenon of "energy 
trapping" may be viewed as a conversion of power 
from membrane solutions to bending solutions in the 
"transition area". 

4.2 Boundary conditions 

The set of diff erential equations can be integrated 
after prescribing a number of boundary conditions 
that is equal to the number of first order diff erential 
equations. For the axisymmetric case, including 
membrane and bending (extensional and inextensio-
nal) eff ects, this results in six boundary conditions, 
three at each edge. In the boundary conditions we can 
prescribe the values of the variables directly or by a 
linear combination or a ratio of these variables. 

Outer edge. If the outer edge of the cone is connected 
with a rim (suspension) then the outer part of this rim 
is a clamped edge: W= 0, U = 0 and /3= 0, i.e. there is 
no motion at the edge. 
If the influence of the rim is to be ignored, then we put 
a free edge at the outer boundary of the cone which 
means that the forces and the moment at the edge 
vanish: Q=O, N=O and M=O. 
Also it is feasible to define a boundary condition as 
an impedance in the meridional or transverse direc-
tion or as a rotational impedance. Then we prescribe 
a value for the ratios NI U, QI W, or M/{3. 

lnneredge. If the inner edge is attached toa voice coil 
former (Fig. 4.4) the axial force Fa acting on the 
former is provided by the Lorentz force (the voice coil 
is a current-carrying wire in a statie magnetic field), 
which gives a boundary condition: 

L___[_ ,__ voice coil tormer 

Fig. 4.4. Cone loudspeaker geometry. 

Fa 
Nvc = --

2'1rrvc 
4.14 

The inner edge is basically a free edge and the other 
two boundary conditions at the voice coil former are 

Mvc = 0 and Qvc = 0. 4.15 

The relation between the axial force Fa and the 
Lorentz force F can be found from the analogous 
circuit shown in Fig. 4.5. Tuis figure is similar to that 
of Fig. 2.2, except that the vibratory part, at the 
right-hand side of the dashed line, does not show the 
behavior of a simple mass-spring system, but is 
described by the diff erential equations of 4.8. 

E j t. 
'-G'!>-------

U:BI V 
-F=BI I 

m, 
Zrad 

Fig. 4.5. Impedance-type analogous circuit for an electrodynamic 
loudspeaker. 

The total spring constant k1 is split into that of the 
combined contributions of the spider and the box air 
volume k5 and that of the outer edge suspension ke. 
The mechanica! input impedance of the nonrigid 
cone is 

Fa z =-
me V 4.16 

where Fa is the axial force that acts on the voice coil 
and Vis its axial velocity. 
The eff ects of the spider, of the box air volume and 
of the electrical parameters are described by the 
transfer function Fa/ E, which is found from Fig. 4.5. 
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( zmc+Jk.,:) (RE+ jwLE+ (Bl)2 . ) 
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The transfer function between the velocity of any 
cone point and the axial force acting on the voice coil 
former and also the mechanica! input impedance (cf. 
eq. 4.16) are found from the numerical analysis. 

4.3 Solving the set of differential equations 

In genera! the set of differential equations cannot be 
solved analytically, and we therefore have to turn to 
numerical techniques. Within the framework of this 
thesis a brief discussion of some methods seems to be 
sufficient. 

The method of finite differences [22). 
The diff erential equations can be written in a scheme 
of finite diff erences and the resulting equations can 
be solved. This method has the disadvantage that it 
does not permit an automatic selection of an opti-
mum step size ofintegration at each step in accordan-
ce with the desired accuracy. Therefore this method 
was not used in our analysis. 

The method of direct integration, i.e. a Runge-Kutta 
[23,46) or predictor corrector [24,46] method. It can 
be applied conveniently to a large set of first-order 
differential equations with known boundary condi-
tions at one side of the integration interval and it 
permits an automatic step size selection in accordan-
ce with the desired accuracy of the solution. It is not 
directly suitable for a problem where the boundary 
conditions are prescribed at either side of the integra-
tion interval. Such a problem has to be solved by 
constructing n independent solutions (nis the num-
ber of first-order differential equations) and by com-
bining these solutions with appropriate constant 
factors to match the known n/2 boundary conditions 
at either edge. The loss of accuracy which might result 
from this numerical method was obviated by adop-
ting a multisegment method of integration as propo-
sed by Kalnins [13,19,26). 
A third method exists with a completely different 
approach to the problem, the finite element method 
[27). This is an attractive method, because several 
software packages for the analysis of mechanica[ 
vibrations that are based on this method are avail-
able. 
In our humerical analysis the direct integration me-
thod was chosen because it provided a great tlexibili-
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ty in the experiments, which could not be obtained 
from a standard (finite element) software package. 

4.4 Some results of the numerical analysis 

The sound radiation of a loudspeaker was evaluated 
in two steps: 
In the first step the mechanica) vibration of the 
loudspeaker diaphragm in vacuum was evaluated 
numerically. The intluence of the sound radiation on 
the mechanical vibration was accounted for by incre-
asing both the mass of the diaphragm and the 
dissipative part of the Young's modulus of the diaph-
ragm material. 
In the second step the sound radiation due to the 
mechanica) vibration, as found in the previous step, 
was calculated. The method used evaluates the 
"Helmholtz equation" (Eq. 5.1) in free space, which 
is discussed in next chapter. 
The loudspeaker cone shown in Fig. 4.4 was evalua-
ted using Eqs. 4.8. The boundary conditions are Eqs. 
4.14 an<l4.î5 for the inne.r edge and a fixed outer 
edge. The measured and calculated sound pressure 
levels on the axis are shown in Fig. 4.6. (The material 
and geometrical parameters of the loudspeaker con es 
that have been used in the calculations discussed in 
this chapter can be found in Appendix B.) 

70 

60 

..................... .i..,..,._..__J.......1._._.....L..U.J 
100 1000 10000 
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Fig. 4.6. Measured (drawn line) and calculated (dashed line) sound 
pressure of a cone loudspeaker. 

There is a reasonable qualitative correspondence 
between calculated and measured results. The quanti-
tative correspondence is not optimum which is due to 
the difficulty in estimating the material parameters 
and boundary conditions of cone parts. For example, 
the modeling of the glued joints in terms of Young's 
modulus and dam ping as a function of the frequency 
is problematic. The intluence of a change of the 
Young's modulus of the diaphragm material is a shift 
of the location of peaks on the frequency axis while 
a change of the dam ping will intluence the height of 
these peaks. 
However, the analysis can be very useful in predicting 



the qualitative effects of, for example, cone geometry 
variation, and in the remaining part of this section we 
will focus the attention upon the qualitative eff ects. 
The sound radiation will be approximately evaluated 
with the Rayleigh integral: 

f f -jklr- rol 
PJ!) = - jrop0 e - - V(Io) dS0 , 4.18 

So 2nJI- !ol 

where Pw is the sound pressure at the field point!_, ro 
is the angular frequency, Po is the density of air, V(!0) 

is the velocity normal to the surface at the point !o on 
the cone, k equals the ratio of the circular frequency 
and the velocity of a free space sound wave, I!- !ol is 
the distance between the cone point and the field 
point and S 0 is the cone surface. If we have a plane 
radiator in a plane, rigid and infinite baffle, its sound 
radiation can be evaluated using Eq. 4.18 [8,45]. 

4.4. 1 Sound radiation calculation with and 
without bending effects. 

The solutions of the differential equations can be 
divided into a set of bending solutions and a set of 
membrane solutions. This means that the sound 
radiation can be split in toa part that results from the 
bending solutions and a part that results from the 
membrane solutions. The bending solutions have a 
relatively short wavelength compared with that of a 
free-space sound wave at the same frequency. This is 
illustrated in Fig. 4.7, which shows the magnitude of 
the calculated vibration pattern at 5 kHz of a cone 
with an outer diameter of 160 mm and a free outer 
edge. 

14 92 

Fig. 4.7. Magnitude of the calculated transverse vibration Wat 5 
kHz of a cone with an outer diameter of 160 mm as a function of 
the meridional coordinate I;. 

The bending wavelength is of the order of 20 mm 
whereas the wavelength of a free space sound wave at 
5 kHz is about 70 mm. Therefore, due to destructive 
interference, the sound radiation associated with the 
bending solutions, which show a rapid variation with 
the meridional coordinate, is relatively small [30]. 
The membrane solutions are well-approximated by 
the membrane model [20]. Fig. 4.8 shows the sound 
pressure of a loudspeaker, one calculated with the 
membratie model (Eq. 4.13) and the other with the 
model including bending effects (Eq. 4.8). 

(dB) 

sound t 
pressure 

level t 10 dB 

1with bending 

104 
frequency !Hz) --

Fig. 4.8. Calculated sound pressures on the axis of a cone with an 
outer diameter of 166 mm. 

In the calculation a free outer edge was assumed. The 
voice coil mass is 0.24 times the cone mass. At low 
frequencies there are no diff erences in the calculated 
sound pressures. In the break-up frequency range the 
sound radiation increases. Also a fine structure due to 
bending resonances appears in the diagram. The 
same occurs for the radiated power and the mechani-
ca! input impedance, which are not shown here. It 
should be emphasized that the calculations according 
to the membrane model require a much shorter 
computer time than those with the model including 
bending eff ects. The number of differential equations 
is reduced and the step size in the integration algo-
rithm can be considerably increased. A small step size 
in the model including bending eff ects is necessary 
because of the highly oscillatory behavior of the 
bending solutions. Same typical vibration patterns 
calculated with the membrane and with the model 
including bending effects can be found in Ref. [31]. 
The much shorter computing time, at least by a factor 
of ten, implies an improvement in the practical 
usability of the theoretica! model. 

4.4.2 The influence of material damping and voice 
coil mass 

In this section we investigate the influences of the 
material damping and of the voice coil mass. The 
cone vibrations were calculated using the membrane 
model and a free outer edge was assumed. 
It is instructive to study first the sound radiation of 
a straight cone (Fig. 4.13b) without material dam ping 
and with vanishing voice coil mass. The differential 
equations that constitute the membrane model then 
exhibita singularity on a ring of the cone in a limited 
frequency range: the break-up region. The position of 
the singularity on the cone meridian moves from the 
outer to the inner edge with increasing frequency 
according to Eq. 4.11. The singularity is an obstacle 
to numerical integration, but can be obviated by 
adopting a complex path of integration as proposed 
by van der Pauw [32]. 
In the following analysis the angular frequency ro and 
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the meridional coordinate Ç are considered as com-
plex quantities. The integration is then carried out 
along an alternative path in the complex Ç-plane. The 
question arises whether the path of in tegration should 
be chosen above or underneath the transition point Ç" 
which is given by the equation: 

4.19 

Tuis can be solved [32] by g1vmg w a negative 
imaginary part (for an excitation of the form 
exp( + jwt)), which shifts Ç1 away from the real axis 
into the upperhalf Ç-plane. In the limiting case Im(w) 
--+ - 0, the transition point Ç1 wilt shift from the 
upperhalf Ç-plane back to the real axis and conse-
quently the correct path of integration is underneath 
the transition point Ç1• 

In the numerical procedure it is convenient to intro-
duce a new complex variable z according to 

coth (z) = Ç/ Ç" 4.20 

where the real part of Ç is the meridional coordinate 
on the cone. With this transformation and assuming 
1 / R<i> to vanish, the set of diff erential Eqs. 4.13a can 
be written in the form 
dS 

dz 

dV 

dz 

where H12 = H21 and V = U. E. fi;-;:-H12 and H22 can befound in Appendix A. 

4.21 

The end points of the integration patlÎ along the real 
axis are the outer edge meridional coordinates Ça and 
Çb. The corresponding points za and zb in the complex 
z-plane can be found from the equation: 

1 (Ç/Ç,+1) z = h In . 
Ç/ Ç, -1 

For Ça we find ( Ça/ Ç1 < 1 ): 

za = 1f2 In 1 Ça/Ç,+11 
Ça/Çt-1 

'Tl: + j-, 
2 

jt ____ _ 

Fig. 4.9. Integration path in the complex z-plane. 
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4.22 

4.23 

4.24 

The integration can be performed numerically if we 
choose the integration path parallel to the real and 
imaginary axes. 
The sound radiation of the lossless cone, calculated 
with the membrane model, is shown in Fig. 4.10. (The 
Rayleigh integral was evaluated directly using the 
same complex integration path, obviating the need 
for calculating the transverse displacements of the 
cone explicitely). 

!dB) 

î sound 
pressure 

level 70 
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break up 
reg ion 

10 10 4 

frequency (Hz) --

Fig. 4.10. The sound pressure of a cone with an outer diameter of 
160 mm and with vanishing voice coil mass and vanishing material 
dam ping. 

The break-up frequency region is the frequency range 
where the singularity occurs on the cone: 

VE/P tan ( <p) VE/P tan ( <p) < (Ü < 4.25 

and in this frequency range we find a rise in the sound 
radiation. The peak at 17 kHz is a membrane reso-
nance. 
Assuming the cone material to possess some dam ping 
with a loss factor 8 equal to 0.1, we get the sound 
radiation as shown in Fig. 4.11. 
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Fig. 4.11. The same as Fig. 4.10 but now with a material dam ping. 

The next point of interest is the influence of the voice 
coil mass. Such an additional mass increases the total 
moving mass, which yields a decreased overall sound 
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Fig. 4.12. The same as Fig. 4.11, but with a voice coil mass of 3 
grams. The cone mass equals 4.8 grams. 

radiation. Fig. 4.12 shows that such a voice coil mass 
yields an additional drop of the sound radiation in 
the break-up frequency region. 

4.4.3 The inf/uence of cone shape and outer edge 
suspension 

In the preceding sections we discussed the sound 
radiation of a nonrigid cone with an infinite radius of 
curvature R<f> (conical shell). In this section we show 
the influence of a bent cone shape, for example a 
convex or concave cone shape. To this end we 
calculated the sound radiation of a cone-shaped 
radiator and those of a convex and a concave cone, 
both with a radius of 0.1 meters. The geometries are 
shown in Fig. 4.13. 
In the calculations we assumed a voice coil mass of 
1.5 grams and the vibrational behavior was calcula-
ted with the membrane model. Fig. 4.14 shows the 
sound radiation of the cone with a conical shape. 
The sound pressure response resembles that of Fig. 
4.12, but the roll-off slope in the break-up frequency 
range is smaller, due to the smaller voice coil mass. 

www convex (a) conical lbl concave (c) 

Fig. 4.13. The geometries of a convex (a), conical (b) and concave-
shaped (c) cone. 
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Fig. 4.14. The sound pressure response of a cone ( conical shape) 
with an outer diameter of 160 mm and with a voice coil mass of 1.5 
grams. The cone mass equals 3.5 g rams. 
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Fig. 4.15. The sound pressure response of a concave cone with a 
voice coil mass of 1.5 grams (outer diameter is 160 mm). The cone 
mass equals 3.8 grams. 
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Fig. 4.16. The sound pressure response of a convex cone with a 
voice co il mass of 1.5 grams (outer diameter is 160 mm). The cone 
mass equals 3.4 grams. 
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Fig. 4.17. The sound pressure response of the convex cone of. Fig. 
4.16, but now including bending effects. 

The sound pressure response of the concave cone is 
shown in Fig. 4.15. 
Compared with the previous cone the break-up fre-
quency region has moved towards lower frequencies 
and the break-up peak is sharpened. 
The third cone shape is the convex cone and its sound 
pressure response is shown in Fig. 4.16. 
The break-up peak has disappeared and only a small 
gradual rise in the sound radiation response remains. 
Also the response shows a roll-off at much higher 
frequencies. However, with the convex cone, we are 
not allowed to ignore bending eff ects any more, 
because the shape of the outer cone part approxima-
tes that of a plane plate. In Section 4.4.1 we showed 
that the bending effects have a small influence on the 
sound radiation of a cone with a conical shape. These 
eff ects are even smaller fora concave cone shape, but 
fora convex cone shape the amplitude of the bending 
resonances increases. The sound radiation response 
of the convex cone, calculated with the model inclu-
ding bending effects, is shown in Fig. 4.17. 

45 



This response has a moving average that was correct-
ly predicted by the membrane model calculation, but 
it also shows peaks and dips caused by bending 
resonances that can no Jonger be ignored. The ampli-
tudes of these peaks and dips were found to depend 
strongly on the material damping. 
We conclude this section with a study of the influence 
of the outer edge suspension or rim. The sound 
radiation responses of a conical-shaped cone with 
and without an outer edge suspension are shown in 
Fig. 4.18. 

20 1000 10000 
frequency [Hz] -

Fig. 4.18. The sound pressure responses of a conical-shaped cone 
with and without an outer edge suspension. The voice coil mass is 
1.5 grams. 

The outer edge suspension causes a dip and peak in 
the response below the break-up frequency region. 
The amplitude of the dip and peak were found to 
depend strongly on the outer edge sus pension materi-
al damping. The rim also increases the amplitude of 
the peak of the second bending resonance in the 
break-up frequency region, as reported elsewhere 
[33]. 

4.5 Discussion 

The sound radiation from a nonrigid cone shows a 
rise in the break-up frequency region. The average 
rise is correctly predicted by the membrane model, i.e. 
the model in which the bending stiffness vanishes. In 
the break-up frequency region the idealized (lossless) 
membrane model differential equations show a sin-
gularity on the cone, the position of which moves 
from the outer to the inner edge with increasing 
frequency according to Eq. 4.11. A trapping of energy 
at the singularity on the cone in the lossless membra-
ne model was reported by van der Pauw [32], which 
effect results in a large transverse amplitude of the 
vibration at this point. This large transverse amplitu-
de of the membrane vibration generates a bending 
vibration at the site of the singularity. However, 
bending waves cannot propagate at the inner cone 
part (between the inner edge and the singularity 
point), as shown in Ref. [25], and will decrease 
exponentially with displacement. At the outer cone 
part (between the singularity point and the outer 
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edge), bending waves do propagate and standing 
(bending) waves occur. In effect, at the singularity we 
find a conversion from membrane energy into ben-
ding energy [32]. The influence of the material dam-
ping on the membrane vibration in the break-up 
frequency region is small, because the conversion of 
energy to bending waves can be interpreted as a 
dam ping mechanism. On the other hand the bending 
waves are strongly influenced by the material dam-
ping. 
The sound radiation of the nonrigid cone can be split 
in to the contributions of the independent solutions of 
the differential equations that describe its vibration. 
In contrast toa plane plate, the membrane vibrations 
in the cone have a transverse component in the 
displacement and thus a sound radiation. In the 
break-up frequency region the amplitude of the 
transverse membrane vibration is relatively large, 
which results in a rise of the sound radiation in the 
break-up frequency region. At frequencies below the 
break-up frequency region bending waves cannot 
propagate and a generated bending wave wil\ decay 
exponentially. Therefore, the sound radiation below 
break-up is mainly determined by the membrane 
solutions. 
In the break-up frequency region the sound radiation 
due to the membrane solutions of the conical-shaped 
and concave cone show a considerable rise. The 
contributions of the bending solutions to the sound 
radiation of a cone with a conical shape are small 
compared with those of the membrane solutions and 
cause a fine structure on the sound pressure curve. 
The contributions of the bending solutions to the 
sound radiation of a concave cone shape are even 
smaller and can be neglected. 
The convex cone shows only a small rise in the sound 
radiation of the membrane solutions. The contribu-
tions of the bending solutions to the sound radiation 
are much higher and can no Jonger be neglected. The 
bending solutions yield a number of bending reso-
nance peaks and dips in the break-up frequency 
region. 
The moving average of the sound radiation in the 
break-up frequency region, which is correctly predic-
ted by the membrane model, is strongly influenced by 
the voice coil mass. Such a mass yields an additional 
roll-off of the sound radiation in this frequency 
region. Therefore, the sound radiation of a concave 
cone with voice coil mass shows a peak which 
originate from the membrane solutions. These mem-
brane solutions are not very sensitive to a material 
damping in the break-up frequency region and the 
peak amplitude is hardly affected by such adam ping. 
The sound radiation from a convex cone with a voice 
coil mass shows a number of peaks and dips that 
originate from the bending solutions, but the moving 



average does not show a rise in the break-up frequen-
cy region. The amplitudes of these peaks and dips can 
be decreased by increasing the material damping. 

The choice of a cone shape depends on the material 
properties. For example, metal has a large specific 
mass and the thickness of a metal cone should be 
small in order to limit the total moving mass, which 
yields a small bending stiff ness. The ratio El p is 
relatively large compared with that of a commonly 
used cone material such as paper, so that the break-up 
frequency region starts at relatively high frequencies. 
Furthermore the material damping of a metal is 

small. Therefore the concave cone shape is optimum 
for a metal cone: the influence of the bending reso-
nances is minimal and the break-up peak is located at 
relatively high frequencies. 
A commonly used cone material, for example paper 
or plastic (e.g. polypropylene) material, has a much 
smaller ratio of El p and a much larger material 
dam ping, which is able to damp the bending resonan-
ces effectively. Therefore the convex cone shape is 
optimum for such a cone material: the sound pressure 
response shows a smooth curve (provided that the 
bending resonances are damped sufficiently) which 
extends towards relatively high frequencies. 

" 
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5. The Wigner Distribution: A Valuable Tool for lnvestigating 
Transient Distortion * 

Chapter 5 contains a reprint of the article: 
C.P. Janse and A.J.M. Kaizer, The Wigner Distribution: 

A Valuable Tool for Investigating Transient Distortion, 
JAES, vol. 32, no. 11, November 1984. 

CORNELIS P. JANSE AND ARIE J. M. KAIZER 

Philips Research Laboratories, 5600 JA, Eindhoven, The Netherlands 

It was shown earlier that the Wigner distribution is a valuable tool for analyzing 
transient distortion of filters, loudspeakers, and loudspeaker combinations. 
applications of the Wigner distribution to the evaluation of 
are reported. The first topic is the infiuence of the geometry of a radiator on 1ts trans1ent 
response. The geometries discussed are the plane, cone-shaped , and dome-shaped 
radiators . Also dealt with is the infiuence of some known crossover filters on-
axis and directional transient behavior of a combination of coincident and noncomc1dent 
drivers . 

0 INTRODUCTION 

In the past many representations have been used to 
describe the behavior of a loudspeaker system. Among 
them are the transfer function, which contains the am-
plitude and phase characteristics as a function of fre-
quency, the impulse response, and the tone-burst re-
sponse. These representations or measurements can be 
divided into two groups, and each represents an aspect 
of loudspeaker evaluation: steady-state and transient 
behavior. The steady-state response on axis and the 
steady-state directional behavior involve relatively 
stable conditions, and the methods developed to evaluate 
them are widely regarded as satisfactory. 

This leaves transient behavior. Here there is little 
agreement on the precise effects and how to measure 
them. Techniques developed in the past include impulse 
response, group delay, tone-burst response, and cu-
mulative spectra. All of these are well known, but none 
of these previously developed techniques, in fact, pre-
sents a really clear picture of the actual physical behavior 
under transient conditions. However, impulse response 
measurements are the natura! approach for investigating 
transient behavior, and the measurements do indeed 
contain all the information needed, but the problem 
has always been how to derive insight into the physical 
behavior from the representation . Therefore in a pre-

* Presented at the 73rd Convention of the Audio Engineering 
Society, Eindhoven, The Netherlands, 1983 March 15-18; 
revised 1984 February 15. 
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vious paper [ 1] we proposed the Wigner distribution 
because of its ability to display the information con-
tained in impulse response measurements conveniently. 
The Wigner distribution of a signa! can be interpreted, 
with some care [ 1], as the distribution of the energy 
contained in the signa! in both time and frequency. In 
the technique developed it is portrayed in a readily 
understood graphic form. 

In principle, Wigner distribution analysis can be used 
for various applications . It is capable of giving a clear 
insight into the transient behavior of all kinds of trans-
ducers, as well as the mechanics of speech and other 
transient phenomena . But the major application so far 
developed is the analysis of loudspeaker performance 
(l] . The Wigner distribution can be used to evaluate, 
and to optimize, the transient response of individual 
loudspeakers or multiway combinations . 

In this paper we report on some further applications 
of the Wigner distribution technique to the evaluation 
of loudspeaker transient behavior. It is assumed that 
the reader is familiar with the terminology used in [ l]. 

An important application of the Wigner distribution, 
namely, the study of shifts and of the spreading-out 
effects of an impulse response in the time direction of 
filters and loudspeakers, is discussed. Often used for 
this purpose is the group delay, which gives only an 
indication of the location of the acoustic center. How-
ever, the group delay can be misleading in practice 
[ 1], and its accuracy can be affected seriously by re-
fiections [2]. 



In Section 1 the inftuence of the geometry on the 
transient behavior of plane, cone-shaped, and dome-
shaped loudspeakers is discussed. Section 2 describes 
the transient behavior of several well-known crossover 
filters, while Section 3 discusses the directional transient 
behavior of these filters. Finally, Section 4 contains a 
concluding discussion of the results obtained. 

1 TRANSIENT BEHAVIOR OF CONE AND DOME 
LOUDSPEAKERS OF VARIOUS SHAPES 

In a simplified theory the radiation impedance of a 
loudspeaker is often approximated by that of a rigid 
plane piston in an infinite baffie or at the end of a long 
tube [3]. However, the radiations from a plane piston 
and from a non plane radiator are qui te different [ 4 ]-
[6]. These differences still exist for rigid radiators, and 
the effect is called the cavity effect. To calculate the 
exact sound radiation from a radiating surface with an 
arbitrary shape we have to solve the Helmholtz equation 
[7], [8]. Assuming harmonie vibrations, the integral 
form of this equation, provided that there are no sources 
in space, is given by 

( 1) 

where Pw(r) is the pressure in the field point r (within 
and on the surface area enclosed by the boundaries), 
r0 is a point on the surface S0 , TJo is the unit vector 
normal to the surface, and Gw is the Green's function. 

This equation can only be sol ved analytically for 
some simple shapes such as a piston in an infinite baffle 
or a pulsating sphere. Fora plane radiator in an infinite 
baffle, assuming harmonie vibrations, the Helmholtz 
equation reduces to the Rayleigh integral [8], [9]: 

i f -jkjr - rol 
P w(r) = - jwpo 2 e I I V(ro) dSo , 

So 'IT r - ro 
(2) 

where w is the angular frequency, p0 is the density of 
air, k is the wave number, and V(r0) is the normal 
component of the velocity at point r0 on the radiator 
surface So. 

For more complicated shapes, such as cone or dome 
loudspeakers, the Helmholtz equation has to be solved 
numerically. This can be done directly using a set of 
integral equations [ 10) or with the aid of the finite-
element method [ 11]. A detailed discussion of these 
numerical calculation techniques is beyond the scope 
of this paper. 

In this section we discuss the inftuence of the geometry 
on the transient behavior of cone and dome-shaped 
radiators mounted in an infinite baffte. The sound ra-
diation of these radiators is calculated using the fini te-

element method. The actual calculated physical quantity 
is the complex sound pressure at a point in space, when 
the radiator surface has an acceleration level indepen-
dent of position and frequency in the direction of the 
radiator axis . The inftuence of the geometry on the 
transient behavior of the radiated sound is an extension 
of the steady-state radiation of a non plane radiator, 
which is discussed elsewhere [ 4 ]-[6]. The Wigner dis-
tribution of such a radiator can be calculated from the 
complex-valued sound pressure level. This is in facta 
transfer function because it was calculated with a fre-
quency-independent acceleration level of the radiator 
surface. 

1.1 Plane Radiator 

The first example is the sound radiation of a plane, 
circular, and rigid piston in an infinite baffle. The com-
plex far-field sound pressure at a field point r for har-
monie excitation equals [7] 

where dis the distance of the field point r to the center 
of the piston, ais the piston radius, Uacc is the accel-
eration level of the piston, <p is the angle bet ween the 
axis of symmetry and the direction of the field point, 
and 11 is the Bessel function. 

The magnitude of the on-axis far-field sound pressure 
is independent of frequency: 

PoUaccSo - --
2'ITd (4) 

The contour plot of the Wigner distribution of the com-
plex on-axis far-field sound pressure is shown in Fig . 
1 (a). lt wi Il be clear that according to [ I], the transient 
behavior of this plane radiator is almost ideal. 

In the following examples we will frequently use the 
so-called analytic signal. The reason for this is that 
the negative and positive frequencies in a spectrum 
yield disturbing interferences in the Wigner distribution. 
However , the negative frequencies do not give any 
additional information and can be ignored in the anal-
ysis . Removing the negative frequencies from the 
spectrum yields the analytic signa!, which was discussed 
for this application in a previous publication [ I]. Re-
moving the negative frequencies has the consequence 
that the representation of the impulse response in the 
time domain has complex values , while the original 
spectrum has a real-valued impulse response . Another 
consequence is that the complex-valued impulse re-
sponse is noncausal. The magnitude of this noncausal 
complex-valued impulse response, which is a function 
of time, is also referred to as the energy-time curve 
[12] . Fig. l(b) shows the contour plot of the Wigner 
distribution of the analytic signa! associated with the 
far-field sound pressure. (A contour line with index 
i = 1-9 has a height of ( 1 - il 10) and with index 
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i = 10 a height of 0 .05 times the maximum height of 
the Wignerdistribution.) Compared with Fig. l(a) one 
can see in Fig. 1 (b) the noncausality of this impulse 
response . At lower frequencies the response is spread 
symmetrically in the time direction . The ear (see [ 1]) 
at the high-frequency end is due to the anti-aliasing 
filter which is located at 12 kHz. Fig . 1 can be used as 
a reference for the Wigner distributions of cone and 
dome-shaped radiators , which are discussed below. 

1.2 Cone-Shaped Radiator 

Unlike the plane piston radiator, whose on-axis sound 
pressure amplitude is frequency independent [Eq. ( 4)], 
a cone-shaped radiator shows a frequency-dependent 
on-axis sound pressure amplitude. This can already be 
concluded from the calculation of the sound pressure 
from a cone-shaped radiator using the Rayleigh integral 
[4], [13) (also commonly known as geometrical acoustic 
approximation). However, this is only a rough ap-
proximation of the exact sound radiation, since the 
Rayleigh integral is only valid for a plane radiator . If 
we calculate the sound radiation using the Helmholtz 
equation, the sound radiation is also frequency depen-
dent, but the amplitude differs from that obtained from 
the Rayleigh integral. The calculated sound pressure 
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Fig. 1. (a) Wigner distribution of on-axis far-field sound 
pressure of rigid piston with radius a = 97 mm. Acceleration 
level of piston is constant. (b) Wigner distribution calculated 
with analytic signa!. 
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shows large peaks and dips in its amplitude character-
istic, an effect called the cavity effect [4]-[6] . The 
sound pressure calculated with the Rayleigh integral 
has a much smoother amplitude characteristic . The 
reason for this is that the Rayleigh integral takes into 
account only the inftuence of the different distances of 
the cone points to the field point. The Helmholtz equa-
tion, on the contrary, also takes in to account standing 
waves or resonances in the cone cavity, which give the 
large peaks and dips in the amplitude characteristic . 

The examples in this paper were calculated with the 
Helmholtz equation, which was solved numerically 
using the fini te-element method [ 11] . The geometry 
was assumed to possess rotational symmetry. The mesh 
pattern that was used for the cone-shaped radiator is 
shown in Fig. 2. Only the sound field within and on 
the boundaries has to be calculated with the finite-
element method. The boundaries are the vibrating cone-
shaped radiator , the nonvibrating outer edge and flat 
apex, apart of the infinite rigid baffte, and a hemisphere, 
which links the inner region to the outer region. The 
sound pressure at any point outside the mesh region 
can be calculated analytically by using the sound pres-
sure distribution on the hemispherical boundary [7] . 

A typical on-axis sound pressure response is shown 
in Fig. 3. This amplitude response has a first peak at 
ka = -rr/2 , where k is the wave number and a is the 
radius of the radiator. Regarding the influence of the 
cone geometry, the location of this peak on the frequency 
axis depends on the radius a, whereas the amplitude 
of this peak is dependent on the cone shape. For constant 
a we have observed that the peak amplitude increases 
with increasing cone cavity volume. The transient re-
sponse of the same radiator is shown in Fig. 4, which 
gives contour plots of the Wigner distribution of the 
complex on-axis sound pressure response . lf Figs. 1 
and 4 are compared, it will be clear that the latter has 
amore spread out transient response in the time direction 

. bofFJe 

apex 

Fig . 2. Calculation mesh of cone-shaped radiator. Equivalent 
piston radius -97 mm; radius of outer edge has cross section-
7 .5 mm; radius of fiat apex part-13 mm; apex angle-120°; 
radius of hemisphere-120 mm . 



at middle and low frequencies. The first peak in the 
amplitude characteristic can be seen in the Wigner dis-
tribution as a spreading-out effect in the time direction. 
This is to be expected since the peak can be considered 
as a resonance; this resonance is damped by the acoustic 
radiation resistance of the radiator. This transient be-
havior is typical of all cone-shaped radiators. 

It has been reported that the amplitude of the cavity 
dip (following the resonance peak) can be reduced by 
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FRE OUEN CY (H Z l 20 000 

Fig . 3. Far-field sound pressure level of cone-shaped radiator 
with dimensions of Fig . 
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Fig. 4 . (a) Wigner distribution of on-axis far-field sound 
radiation of Fig . 3 . (b) Wigner d istribution calculated with 
analyt ic signa!. 

a dust cap [ 14]. In this case the transient response wil! 
also be improved . Figs . 5-7 show, respecti vely, the 
calculation mesh pattern, the on-axis sound pressure 
response, and its Wigner distributions for the loud-
speakers of Figs. 2-4, but now with a vibrating dust 
cap. If we compare the respective figures, it will be 
clear that the on-axis sound pressure amplitude char-
acteristic has been smoothed (especially the first peak 
and dip) and that the spreading of the transient response 
in the time direction has been reduced . These effects 
become even more pronounced if we reduce the cone 
cavity volume by mounting a larger dust cap. 

In the foregoing it was shown that a cone-shaped 
radiator has a certain amount of transient distortion. 
This distortion is actually a widening of the transient 
response at certain frequencies and is due to cone ge-
ometry. It was also shown that this widening can be 
reduced by mounting a dust cap in the cone. These 
examples, however, were analyzed using a conical cone 
shape. The question arises as to what infiuence a bent 
cone shape will have, such as a convex or a concave 
cone. To answer this question the conical cone must 
be replaced by a convex and a concave cone with the 
same dimensions, namely, cone radius and cone depth. 
The mesh used in the calculation of a convex cone 
shape is shown in Fig. 8. The on-axis amplitude response 
can be found in Fig . 9, and the transient response is 
shown in Fig. l 0. The same data for the concave cone 
are shown in Figs. 11-13. From these figures it wil! 
be clear that the convex cone is slightly better than the 
conical cone , but these differences are only marginal 
and mainly located at higher frequencies. Also the 
conical cone is slightly better than the convex cone, 
but again the differences are very small. 

lt can be concluded that the conical geometry of a 
radiator bas a large infiuence on its transient sound 
radiation, which is widened in the time direction at 
middle and lower frequencies. It was further shown 
that an additional bending of the cone shape toward a 
convex or concave cone has only a small inftuence on 
the transient sound radiation behavior. Furthermore it 
was demonstrated that the mounting of a dust cap re-
duces the widening of the transient response in the 
time direction, an effect that becomes more pronounced 
with a larger dust cap, thus reducing the cone cavity 
volume . 

1.3 Dome-Shaped Radiator 

In the previous section it was shown that the amplitude 
of the on-axis sound pressure , radiated by a cone-shaped 
radiator , is frequency dependent. This contrasts with 
the amplitude characteristic of a plane radiator or piston , 
the amplitude of which is independent of frequency. 
Fora dome-shaped radiator the amplitude characteristic 
is also frequency dependent. As mentioned in Section 
l .2 for a cone-shaped radiator, this may already be 
concluded from the Rayleigh integral calculation [ 15] 
of the sound pressure for a dome-shaped radiator as 
well. If we calculate the sound radiation using the 
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Helmholtz equation, the sound radiation is again fre-
quency dependent, but its amplitude differs from that 
obtained from the Rayleigh integral. The main difference 
is the dip in the amplitude characteristic, which shifts 
to much lower frequencies where the Helmholtz equation 
instead of the Rayleigh integral is used in the calcu-
lations. 

The calculation mesh pattern used for the finite-ele-
ment calculation of the Helmholtz equation can be found 
in Fig. 14, and the amplitude characteristic of the on-
axis sound radiation from a dome-shaped radiator is 
shown in Fig. 15. If we compare the amplitude char-
acteristic of Fig. 15 with that of a cone-shaped radiator, 
il will be clear that the former only has dips in its 
characteristic. The Jack of peaks in the amplitude char-
acteristic is typical of a dome-shaped radiator. Fig . 16 
shows the contour plots of the Wigner distribution of 
the on-axis sound radiation . The transient behavior of 
the sound radiation from this radiator, as shown in this 
figure, is almost that of the plane piston of Fig. l. Thus 
such a dome-shaped geometry does not cause large 
distortions in the transient response. The dips in the 
response become more pronounced if the dome height 

baff 1 e 

outer edge 

Fig. 5. Calculation mesh of cone-shaped radiator with dust 
cap . Radius of dust cap-66 mm; its equivalent piston ra-
dius-48 mm; other dimensions same as those in Fig . 2. 
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Fig . 6. Far-field sound pressure level of cone-shaped radiator 
with dimensions of Fig. 5. 
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is increased , as shown in Fig. 17. The dome used here 
is a hemisphere, so that the dome radius of the curvature 
is equal to the equivalent piston radius, the latter being 
equal to that of Fig. 15 . The first dip occurs at ka ""' 
7r/2, which is much lower than that obtained with the 
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Fig . 7 . (a) Wigner distribution of on-axis far-field sound 
radiation of Fig. 6. (b) Wigner distribution calculated with 
analytic signa!. 

ap e x 

Fig. 8. Calculation mesh convex cone-shaped radiator. Radius 
of convex curvature-150 mm ; other dimensions same as 
those in Fig . 2 . 



Rayleigh integral (5), [ 15). The influence on the tran-
sient behavior, which can be seen from Fig . 18 , is 
small. 

Finally it can be concluded that the influence of a 
dome-shaped geometry on the transient behavior of the 
sound radiation is rather small. This is especially true 
if the ratio of the dome height to the equivalent piston 
radius is much smaller than unity. 
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dB 
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Fig . 9 . Far-field sound pressure level of convex cone-shaped 
radiator with dimensions of Fig. 8 . 
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Fig. 10. (a) Wigner distribution of on-axis sound radiation 
of far-field sound radiation of Fig. 9 . (b) Wigner distribution, 
calculated with analytic signal. 

2 TRANSIENT BEHAVIOR OF CROSSOVER 
FILTERS FOR COINCIDENT DRIVERS 

Ina previous publication [ 1, sec. 1.6] the application 
of the Wigner distribution technique to the evaluation 
of the transient behavior of a crossover filter was briefly 
discussed. The filter considered there was a third-order 
Butterworth crossover filter as described by Linkwitz 
[ 16). With this filter phase reversal of the individual 
drivers makes no difference in the amplitude of the 
combined frequency response . However, phase reversal 
yields quite different impulse responses and transient 
behaviors , but these differences cannot be interpJTeted 
easily. What happens can be seen more clearly in the 
Wigner distributions of the two impulse responses, as 
shown in [l]. 

The use of the Wigner distribution technique for the 
optimization of the loudspeaker crossover is schemat-
ically illustrated in Fig . 19 . Fig. 19(a) shows the con-
tour plots of the Wigner distribution of a low-frequency 
and a high-frequency driver mounted in the same baffle. 
The different positions of the acoustic centers are in-

apex 

Fig . 11 . Calculation mesh of concave cone-shaped radiator. 
Radius of concave curvature-150 mm; other dimensions 
same as those in Fig . 2 . 
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Fig. 12 . Far-field sound pressure level of concave cone-shaped 
radiator with dimensions of Fig. 11. 
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dicated by dashed lines. This difference is not a defect 
in a loudspeaker, since the acoustic center of the loud-
speaker depends on the location of both the rolloff 
frequencies and the roll off slopes [ 1]. The optimization 
criterion of the combination of two loudspeakers is 
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Fig. 13 . (a) Wigner distribution of on-axis far-field sound 
radiation of Fig. 12. (b) Wigner distribution calculated with 
analytic signa!. 

bafFle 

Fig . 14 . Calculation mesh of dome-shaped radiator. Equiv-
alent piston radius-30 mm ; radius of hemisphere-33 mm; 
ratio of dome height to equivalent piston radius-0.5 . 
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that its Wigner distribution should have the shape of 
the Wigner distribution of a band-pass filter, as shown 
in Fig. 19(c). The rolloffs are the low-frequency rolloff 
of the low-frequency driver and the high-frequency 
rolloff of the high-frequency driver. In this case the 
transducers have to be aligned with respect to time so 
that the mountain ridges in their individual Wigner 
distributions are in line. This is illustrated in Fig . 19(b). 
Also the crossovers have to be adjusted so that the ears 
of the individual transducers cancel each other in the 
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Fig. 15 . Far-field sound pressure level of dome-shaped ra-
diator with dimensions of Fig. 14 . 
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Fig . 16. (a) Wigner distribution of one-axis far-field sound 
radiation of Fig . 15 . (b) Wigner distribution calculated with 
analytic signa! . 



crossover frequency region. This may be possible since 
the Wigner distribution of the sum of two transducers 
equals the sum of the Wigner distributions of the in-
dividual transducers plus an additional term, the cross-
Wigner distribution of the two transducers [ 1, sec. 1. 3], 
which yields the cancellations in the crossover region. 

In this section we compare the transient behavior of 
several known crossover filters for coïncident drivers. 
According to Linkwitz [ 16] the different types of 

30. 0 

SPL 
dB 

Fig . 17 . Far-field sound pressure level of dome-shaped ra-
diator of Fig . 14 , but now with ratio of <lome height to equiv-
alent piston radius of l.O. 
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Fig . 18 . (a) Wigner distribution of on-axis sound radiation 
of far-field sound radiation of Fig. 17 . (b) Wigner distribution 
calculated with analytic signa!. 

crossover filters can be classified into three groups: 
1) The constant-voltage crossover network, where 

the sum of the complex transfer functions of the low-
frequency part and the high-frequency part is unity for 
all frequencies . 

2) The all-pass crossover network, where only the 
magnitude of this sum is unity. lts amplitude response 
is thus unity at all frequencies, but its phase response 
is frequency dependent. 

3) The compromise crossover network , where both 
the amplitude and the phase responses are frequency 
dependent. 

Linkwitz compared the radiation pattems for these 
types of filters for noncoincident drivers at their cross-
over frequency region. For this purpose he used the 
following actual transfer functions. 

1) For the constant-voltage network two third-order 
crossover filters with 12-dB-per-octave slopes as de-
scribed by Small [17]: 

(5a) 

(5b) 

where F 1 and Fh are the low- and high-pass filter transfer 
functions, respectively; s0 denotes the normalized com-
plex crossover frequency [Eq . (9)], and a = 2 + \/3. 

2) For the all-pass network the third-order Butterworth 
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Fig . 19 . (a) Contour plots of Wigner distributions of low-
and high-frequency drivers mounted in same baffie . (b) Same 
contour plots, but with drivers aligned with respect to time . 
(c) Wigner distribution of combination of low- and high-
frequency drivers of (a) with optimum crossover . 

55 



low- and high-pass filter functions: 

F1 1 + 2s0 + 2sn 2 + s 3 n 
(6a) 

Fh 
Sn

3 

1 + 2s0 + 2s/ + s 3 n 
(6b) 

3) For the compromise network the second-order 
Butterworth low- and high-pass filter functions: 

s 2 n 

(7a) 

(7b) 

To compare the crossovers of these filter functions 
we will use the band-pass Butterworth filter Hbp(s) as 
a reference. The reason for using a band-pass filter 
function is that we cannot calculate a discrete Wigner 
distribution of a high-pass filter due to aliasing. Fur-
thermore a loudspeaker acts as a band-pass filter. The 
filter Hbp(s) has a rolloff of order 2 at 500 Hz and a 
rolloff of order 10 at 4000 Hz . The contour plot of the 
Wigner distribution of this filter is shown in Fig. 20 . 
(The length of the ear at 4 kHz, that is, the ringing of 
the tenth-order rolloff, is not greater than the ear of 
the second-order rolloff at 500 Hz because the length 
of an ear is directly proportional to the rolloff slope 
and inversely proportional to the frequency [ I].) 

The total crossover function of the combined networks 
can be described with the equation 

where sis the complex frequency variable, ± denotes 
in- and out-of-phase connection, and s0 is the normalized 
complex frequency variable, 

s 
Sn = 21T Je 

(9) 

f c being the crossover frequency. The crossover fre-

l 
O FREOUDJCY 1 s.oo 

Fig . 20. Wigi:J.er distribution of band-pass filter Hbp(s). 
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quency in the examples is 2500 Hz. 
The "ideal" crossover function is gi ven by 

or F1(s0 ) + Fh(sn) = 1 
( 10) 

and its transient behavior is shown in Fig. 20 . 
Such an "ideal" function (for coïncident drivers) is 

the in-phase connection of the constant-voltage filter 
of Eq. (5), and its Wigner distribution is that of Fig . 
20, as would be expected. The natura] application of 
this crossover filter is the in-phase connection, but Fig . 
21 also shows the Wigner distribution of the out-of-
phase connection. This transient response is only 
slightly different from that of Fig. 20, mainly because 
of small differences in the amplitude response. 

The next example is the all-pass crossover network 
[Eq. (6)] . Fig. 22(a) shows the contour plot of the 
Wigner distribution of the out-of-phase connection . 
The differences between Fig. 22(a) and Fig. 20 are 
small so that the transient behavior of this crossover 
is almost "ideal ." The in-phase connection of this all-
pass crossover is shown in Fig. 22(b). This connection 
has more inftuence on the transient behavior, as can 
be seen from the contraction in the time direction at 
the crossover frequency. Thus the out-of-phase con-
nection of this all-pass filter has the least transient 
distortion . 

However, if the delay of the low-frequency driver 
is relatively large (crossover frequency at low fre-
quencies or high roll off slope), then the proper alignment 
with respect to time will not be achieved. This topic 
is not discussed here, but can be found in [ 18], for 
example . Furthermore our preliminary experiments 
indicate that the audible effects of such an additional 
all-pass filter is very small for practical loudspeakers, 
which also has been reported elsewhere [ 19], [20]. 

The nex t example is the compromise network of Eq. 
(7). Fig. 23(a) shows the contour plot of the Wigner 
distribution of the out-of-phase connection. The tran-
sient response is almost equal to that shown in Fig. 
20. The differences are due to different amplitude re-
sponses, but this transient response is without problems. 
However, this is not the case with the in-phase con-
nection, as shown in Fig. 23(b) . Here we find large 
distortions in the transient behavior of the combination. 
The composition of this response can be understood 
from Fig. l 9(b) : the ears at the crossover frequency 
have to cancel each other, which occurs correctly with 
the out-of-phase connection . With the in-phase con-
nection of Fig . 23(b) we get a cancellation at earlier 
times and an amplification of the ears in the crossover 
region, since the sign of the cross-Wigner distribution 
is reversed. [There is no amplification of the ear at the 
low-frequency end, since the ear in Fig. 23(b) is em-
phasized due to different contour heights in Figs. 23(a) 
and (b).] It will be clear that with this compromise 
network only the out-of-phase connection should be 
considered. 

The last example of this section is the optimum 



crossover function for noncoincident drivers as proposed 
by Linkwitz [ 16). It is the cascade of two identicai 
Butterworth filters and acts like an all-pass filter. Cas-
cading two identicai first-order Butterworth filters yields 
the second-order low- and high-pass filter functions : 

(l la) 

(l l b) 

0 

Fig. 24 shows the contour plots of the Wigner distri-
butions of the out-of-phase and the in-phase connections 
for coincident drivers. Again the in-phase connection 
of Fig. 24(b) should be rejected. The out-of-phase con-
nection of Fig. 24(a) closely resembies the ideal cross-
over of Fig. 20, as would be expected . It can be con-
ciuded that none of the filter functions gives a substantiai 
transient distortion for coïncident drivers if the proper 
phasing is used. 

3 DIRECTIONAL TRANSIENT BEHAVIOR OF 
CROSSOVER FILTERS FOR NONCOINCIDENT 
DRIVERS 

As shown by Linkwitz [16] for steady-state signals, 
the optimum crossover for coincident drivers is not 
necessarily the optimum crossover for noncoincident 
drivers . This is caused by a possible tilting of the ra-
diation pattern in the plane of the two driver axes in 
the case of noncoincident drivers. To avoid this tilting 
one has to take care that the on-axis phase difference 
between the two drivers vanishes in the crossover fre-
quency region. To examine the transient behavior of 
noncoincident drivers, one can calculate the Wigner 2 · 50oL..-__ _,_ _ _ F_R_E_O,_U_E_N_C_Y_!_..K_H_Z_l __ ,_ _ _ s__.. oo distributions at different directions 6 in the plane of 
the two driver axes. The geometry of the two non-

Fig. 21. Wigner distribution of out-of-phase connection of 
constant-voltage crossover filter of Eq. (5) . o 
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Fig. 22. (a) Wigner distribution of out-of-phase connection 
of all-pass cross over filter of Eq . (6) . (b) Wigner distribution 
of in-phase connectionof all-pass crossover filter of Eq . (6). 
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Fig . 23. (a) Wigner distribution of out-of-phase c;onnection 
of compromise crossover filter of Eq. (7) . (b) Wigner dis-
tribution of in-phase connection of compromise crossover 
filter of Eq. (7) . · 
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coïncident drivers is shown schematically in Fig. 25. 
However, since the evaluation of many Wigner distri-
butions can be cumbersome, we will use another rep-
resentation in this section. This representation is based 
on the knowledge that the directional behavior of a 
crossover is most critica! at the crossover frequency, 
where the amplitudes of the individual drivers measured 
on axis are the same. The representation is not the 
normal time-frequency Wigner distribution, but a time-
direction distribution. It is composed of the cross sec-
tions in the time direction at a single frequency, such 
as the crossover frequency, of the Wigner distributions 
of the impulse responses in the different directions. 
This can be calculated efficiently if the Wigner distri-
butions are calculated from frequency domain data. In 
that case we can calculate the cross sections at a single 
frequency directly [ 1] without the need to calculate the 
whole Wigner distribution for each impulse response. 

With this directional representation of the transient 
behavior we will compare the different crossover func-
tions that were described in the previous section . The 
difference with these examples is that the drivers are 
noncoincident. The actual spacing between the drivers 
is 100 mm, and the crossover frequency is again 2500 
Hz. 

The directional representation of the constant-voltage 
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Fig. 24 . (a) Wigner distribution of out-of-phase connection 
of second-order Linkwitz-Riley crossover filter of Eq . ( 11). 
(b) Wigner distribution of in-phase connection of second-
order Linkwitz-Riley crossover filter of Eq . ( 11). 
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crossover of Eq. (5) is shown in Fig. 26 for the in-
phase and the out-of-phase connections . Clearly visible 
is the tilting of the radiation pattern . In the case of an 
ideal omnidirectional radiator the cross section in the 
time direction at every angle would be the same. Then 
the contour plot would only contain straight lines per-
pendicular to the time axis . In the case of an ideal 
directional radiator the contour plot would be sym-
metrically located around the 0° cross section . The 
main Jobe and side lobes are represented by separate 
contributions or islands in the contour plot. 

The in-phase connection of the constant-voltage filter 

Fig . 25 . Geometry of two noncoincident drivers. Distance 
from the baffte to field point P is much larger than spacing 
bet ween drivers. 
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Fig. 26. Directional Wigner distribution representation of 
constant-voltage crossover filter of Eq. (5) at crossover fre-
quency (2500 Hz). (a) In-phase connection. (b) Out-of-phase 
connection. 



[Fig. 26(a)] shows the main lobe at about - 25° and a 
side lobe at about + 60°, which is shifted relative to 
the main lobe in the time direction . The out-of-phase 
connection [Fig . 26(b)] shows the main Iobe at + 10°. 
This connection has a smaller amount of radiation pat-
tern tilting than the in-phase connection, but both con-
nections are not we II suited for noncoincident drivers . 

The directional representation of the all-pass cross-
over of Eq. (6) is shown in Fig. 27 for the out-of-phase 
and the in-phase connections. Fig. 27(a) shows the 
main lobe at about - 18° and a side Iobe at about + 60°, 
which is shifted in the time direction. The reverse or 
in-phase connection shown in Fig. 27(b) has the main 
lobe at about + 18° and a side lobe at about - 60°, 
which precedes the main lobe in time. With this cross-
over, too, neither of the two connections are well suited 
for noncoincident drivers. 

The directional behavior of the compromise network 
of Eq. (7) is shown in Fig. 28 for the out-of-phase and 
the in-phase connections. The plot for the in-phase 
connection shows two Iobes at about + 38° and - 38°, 
which are shifted in time relative to each other. It will 
be clear that this phasing should be rejected, but this 
could already be concluded from its amplitude char-
acteristic, which shows a large dip at the crossover 
frequency. 
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(b) 

Fig . 27 . Directional Wigner distribution representation of 
all-pass crossover filter of Eq. (6) at crossover frequency 
(2500 Hz). (a) Out-of-phase connection . (b) In-phase con-
nection. 

The out-of-phase connection is a much better choice, 
as can be seen in Fig . 28(a). lts transient response of 
the main lobe is symmetricaIIy located around the 0° 
cross section . The two side lobes , however, are shifted 
in the time direction . Therefore only the main lobe is 
aligned with respect to time with the low- and high-
frequency parts of the total transient response on axis. 
[See the time-frequency Wigner distribution as shown 
in Fig . 23(a)] . This will be clear if we realize that the 
cross section at 2500 Hz of Fig. 23(a) equals the cross 
section at 0° in Fig . 28(a). Thus with this crossover 
we are able to maintain its time alignment within a 
limited symmetrically located beam width in the plane 
of the two driver axes. 

The last example in this section is the optimum 
crossover network for noncoincident drivers as proposed 
by Linkwitz [ 16] . This Linkwitz-Riley filter is the cas-
cade of two identical Butterworth filters. Thus the order 
of the filter is always even. These filters resemble the 
behavior of even Butterworth filters, for example, the 
second-order Linkwitz-Riley filter, which can be de-
scribed by Eq . ( 11), has a si mil ar behavior as the second-
order Butterworth filter shown in Figs. 23 and 28. 
However , the Linkwitz-Riley filters have no peak in 
the on-axis amplitude characteristic at the crossover 
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Fig . 28. Directional Wigner distribution representation of 
compromise crossover filter of Eq . (7) at cross over frequency 
(2500 Hz) . (a) Out-of-phase connection. (b) In-phase con-
nection. 
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Fig. 29 . Directional Wigner distribution representation of 
out-of-phase connection of second-order Linkwitz-Riley 
crossover filter at crossover frequency (2500 Hz). 
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Fig. 30 . Directional Wigner distribution representation of 
in-phase connection of fourth-order Linkwitz-Riley crossover 
filter at crossover frequency (2500 Hz). 

frequency. In this case, too , one of the phasings should 
be rejected: the in-phase connection for the second-
order and the out-of-phase connection for the fourth-
order Linkwitz- Riley filters. Both have two side lobes, 
which are shifted in the time direction, comparable to 
those shown in Fig. 28(b) . 

The out-of-phase connection of the second-order 
Linkwitz-Riley crossover is shown in Fig . 29. This 
directional transient response resembles that of the 
second-order Butterworth crossover shown in Fig. 
28(a), and the same discussion holds . The in-phase 
connection of the fourth-order Linkwitz-Riley filter, 
as shown in Fig. 30, maintains its time alignment over 
approximately the same beam width. This will be clear 
if we compare the Wigner distributions at different 
angles for both crossovers . The Wigner distributions 
of the second-order Linkwitz- Riley filter at different 
angles are shown in Fig. 31 for the angles + 30°, 0°, 
and - 30°. The corresponding distributions for the 
fourth-order Linkwitz-Riley filter are shown in Fig . 
32. It may be concluded that for the transient response, 
too, the Linkwitz- Riley filters are the optimum choice 
for noncoincident drivers, provided that the proper 
phasing is used. However, from the directional rep-
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Fig. 31 . Wigner distribution of second-order Linkwitz- Riley 
filter of Fig . 29. (a) At + 30°. (b) At 0°. (c) At - 30°. 

resentation of the transient response it is clear that the 
proper alignment with respect to time is only maintained 
within a limited beam width in the plane of the two 
driver axes . This beam width can be increased if the 
spacing between the drivers is decreased. 

4 CONCLUSIONS 

In this paper we have been concemed with two topics 
associated with the transient behavior of loudspeakers 
and loudspeaker systems . First we discussed the influ-
ence of the geometry of a radiator on the transient 
behavior of the on-axis sound radiation . We have shown 



(/) 
:::;; 

u..J 
:::;; 

O FREOUENCY 1 KHZ l 5· oo 
(a) 

0 

(/) 
:::;; 

w 
:::;; 

t-

2.50 

or 

l 
1 

o FRE OUE NCY 1 KHZ l 5. oo 
(b) 

0 FREOUENCY ! KHZ l 5.00 

(c) 

Fig. 32 . Wigner distribution of fourth-order Linkwitz-Riley filter of Fig . 30. (a) At + 30° . (b) At 0°. (c) At - 30°. 

that for a rigid axisymmetric radiator the plane piston 
has the best transient behavior. The transient behavior 
of dome-shaped radiators is also reasonable, especially 
if the ratio of <lome height to equivalent piston radius 
is less than unity. The cone-shaped radiator, however, 
shows a considerable transient distortion in the form 
of a widening or spreading of the response in the time 
direction at middle and lower frequencies . This dis-
tortion is found with both the conical cone-shaped ra-
diator and the bent cone-shaped radiator, like the convex 
and the concave cone. The effect of the transient dis-
tortion can be reduced by fitting a <lust cap. If the size 
of the <lust cap is increased, thus decreasing the cone 
cavity volume, the reduction of the transient distortion 
will be more pronounced. 

The other topic of this paper was the transient behavior 
of some known crossover filters for coincident and 
noncoincident drivers. The types of crossover filter 
functions were the constant-voltage, the all-pass and 
the compromise filter functions . We also discussed an 
optimum choice of the crossover functions for non-
coincident drivers, the all-pass Linkwitz-Riley filter 
functions . It was concluded that none of these filter 
functions gives rise to any substantial transient distortion 
with coincident drivers, provided that the proper phasing 
is used. In the case of noncoincident drivers it was 
concluded that , for the transient response, too, the 

Linkwitz-Riley filters are the optimum choice, provided 
that the proper phasing is used . However , for all these 
filter functions the proper alignment with respect to 
time is maintained only on a limited beam width in the 
plane of the two drivers' axes. This beam width can 
be increased if the spacing between the drivers is de-
creased . 

5 REFERENCES 

[l] C. P. Janse and A. J. M. Kaizer, "Time-Fre-
quency Distributions of Loudspeakers: The Application 
of the Wigner Distribution," J. Audio Eng. Soc., vol. 
31, pp . 198-223 (1983 Apr.). 

[2] R . C. Heyser, "Loudspeaker Phase Character-
istics and Time-Delay Distortion, Pt. I," J. Audio Eng. 
Soc" vol. 17, p. 30 (1969 Jan.). 

[3] L . L . Beranek, Acoustics (McGraw-Hill, New 
York, 1954) . 

[4] S. Oie , R. Takeuchi, and T. Shindo, "Sound 
Radiation from a Concave Radiator in an Infinite Baf-
fte," Acustica, vol. 46, pp. 268-275 (1980). 

[5] H.Suzuki and J . Tichy, "Sound Radiation from 
Convex and Concave Domes in an Infinite Baffte," J . 
Acoust. Soc . Am" vol. 69, pp. 41-49 (1981 Jan .) . 

[6] H . Suzuki and J. Tichy, "Sound Radiation from 
an Axisymmetric Radiator in an Infinite Baffte," J . 
Acoust. Soc . Japan (E), vol. 3 , pp . 167-172 (1982) . 

61 



[7] P. M. Morse and K. U. Ingard, Theoretica! 
Acoustics (McGraw-Hill, New York, 1968). 

[8] M. C. Junger and D. Feit, Sound, Structures, 
and Their lnteraction (MIT Press, Cambridge, 1972). 

[9] J. W. Strutt, Lord Rayleigh, The Theory of Sound, 
2nd ed. (Macmillan, London, 1894). 

[10] J. A. Riedel, "Berekening van het stralingsveld 
van luidsprekers met behulp van integraal vergelijk-
ingen," M.Sc . Thesis , Eindhoven University ofTech-
nology (1981). 

[ 11] J. B. Swenker, "Berekening van het stralings-
veld van luidsprekers met behulp van de eindige ele-
menten," M.Sc. Thesis, Eindhoven University of 
Technology ( 1982). 

[12] R. C. Heyser, "Determination of Loudspeaker 
Signa! Arrival Times, Pt. II," J. Audio Eng. Soc., vol. 
19, pp. 829-834 (1971 Nov.). 

[13] F. J . M. Frankort, "Vibration and Sound Ra-
diation of Loudspeaker Cones," Philips Res . Repts., 
Suppl., no. 2 (1975). 

[14] T. Shindo, N. Kyono, and 0 . Yashima, "The 
Roie of the Dust Cap in the Cone-Type Loudspeaker," 
presented at the 63rd Convention of the Audio Engi-

62 

neering Society, J. Audio Eng. Soc. (Abstracts), vol. 
27, p. 600 (1979 July/Aug.), preprint 1469. 

[ 15] J. M. Kates, "Radiation from a Dome," J. Audio 
Eng . Soc., vol. 24, pp. 735-737 (1976 Nov.). 

[ 16] S . H. Linkwitz, "Active Crossover Networks 
for Noncoincident Drivers," J . Audio Eng. Soc., vol. 
24 , pp . 2-8 (1976 Jan./Feb .); "Passive Crossover Net-
works for Noncoincident Drivers," ibid. (Engineering 
Reports), vol. 26, pp . 149-150 (1978 Mar.). 

[17] R. H. Small , "Constant-Voltage Crossover 
Network Design," J . Audio Eng. Soc . , vol. 19, pp . 
12-19 (1971 Jan.). 

[18] S. P. Lipshitz and J. Vanderkooy, "A Family 
of Linear-Phase Crossover Networks of High Slope 
Derived by Time Delay ," J . Audio Eng. Soc., vol. 31, 
pp. 2-20 (1983 Jan./Feb .). 

[ 19] J. Biauert and P. Laws , " Group Delay Distor-
tions in Electroacoustical Systems," J. Acoust. Soc. 
Am . , vol. 63 , pp. 1478-1483 (1978 May). 

[20] S . P. Lipshitz, M. Pocock, andJ. Vanderkooy , 
" On the Audibility of Midrange Phase Distortion in 
Audio Systems," J. Audio Eng . Soc. , vol. 30, pp . 580-
595 (1982 Sept.). 



6. Analysis of the nonlinear distortion at low 'frequencies 1 

The simplified model of the electrodynamic loudspe-
aker, the lumped parameter model, described in 
chapter 2 assumes the loudspeaker to be a linear 
system. A loudspeaker, however, shows small nonli-
nearities that produce typical distortion phenomena. 
Possible nonlinearities may be found in many parts 
of the loudspeaker and it is convenient to refer to the 
lumped parameter model if the nonlinearities are to 
be Iocalized. A list of possible nonlinearities is given 
below. 

A. Nonlinearities in the motor part (magnet sys-
tem/ voice coil). 

A 1 The force on the voice co il in the case of a 
constant current drive depends on the position 
of the coil, owing to the fact that the electromag-
netic coupling factor f B.dl is a function of the 
voice coil excursion. A typical f B.dl vs. displa-
cement curve is shown in Fig. 6.1 . 

5 

fad1 

'T: 
2 

-10 -5 0 5 10 
displacemenl [mml -

Fig. 6.1: Typical force vs. dis placement curve of an actual loudspe-
aker. The air gap length is 5 mm and the voice co il height is 10 mm. 

A2 The self-inductance of the voice coil depends on 
its position, because the voice coil protrudes 
from the centra! pole. This yields a reluctance 
force proportional to the squared current [41] 

1 .2 dL(x) 
F = hz -- 6.1 

x dx ' 

where x is the voice coil excursion. 

1) The numerical analysis of the nonlinear distortion of a voltage-
driven electrodynamic loudspeaker, as described in this chapter, is 
part of a M.Sc. thesis by G .H. van Leeuwen [42]. The measurements 
of the nonlinear responses and of the nonlinear component 
characteristics were carried out by W.D.A.M. van G ijsel. 

A3 The voltage across the self-inductance is not 
only proportional to the time derivative of the 
current but shows the relation: 

di . dL(x) dx 
U = L(x)- + 1---. 

dt dx dt 
6.2 

A4 The operating point of the permanent magnet is 
influenced by the voice coil current. 

AS Eddy currents occur which yield a nonlinear 
damping force. 

B. Nonlinearities in the mechanica/ part. 
81 The force vs. dis placement curves of the loudspe-

aker spider and outer rim are not straight lines 
and show hysteresis. A typical force vs. displace-
ment curve of a spider is shown in Fig. 6.2. 

x 
lmmJ8 

t 6 

2 4 6 
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Fig. 6.2: Typical force vs. displacement curve of a spider. 

82 The excursion capability of the voice coil is 
limited (mechanica[ clipping). This nonlinearity 
only occurs at extreme drive levels. 

83 Sub-harmonies are generated at the loudspeaker 
cone [35]. This distortion occurs only at extreme 
drive levels. 

C. Nonlinearities in the sound radiation. 
Ct Adiabatic distortion: the volume compression is 

not proportional to the pressure but follows the 
relation: 

p. V Y = constant. 6.3 

C2 Doppler distortion: a low-frequency excursion 
of the diaphragm yields a varying Doppler shift 
of a higher frequency tone. It has been reported 
that this distortion can be neglected in a practi-
cal situation [36]. 

It will be clear that the loudspeaker exhibits many 
types of nonlinearity. Most of these nonlinearities are 
relatively small because the total harmonie distortion 
is usually less than a few percents even at high drive 
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levels and it shows a maximum at the lower frequen-
cies where the excursion of the voice co il is maximum. 
If we restrict our analysis to the Jower frequency 
range, around the loudspeaker's fundamental reso-
nance frequency, then we have only to take into 
account those nonlinearities that depend closely on 
the voice coil excursion. In that case the most promi-
nent nonlinearities are: 

- The force factor f B.dl, which depends on the voice 
coil excursion (A 1 ). 

- The electric self-inductance, which depends on the 
voice coil excursion (A3). 

- The nonlinear suspension stiffness (81). 

The vibration of a loudspeaker diaphragm at low 
frequencies resembles that of a mass-spring system 
and the governing coup\ed diff erential equations are 
given by 

d(L ") 
E = REi + E 

1 + BI x' 6.4 
dt 

B l i = mi + R mx + kx , 6.5 

where x is the voice coil excursion. 
The nonlinear diff erential equation that describes the 
nonlinear vibration can be derived if we approximate 
BI, k and LE by a truncated power series: 

6.6 

6.7 

6.8 

In the power series 6.8 the frequency dependence of 
the self-inductance bas been ignored. After insertion 
of 6.6, 6.7 and 6.8 in to 6.4 and 6.5 and elimination of 
i, one obtains the following differential equation for 
the voice coil excursion: 

ax + p.x + yx + öx+ 
aEir + bx2 + cxx + dxx + exx + }x2 + gxx 
+ AE x2 + Bx3 + Cx2.X + Dx2x + Ex2x·+ 

-- g 
Fxx2 + Gxxx = 6.9 

where the terms with orders higher than three have 
been discarded. The parameters in this equation are 
listed in Appendix C. 

6.1 Solving the nonlinear differential equation. 

The nonlinear differential equation that describes the 
vibration of the loudspeaker can be solved by means 
of numerical methods. Two of these methods are 
described below. 
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Series expansion of the solution. 
We assume the voltage E to vary sinusoidally accor-
ding to E0 cos (wt) and the voice coil excursion to 
satisfy the series expansion 

x = B0 + A1 sin (wt) + A2 sin (2wt) + 
A 3 sin (3wt) . . . 
+ B1 cos (wt) + B2 cos (2wt) + B3 cos (3wt) ... 

6.10 

The expansion is truncated after the k-th term and 
substituted in the differential equation. The resultant 
equation must be satisfied for any tso that the factors 
of sin ( nwt) and cos ( nwt) vanish. This yields a set of 
2k nonlinear equations with 2k unknowns and a 
dependent equation that determines B0 . This set of 
nonlinear equations can be solved numerically. The 
method, however, is rather cumbersome, because we 
have to rewrite the whole set of nonlinear equations 
if another nonlinear effect is taken into account. 

Direct integration. 
Another method that can be used to solve the nonline-
ar diff erential equation is direct integration. The 
differential equation is written as a set of first order 
diff erential equations that can be integrated numeri-
cally [23). The excitation is a sinusoidal voltage 
starting at t = 0 and the integration is terminated if the 
response is stationary, i.e. the difference between the 
solutions of two successive cycles is minimal. The 
higher harmonies can be found by harmonie analysis. 

However, both methods are rather cumbersome if, 
for example, a difference frequency distortion com-
ponent has to be determined. More powerful analyti-
ca! techniques also are available: 
- the Volterra series expansion of the response 

[37,38). 
- the modelling of the system nonlinearities with a 

piecewise-linear approximation [39). 

The main features of these two methods are: 
- the Vol terra series expansion has to be truncated in 

a numerical analysis after the n-th term, so that it 
describes the nonlinear response of the system up 
to the n-th order term. 

- the Vol terra series is only suited for small nonlinea-
rities and a limited input signa!, to guarantee the 
Volterra series to converge. 

- the piecewise linear modelling approximates a 
nonlinear component characteristic by a finite 
number of linear pieces, and is able to cope with 
hysteresis effects, which is not possible with the 
Volterra series expansion. 

In the remainder of this chapter the loudspeaker's 
nonlinear response wil! be modelled using the Vol ter-
ra series expansion. 



6.2 Volterra series expansion. 

The loudspeaker is assumed to be a nonlinear, time-
invariant system. The response of such a system can 
be written in a Yolterra series expansion if the 
nonlinearities and the input signa) are sufficiently 
small to guarantee the convergence of the series and 
if the response is unambiguous [37,38], which exclu-
des a description of hysteresis eff ects and sub harmo-
nie generation [35]. 
The response y( t) of the system can then be written in 
the form 

00 

y(t) = f h1('r) x(t- r) dr + 
0 

00 00 

f f h2(r1,r2) x(t- r 1) x(t-r2) dr1 dr2 + 
0 0 

00 00 00 

f f f h3(r1,r2,r3) x(t- r1) x(t- r2) 
0 0 0 

6.11 

where x( t) is the system input at timet and the h n's are 
generalized impulse responses. The first term repre-
sents the convolution fora linear system. 
Throughout the remainder of this chapter we wil! use 
a truncated Vol terra series, which was truncated after 
the third-order term. 
It should be noted that the loudspeaker response 
cannot be written as an ordinary power series of the 
input. This is only possible for a memoryless or 
frequency-independent (dispersion-free) system, like 
a network with nonlinear resistors. In that case the 
impulse responses are Dirac pulses and the Yolterra 
series degenerates into a power series. The loudspea-
ker, however, is a dispersive system, for which we 
have to take the past values of the input in to account, 
which leads to a Yolterra series description. 
By analogy with linear system theory, we can also 
find a relation between the La place transforms of the 
input and the output time signals [37,38]. 

Y(p)= H 1(p)X(p)+ A {H2(p1,p2) X(p1) X(p2)} + 
A2 {H3(p1,p2,p3) X(p1) X(p2) X(p3)} + ... , 6.12 

in which A and A2 denote the "contraction opera-
tors" or "association of variables" [37,38]. The opera-
tor A transforms a function of two variables into a 
function of a single variable and is defined by the 
integral transformation 

1 + joo 
Y1(p) = -. f Y2(p- s. s) ds. 

27rj - JOO 
6.13 

The operator A2 is defined in a similar way for a 
function of three variables. 

The system functions H1(p), H2(pt>p2) and 
H3(p1,p2,p3) are the multidimensional Laplace trans-
forms of the corresponding impulse responses h1(t), 
h2(t1,t2) and h3(t1,t2,t3) in the Yolterra series. 
The function H 1(p) is the linear system response 
f unction. The system response function H 2(p1 ,p2) can 
be found by driving the system with the signa! 
exp(p1 t) + exp(p2t), which yields the response 

e2P11 H (p p ) + e2p21 H (p p ) 2 1> 1 2 2> 2 
+ 2 e<P1 + P2)1 H (p p ) 2 1> 2 , 6.14 

and the system function H3(pt>p2,p3) by driving the 
system with the signa! exp(p1 t) + exp(p2t) + exp(p3 t), 
which yields the response 

e
3

P11 H3(p1,P1,P1) + e3P21 H3(pz,P2,P2) + 
e3p31 H3(p3,p3,p3) + 3e(2p1 + P2)1 H3(p1,P1>P2) + 
3e<2P1 +p3)t H (p p p) + 3 1> 1' 3 

3e(2p2 + P1 )1 H (p p p ) + 
3 2> 2• 1 

3e(2p2+p3)1 H (p p p) + 
3 2• 2> 3 

3e(2p3 + P2)1 H (p p p ) + 
3 3• 3• 2 

6e<P1 + P2 + p3)1 H (p p p ) 3 1> 2• 3 . 6.15 

It can be noted that the functions h; and H; are 
symmetrie [37 ,38], e.g. h2( r1, r2) = hz( r2, r1 ). 

6.3 Lumped parameter model system functions. 

6.3.1 Voltage drive 

If the loudspeaker is driven with a voltage of the form 

E = eP11 + eP21 + eP3' 
g ' 6.16 

then the voice coil excursion can be written in the 
form 

x(t) = q1(p1) eP11 + q1(P2) eP2' + q1(p3) eP3' + 
qz(P1 ,p2) e<Pt + p2) 1 + qz(P1 ,p3) e<Pt + P3lt + . . . 6.17 
q (p P ) e<P2 + p3)t + 2 2> 3 ... 

q (p P P ) e(Pt + P2 + p3)I + 3 1 • 2> 3 .... 

Substituting this equation in the differential Eq. (6.9) 
yields the linear, the second-order and the third-order 
response terms. The linear response term equals 

1 
q1(p1) = -------

(a+ 
6.18 

Eq. 6.17 describes the voice coil excursion versus 
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input voltage. The sound radiation, however, is pro-
portional to the voice coil acceleration and therefore 
we define system functions that describe the voice coil 
acceleration versus input voltage. The first-order or 
linear system function equals 

The second-order response term is given by 

q1(P1,P2) = 
bl {q1 CP1) + q1(P2)}- 2k1 q1 (P1)q1(P2)+11 

(P1 + P2)2m + (P1 + P2)Rm + ko 
6.28 

6.19 and 

The second-order response term equals 

q2(p1 ,p2) = { 
- qt(pt + P2) q1(p1) qt(p2) + + 

+ g(pÎP2 + + d(pÎ + + C(P1 + P2) + 

+ 2fp1p2 + 2b + a (-
1
- + -

1
-)}, 6.20 

q1(P1) qt(p2) 

6.21 

and the third-order term equals 
7 

q3(p1,P2,P3) = - q1(p1 + P2 + p3) L (y;+ Y), 6.22 
i=t 

and 

6.23 

The parameters of Eqs. 6.18-6.23 are listed in Appen-
dix C. 

6.3.2 Current drive 

If the excitation of the loudspeaker is a current, the 
governing differential equation of its vibration at low 
frequencies is given by 

BI i = mi + Rmx + kx + F,, 6.24 

where F, is the reluctance force (cf. Eq. 6.1 ). 
The current is asssumed to be of the form 

6.29 

The third-order response term equals 

q3(P1 ,p2,P3) = 
b1{A} + 2b2{B}- 2k1{Q- 2k2{D} + 2/2{E} 

6.30 
(P1 + P2 + P3)2m + (P1 + P2 + P3)Rm + ko 

where the terms A to E are given by 

A = qi(p1 ,p2) + q1CP1 ,p3) + q1(p2,P3) 
B = qt(p1)q1CP2) + q1(p1)q1(p3) + q1CP2)q1(P3) 
C = q1(p1)q2CP2,P3) + q1(p2)qi(p1,P3) + 

q1 (p3)q2CP1 ,p2) 6.31 
D = ql(pt) · q1(p2) · q1(p3) 
E = q1(p1) + q1(P2) + q1(p3), 

and 

6.4 Lumped parameter model inverse system 
functions. 

The description of a nonlinear system by its system 
functions is particularly suited to demonstrate the 
principle of a distortion reduction circuit. The res-
ponse of the nonlinear system was shown to be 

Y(p) = 
H1(p) X(p) + A {H2CP1,P2) X(p1) X(p2)} + 
A 2 {H3(p1,P2,P3) X(p1) X(p2) X(p3)}' 6.33 

where the Yolterra series is truncated after the third 
i = eP1I + eP2I + ePJI. 6.25 term. 

Substituting Eqs. 6.1, 6.6 through 6.8 and 6.25 in the 
differential Eq. 6.24, yields the linear, the second-
order and the third-order response terms. The linear 
response term equals 

B/0 q1(p1) = 2 6.26 
CP1 m + P1 Rm + ko) 

and 

6.27 
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The inverse circuit is defined by the equation 

X(p) = 
G1(p) Y(p) + A {G2(p1,p2) Y(p1) Y(p2)} + 
A2 {G3(p1,P2,p3) Y(p1) Y(p2) Y(p3)}. 6.34 

In this series too the Volterra series was truncated 
after the third-order term. Substituting Eq. 6.33 
into Eq. 6.34, and ignoring terms with an order 
higher than three, yields 



In the derivation the following property has been 
used (38]: 

This equation has to be satisfied for all values of X(p), 
which yields the equations 

and 

1 qi(p1,P2) 

2 q1(p1 + P2) 

K ( ) 
_ - H3(p1,P2,P3) _ 

3 P1 ,p2,P3 - -
H,(P1 + P2 + P3) 

q3(P1 ,p2,P3) 

6 q1(P1 + P2 + P3) 

6.44 

6.45 

lnverting only the nonlinear terms of the Volterra 
series may be advantageous if the inverse function of 
the linear part is physically unrealizable, which oc-
curs when H 1(p) is a non-minimum phase function. 

6.37 6.5 Synthesis of nonlinear system functions. 

and G3(p1 ,p2,p3) = 
- H3(p1,P2,P3) 6.39 

H1CP1) H1CP2) H1(p3) H1CP1 + P2 + P3) 
The first equation (Eq. 6.37) is the inverse of the linear 
transfer f unction. Ho wever, it is also possible to 
define a nonlinear inverse circuit that only inverts the 
nonlinear terms. The inverse cicuit can be described 
with the equation 

Z(p) = K1(p) X(p) + A{K2(p1,p2) X(p1) X(p2)} + 
A2{K3(p1,P2,P3) X(p1) X(p2) X(p3)} ' 6.40 

and the loudspeaker response is given by 

Y(p) = 
H1(p) Z(p) + A{H2CP1,P2) Z(p1) Z(p2)} + 
A2{H3(p1,P2,P3) Z(p1) Z(p2) Z(p3)} 

K1 .·2.3 z (p) Y(p) 

. 6.41 

Fig. 6.3: Inverse nonlinear circuit for loudspeaker distortion 
reduction. 

The total response of the cascade of the inverse circuit 
and the loudspeaker should be 

6.42 

for all values of X(p), which yields the equations: 

6.5.1 Voltage drive 

Modelling a nonlinear system function can be done 
with frequency-independent nonlinear elements, 
such as a squarer, and frequency-dependent linear 
elements [38,40]. 
Combination of Eqs. 6.19, 6.21 and 6.23 with Eqs. 
6.43, 6.44 and 6.45 yields the distortion reduction 
circuit system functions: 

K2(p1,P2) = q1(P1) q1(p2) {2(aa+ b) + 
(af3+ c) CP1 + P2) + (ay+ d) CP1 + P2)2 + 
(aó + e) (p1 + p2) 3 - p1p2[2(ay+ d) - f + 
(3( aó + e)- g) (p1 + p2)]} , 

and 
6 

K3(ppp2,p3) = 116 L (y;+ YJ. 
i=t 

6.46 

6.47 

6.48 

As an example the distortion reduction circuit imple-
mentation of Eqs. 6.46 and 6.47 is shown in Fig. 6.4. 
The elements of the circuit are amplifiers (1 ), adders 
(2), squarers (3) and the filter q1(p), all of which can 
easily be realized. However, the element p is a 
differentiator, which is more difficult to implement. 
The higher order distortion reduction circuits can 
also be synthesized, but show an increasing complexi-
ty. 

6.5.2 Current drive 

The distortion reduction system functions for the 
current drive case, which are found from Eqs. 6.43 
through 6.45 and 6.26 through 6.32, can be realized 
more easily. The linear term equals 

6.49 
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The second-order term is given by 

KzCP1·P2) = 
-1 

-
1 

[bi{q1(P1) + q1(p2)} 
2B 0 

6.50 
and the implementation of Eqs. 6.49 and 6.50 is 
shown in Fig. 6.5. 

q, (p) 

The third-order term equals 

K3(P1,P2,p3) = 
-1 

- [b1{A} + 2b2{B} - 2ki{Q - 6k2{D} + 
6Bl0 

212{E}], 6.51 

and its implementation is shown in Fig. 6.6. 

-3o6-3e+ 

-20 - 2d+f 
1 

aa+b 

a{3+ c 

aö+e 

Fig. 6.4: lmplementation of a voltage drive second-order distortion reduction circuit. 

x (!) 
q, (p) 

Fig. 6.5: Implementation of a currenl drive second-order distortion reduction circuit. 

OJ---<>----1 K2 ( P1 ·P2) 
x ( t) 

q 1 (p) 

q, (p) 

Fig. 6.6: lmplementation of a current drive third-order distortion reduction circuit (the third-order term only). The implementation of 
K2(p1,p2) is shown in Fig. 6.5. 
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The distortion reduction system f unction for the 
current drive case, which includes the inversion of the 
linear term, can also be easily realized. lts first-order 
term equals 

-1 
Q3(P1>P2,P3) = 

6 
Blo 

f b1{A} + 2b2{B}- 2k1{Q- 6k2{D} + 2/2{E} J t ' 6.56 

The second-order term is given by 

Qi(p1,P2) = 
- H2(p1,P2) = 

H1(p1)H1(p2)H1(p1 + P2) 

- 1hq2(p1,P2) 

or 

-1 [ 1 { 1 1 } 
2Blo b1 

(P1P2)2 qt(p1) + q1(p2) 

- 2k1 + t, J. 
(p,p2)2 (p,p2)2q,(p1)q1(p2) 

lts implementation is shown in Fig. 6.7. 

The third-order term equals 

Q3(pt,P2,P3) = 
- H3(p1,P2,P3) = 

H1(p1)H1(p2)H1(p3)H1(p1 + P2 + P3) 

which can be written in the form 

1 
---q,ni) 

6.52 
(P1P2P3)2q, (P1 )q1 (P2)q1 (p3) 

where the terms A through E can be found from Eq. 
6.31. lts implementation is shown in Fig. 6.8. 

6.6 Calculated versus measured nonlinear 
response of an electrodynamic loudspeaker. 

In the preceding sections a Vol terra series analysis of 
the nonlinear response of an electrodynamic loud-

6_53 speaker was presented. Compared with other types of 
analysis, this analysis has two advantages: 
- The analysis of the physical model puts the relative 

significance of the different sou rees of nonlineari-
ties in to evidence. To obtain this information from 
experiments is very difficult in practice. 

- In genera!, it is possible to design an inverse 
nonlinear distortion reduction circuit if the nonli-
near system functions are known. 

In this section it will be shown that the analysis 
described in the previous sections indeed predicts the 

6.54 nonlinear response of a loudspeaker with a reasona-
ble accuracy. 
It can be argued that the linear and nonlinear 
responses of individual loudspeakers may diff er. 
Therefore twelve different loudspeakers (Philips 
AD80603 / W4) were measured in a test box (25 liters). 
The measurements included the on-axis linear fre-
quency response and second and third-order harmo-
nie and intermodulation distortions under free field 
conditions. From these measurements it was conclu-
ded that for low frequencies below about 250 Hz all 
loudspeaker responses are fairly similar. This is 
illustrated in Figs. 6.9 and 6.10. Fig. 6.9 shows the 
on-axis linear and third harmonie responses of two 

-1, 
2 Bl 0 

k, 
Blo 

Fig. 6.7: Implementation of a current drive second-order distortion reductio n circuit according to Eq. 6.54. 

Fig. 6.8: lmplementation of a current drive third-order distortion reductoon circuit according to Eq. 6.55. The implementation o f 
K3(p1,p2,p3) is shown in Fig. 6.6. 
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Fig. 6.9: Frequency response oftwo representative woofer loudspe-
akers. The linear response is indicated with L, whereas d2 and d3 
are the second and third-order harmonie distortion products 
(raised 20 dB), respectively. The vertical scale is arbitrary. 

representative loudspeakers which were driven with a 
sinusoidal input voltage of 2 V RMS. 
Fig. 6.10 shows the same on-axis linear responses and 
a second and a third-order intermodulation product. 
The curve that is indicated with (im + 2) shows the 
response at (fi + f 2) if J; is fixed at 80 Hz, as a function 
of f 2• The (im + 3) curve shows the response of 
(2.f1 + f2) with the same input signa!. The vertical 
scales of both Figs. 6.9 and 6.10 are arbitrary. 

Id BI Id BI 
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frequency (Hzl- frequency (Hz! -

Fig. 6.10: Frequency response of two representative woofer loud-
speakers. The linear response is indicated with L, whereas the 
(im + 2) and (im + 3) are second and third-order intermodulation 
products, which are raised 20 dB. 

Although the responses of different loudspeakers are 
fairly sim il ar, the linear responses show small irregu-
larities, which are not predicted by the lumped 
parameter model. The acceleration of the voice coil 
shows a smoother response, at low frequencies, is in 
accordance with the lumped parameter model pre-
dictions. Also it is known that at low frequencies the 
loudspeaker response is proportional to the voice coil 
acceleration. Therefore we will use the voice coil 
acceleration data of a single loudspeaker for compa-
rison of measured and calculated responses. This 
loudspeaker was modified in the following way: an 
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accelerometer (Brüel and Kjaer type 8307) was 
mounted on the voice coil farmer, which increased 
the total moving mass from 17.8 to 19.1 grams. lt is 
assumed that this modification does not influence the 
nonlinear effects of interest (force factor, suspension 
stiffness and voice coil self-inductance). 

6.6.1 Measurement of loudspeaker /inear 
parameters and estimation of the nonlinear 
characteristics. 

The linear loudspeaker parameters can be measured 
with a straightforward technique [43]. The total mo-
ving mass was found to be 19.1 grams (including 
accelerometer), the voice coil resistance was 3.2 Ohm 
and the mechanica! damping was 1.0 N.s/m. 
The nonlinear parameters (force factor, self-induc-
tance and suspension stiffness) were measured as a 
function of the voice coil excursion. The coefficients 
of the power series (Eqs. 6.6, 6.7 and 6.8) were found 
from a least-squares curve fitting of the measurement 
data. The curve fitting of the force factor measure-
ment data yields the coefficients: 

Bl0 = 5.05 ± 0.05 [N/ A] 
b1 -23 ± 8 [N/Am] 
b2 = -48000 ± 1000 [N/ Am 2]. 6.57 

The spring constant of the unmounted loudspeaker as 
a function of the excursion exhibits a hysteresis as 
shown in Fig. 6.11. 

-10 .Y 0 

r -0.5 

5 10 
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Fig. 6.11: Force vs. displacement curve of the suspension stiffness 
of an unmounted woofer loudspeaker. 

Curve fitting yields the following values for the 
coefficients k0, k1 and k2: 

574 ± 30 [N/m] 
24000 ± 2000 [N/m2] 

3.2 106 ± 0.6 106 [N/m3] 6.58 

A dynamic measurement of the suspension stiffness 
(from the fundamental resonance frequency) yielded 
a value of 1120 N/m. This large discrepancy between 
the statie and dynamic spring constants raises ques-



tions as to the reliability of the measured data. 
The spring constant of the unmounted loudspeaker 
should be added to that of the box air spring constant. 
This box air stiff ness too is nonlinear and its charac-
teristic can be evaluated analytically. We assume the 
box air compression to be an adiabatic process, i.e. 
the total pressure (p0 + p) and the total volume 
( V0 + V) obey the relation 

6.59 

where y = 1.4, p0 is the statie pressure, Po+ p the 
instantaneous pressure, V0 the statie volume and 
V0 + V the instantaneous volume. 
The box air stiffness spring constant is given by 

- dFb d(p0 + p) 
kbox = -- = -S , 6.60 

dx dx 

where Sis the eff ective cone surface and x is the cone 
excursion. Rewriting Eq. 6.59 in the form 

6.61 

and diff erentiating with respect to x yields 
dp 
- = -yS(p0 + p) ( V0 + Sx)- 1 . 
dx 

6.62 

Combination of Eqs. 6.60, 6.61 and 6.62 yields 

p ( Sx)- <r+1) 
kbox = yS2 .--2. 1 +- . 

Vo Vo 
6.63 

The power series expansion of (1 + x)a is given by [44] 

(1+x)a = 1 + { xn}, 6.64 

which is used to approximate 6.63 by 

kbox = yS2 Po [1 - (y+ 1) (Sx) + 
Vo Vo 

(y+1)(y+2) (Sx)2]. 
Vo 

6.65 

The coefficients of the series expansion of the box 
stiff ness are found to be 

2270 [N/ m] , 
- 4357 [N/ m2], 

5925 [N/ m3]. 6.66 

The coefficients of the series expansion of the total 
stiff ness are the sum of the respective terms of 
unmounted loudspeaker and the box air stiff ness: 

k0 = 3389 [N/ m], 
k1 = 19500 [N/ m2], 

k2 = 3.22 106 [N/ m3]. 6.67 

The last parameter to be determined is the voice coil 
self-inductance. The measurement of the voice coil 
self-inductance was done by fixing the voice coil at a 
known excursion x and measuring the magnitude and 
phase of the electrical input impedance. This self-
inductance was found to depend both on the voice 
coil excursion and the frequency. The coefficients for 
the series expansion of the self-inductance in the 
vicinity of 100 Hz were determined by a least-squares 
curve fitting of the measured data: 

LE
0 

= 1.5 10 - 3 [H] 
/1 = -83 10- 3 ± 7 10- 3 [H/m] 
/2 = 3.3 ± 0.9 [H/ m2] 6.68 

6.6.2 Harmonie and intermodulation distortion: 
measured versus calculated response. 

The measured values in the series expansion coeffi-
cients of the nonlinear component characteristics 
were used to evaluate the second-order and third-
order distortion components of the voice coil accele-
ration. The first result is shown in Fig. 6.12. 

50.-----------, 50.--- --------, 
(dB) (dB) 
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Fig. 6.12: Measured (right) and calcula ted (left) curves of the linear 
( L), second harmonie ( d2) and third harmonie (d3) responses of the 
voice coil acceleration (arbitrary vertical scale). 

The linear curves show a reasonable resemblance, hut 
although a resemblance can be seen in the qualitative 
behavior of the distortion curves, it will be clear that 
the quantitative agreement is not satisfactory. In the 
preceding section it was argued that some care has to 
be taken in using the measured values of the nonline-
ar component characteristics, because of the large 
discrepancy between the statically and dynamically 
measured quantities. Therefore the coefficients of the 
excursion-dependent terms in the nonlinear charac-
teristics were modified to fit the actual measured 
distortion responses. This was done by first fitting the 
second-order harmonie response data in a current-
driven model, which eliminates the influence of the 
self-inductance, after which the self-inductance series 
coefficients in the voltage-driven model were adjus-
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ted. This procedure was repeated for the third-order 
harmonie distortion. The resultant responses are 
shown in Fig. 6.13 and the qualitative agreement 
between the distortion response curves is reasonable 
at frequencies below 200 Hz. The measured and 
modified series expansion coefficients of the nonline-
ar component characteristics are listed in table 6-1. 

50.---------. 50.----------. 
[dBI [dB) 

1 40 
30 
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Fig. 6.13: Measured (right) and calculated (left) curves of the linear 
(L), second harmonie (d2) and third harmonie (d3) responses of the 
voice coil acceleration (arbitrary vertical scale). 

parameter measured optimization dimension 
value result 

b1 -23 -230 [N/ Am] 
b2 -48000 -1.0. 105 [N/ Am2] 

k1 24000 60000 [N/m2] 

k2 3.22.106 3.33. 106 [N/m3] 

1, -0.083 -0.150 [H/m] 
12 3.3 50.0 [H/ m2] 

Table 6-1: Measured and modified series expansion 
coefficients. 

The value of k2 shows a good agreement, the values 
of b2, k1 and11 differ by about a factor of two and the 
values of b1 and 12 differ by more than one order of 
magnitude. 
The set ofmodified coefficients was used to evaluate 
a second- and a third-order intermodulation distor-
tion. Fig. 6.14 shows the response at J; + h. (im + 2) 
and 2.J; + h. (im + 3) for a fixed frequency J; at 
80 Hz, as a f unction of the second frequency .h_. 
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Fig. 6.14: Measured (right) and calculated (left) curves of the linear, 
second-order (im + 2) and third-order (im + 3) intermodulation 
responses of the voice coil acceleration with an arbitrary vertical 
scale. 

Although no perfect agreement between calculated 
and measured responses is obtained, the resemblance 
is reasonable. 

6.7 Discussion. 

The agreement between measured and calculated 
distortion data of the voice coil acceleration was 
found to be reasonable at low frequencies below 
about 250 Hz for second and third-order harmonie 
and intermodulation distortion components. It may 
be concluded that the model is reliable in describing 
the second and third-order distortion responses for 
an electrodynamic loudspeaker at low frequencies. 
It was found necessary, however, to modify the 
coefficients in the series expansion of the nonlinear 
component characteristics (by curve-fitting of the 
measured data) in order to improve the agreement 
between the measured and calculated data. Possible 
explanations for the discrepancies are: 
- The diff erence between statically and dynamically 

measured data raises questions as to the reliability 
of such measurements. 
The model is toa simpte, but the distortion mecha-
nisms used are capable of managing other distor-
tion mechanisms to some extent. 
The model is too simple because the nonlinear 
component characteristics exhibit hysteresis and 
frequency dependence. 



7. Conclusions 
Chapter 2 of this thesis presents a description of a 
lurriped parameter model of an electrodynamic loud-
speaker, which is capable of describing the behavior 
of the loudspeaker at low frequencies. The model fails 
to describe the loudspeaker behavior at higher fre-
quencies, i.e. above the transition frequency (cf. Eq. 
2.4). Also the model cannot cope with the nonlineari-
ties of an actual loudspeaker. 
More sophisticated models of the loudspeaker, which 
supplement the simple lumped parameter model, are 
discussed in chapters 4, 5 and 6. 
In chapter 3 a new description of the transient 
response of a loudspeaker or loudspeaker system is 
proposed: the Wigner distribution of its impulse 
response. This Wigner distribution is shown to be a 
powerful tool for evaluating the (transient) time-fre-
quency response of a loudspeaker. 
The Wigner distribution allows the introduction of 
objective optimization criteria for both a single trans-
ducer and a combination of transducers. Deviations 
from the ideal behavior can be located. For example, 
the decaying ringing contributions of the bending 
and membrane resonances of cone and dome loud-
speakers, as well as time delays and reflections, can be 
recognized from the occurrence of spurious contribu-
tions. 
To simplify the interpretation of the distribution or to 
emphasize particular effects it may be convenient to 
use an adapted representation. Examples are the use 
of the analytica! signa[ to suppress disturbing interfe-
rence contributions and the contour plot, in which 
time delays are easily recognized. In order to suppress 
disturbing or irrelevant contributions one could also 
average the distribution with a suitable window. It is 
important to note that although such processing may 
make sense, we always have to return to the original 
Wigner distribution of the signa! if we have any 
problem with the interpretation of a particular repre-
sentation. It may be advantageous to carry out a 
conversion of the axes, e.g. a logarithmic frequency or 
amplitude sealing. This might be important when the 
deviations of the time-frequency behavior from the 
ideal behavior are to be emphasized. This is closely 
related to the audibility of phenomena, which is not 
discussed in this thesis. It is clear that for a proper 
evaluation of the significance of deviations from 
ideal time-frequency responses, it is important to 
have more knowledge about the audibility of these 
deviations. Ho wever, the audibility of many transient 
phenomena is not yet known. 
If a satisfactory theory could be found for this 
important domain of acoustical perception, it might 
be possible to average the Wigner distribution with an 
appropriate function , which would result in a repre-

sentation showing only the audible contributions of 
the distribution. Given the state of the art concerning 
our knowledge about the perception of acoustical 
transient phenomena and our ability to formulate 
mathematica! or physical models of this hearing 
mechanism, this requires much additional research. 
The Wigner distribution can be very useful in this 
study, since it gives a proper distribution of the energy 
of the stimulus signal, which allows an accountable 
application of weighting, averaging and transforma-
tion. 
Also considered is the usef ulness of a linear-phase 
loudspeaker design (not to be confused with time-
alignment of separate transducers). Such an approxi-
mated linear-phase behavior is often claimed to 
affect the transient response of a loudspeaker favora-
bly. From the Wigner distributions of the minimum-
phase and linear-phase filter systems (Chapter 3, 
Figs. 18 and 21) it is clear that the only diff erences are 
the position of the "ears" relative to the mountain 
ridge and the delay of this mountain ridge. 
The "ears" in the graphical representation of the 
Wigner distribution of an actual loudspeaker system 
are located in frequency regions that are assumed to 
have hardly any effect on perceptional phenomena. 
If these frequency regions are not considered to be 
important, then there is no difference between the 
minimum- and linear-phase systems. This indicates 
that the need to design a loudspeaker system with an 
approximated linear-phase behavior is questionable. 
The influence of a nonrigid cone on the sound 
radiation has been discussed in chapter 4. The sound 
radiation from a nonrigid cone increases in the 
break-up frequency region. The average increase is 
correctly predicted by the membrane model, i.e. the 
model in which the bending stiff ness vanishes. In the 
break-up frequency region the idealized (lossless) 
membrane model differential equations show a sin-
gularity on the cone, the position of which moves 
from the outer to the inner edge with increasing 
frequency according to Eq. 4.11. A trapping of energy 
at the singularity on the cone in the lossless membra-
ne model was reported by van der Pauw [32), which 
effect results in a large transverse amplitude of the 
vibration at this point. This large transverse amplitu-
de of the membrane vibration generates a bending 
vibration at the site of the singularity. However, 
bending waves cannot propagate at the inner cone 
part (between the inner edge and the singularity 
point), as shown in Ref. [25), and will decrease 
exponentially with increasing distance from the sin-
gularity point. 
At the outer cone part (between the singularity point 
and the outer edge), bending waves do propagate and, 
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after reflection at the outer edge, lead to standing 
waves. In effect, at the singularity we find a conver-
sion from membrane energy in to bending energy [32]. 
The influence of the material dam ping on the mem-
brane vibration in the break-up frequency region is 
small, because the conversion of energy to bending 
waves can be interpreted as a damping mechanism. 
On the other hand the bending waves are strongly 
influenced by the material damping. 
The sound radiation of the nonrigid cone can be split 
in to the contributions of the independent solutions of 
the differential equations that describe its vibration. 
In contrast toa plane plate, the membrane vibrations 
in the cone have a transverse component in the 
displacement and thus contribute to the sound radia-
tion. In the break-up frequency region the amplitude 
of the transverse membrane vibration is relatively 
large, which results in a rise of the sound radiation in 
the break-up frequency region. At frequencies below 
the break-up frequency region bending waves can not 
propagate and a generated bending wave will decay 
exponentially. Therefore, the sound radiation below 
break-up is mainly determined by the membrane 
solutions. 
In the break-up frequency region the sound radiation 
due to the membrane solutions of the conical-shaped 
and concave cone show a considerable rise. The 
contributions of the bending solutions to the sound 
radiation of a cone with a conical shape are small 
compared with those of the membrane solutions and 
cause a fine structure on the sound pressure curve. 
The contributions of the bending solutions to the 
sound radiation of a concave cone shape are even 
smaller and can be neglected. 
The convex cone shows only a small rise in the sound 
radiation of the membrane solutions. The contribu-
tions of the bending solutions to the sound radiation 
are much higher and can no longer be neglected. The 
bending solutions yield a number of bending reso-
nance peaks and dips in the break-up frequency 
reg ion. 
The moving average of the sound radiation in the 
break-up frequency region, which is correctly predic-
ted by the membrane model, is strongly influenced by 
the voice coil mass. Such a mass yields an additional 
roll-off of the sound radiation in this frequency 
region. Therefore, the sound radiation of a concave 
cone with voice coil mass shows a peak which 
originates from the membrane solutions. These mem-
brane solutions are not very sensitive to a material 
damping in the break-up frequency region and the 
peak amplitude is hardly affected by such adam ping. 
The sound radiation from a convex cone with a voice 
coil mass shows a number of peaks and dips that 
originate from the bending solutions, which vanish 
after application of some suitable smoothing. The 
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amplitudes of these peaks and dips can be decreased 
by increasing the material damping. 
The choice of a cone shape depends on the material 
properties. For example, metal has a large specific 
mass and the thickness of a metal cone should be 
small in order to limit the total moving mass, which 
yields a small bending stiff ness. The ratio El p is 
relatively large compared with that of a commonly 
used cone material such as paper, so that the break-up 
frequency region starts at relatively high frequencies. 
Furthermore the material damping of a metal is 
small. Therefore the concave cone shape is optimum 
for a metal cone: the influence of the bending reso-
nances is minimal and the break-up peak is located at 
relatively high frequencies. 
A commonly used cone material, for example paper 
or plastic (e.g. polypropylene) material, has a much 
smaller ratio of Elp and a much larger material 
dam ping, which is able to damp the bending resonan-
ces effectively. Therefore the convex cone shape is 
optimum for such a cone material: the sound pressure 
response shows a smooth curve (provided that the 
bending resonances are damped sufficiently) which 
extends towards relatively high frequencies. 
In Chapter 5 two topics associated with the transient 
behavior of loudspeakers and loudspeaker systems 
have been discussed. Section 5.1 considers the influ-
ence of the geometry of a radiator on the transient 
behavior of the on-axis sound radiation. It is shown 
that fora rigid axisymmetric radiator the plane piston 
has the best transient behavior. The transient beha-
vior of a dome-shaped radiator is also reasonable, 
especially if the ratio of dome height to equivalent 
piston radius is less than unity. The cone-shaped 
radiator, however, shows a considerable transient 
distortion in the form of a widening or spreading of 
the response in the time direction at middle and lower 
frequencies. This distortion is found with both the 
straight cone-shaped radiator and the bent cone-sha-
ped radiator, like the convex and the concave cone. 
The effect of the transient distortion can be reduced 
by fitting a dust cap. If the cone cavity volume is 
decreased by increasing the size of the dust cap, then 
the transient distortion will be further reduced. 
The topic of sections 5.2 and 5.3 is the transient 
behavior of some known crossover filters for coïnci-
dent and noncoincident drivers. The types of crosso-
ver filter functions are the constant-voltage, the 
all-pass and the compromise filter function. Also 
discussed is an optimum choice of the crossover 
functions for noncoincident drivers, the all-pass 
Linkwitz-Riley filter functions. It is concluded that 
none of these filter functions gives rise to any substan-
tial transient distortion with coïncident drivers, pro-
vided that the proper phasing is used. In the case of 
noncoincident drivers it is concluded that, for the 



transient response too, the Linkwitz-Riley filters are 
the optimum choice, provided that the proper pha-
sing is used. However, for all these filter functions the 
proper alignment with respect to time is maintained 
only on a limited beamwidth in the plane of the two 
drivers' axes. This beamwidth can be increased if the 
spacing between the drivers is decreased. 
Finally in section 6 it is shown that the low frequency 
distortion of an electrodynamic loudspeaker can be 
predicted from a Yolterra series model. 
The agreement between measured and calculated 
distortion data of the voice coil acceleration is found 
to be reasonable for low frequencies below about 250 
Hz for second and third-order harmonie and inter-
modulation distortion components. It may be con-
cluded that the model is reliable in describing the 
second and third-order distortion responses for an 

electrodynamic loudspeaker at low frequencies. 
It is found necessary, however, to modify the coeffi-
cients in the series expansion of the nonlinear compo-
nent characteristics (by curve-fitting of the measured 
data) in order to improve the agreement between the 
measured and calculated data. Possible explanations 
for the discrepancies are: 

- The diff erence between statically and dynamically 
measured data raises questions as to the reliability 
of such measurements. 

- The model is too simpte, but the distortion mecha-
nisms used are capable of managing other distor-
tion mechanisms to some extent. 

- The model is too simple because the nonlinear 
component characteristics exhibit hysteresis and 
frequency dependence. 
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Appendix A: Matrices of the thin shell differential equations. 

The matrices A 11 , A 12 and A22 of Eq. 4.8 are given by: 

2nEh sin2 (q>) 2 h ----- - w p2nr 
2nEh 
-- sin (q>) cos (q>) 0 

r r 

2nEh 
-- sin (q>) cos (q>) 

2nEh 
-- cos2 ( q>) - w2p2nrh 0 

r r 

0 

1 v 
0 - +-sin (q>) 

Rep r 

A12 = (A21)T= 
v cos (q>) 

Rep r 

1 
- 0 
h 

0 0 0 

(1 - v)2 1 
A22 = 0 0 

Eh 2nr 

0 0 
12 (1 - v)2 

Eh 

0 

0 

0 

2nEh 
-- cos2 (q>) 

12r 

and , 

v cos (q>) 

r 

2nr 

- v cos (q>) 
B,2 = B21 = ---- + 

r 

where Rep is the radius of curvature in the meridional 
direction, Eis the Young's modulus and p the density 
of the shell material, wis the angular frequency, q> is 
the angle between the normal on the shell surface and 
the axis of symmetry, v is Poisson 's ratio, r is the 
distance from a shell element to the a xis of symmetry 
and h is the shell thickness. 

( 
1 vsin (q>)) E . - + - -- - sm (q>) cos (q>), 

Rep r T 

The coefficients B11 , B 12, B22, C1 and C2 of Eq. 4.13 
are given by: 

2nw2pr 2 7 = ( w pr - E) , 
T 

and 

(1 - v2) 
B22 = + 

2nrE 
(-1- + _v_s_i n_(_<t>_) ) 2 _r_ ' 

Rep r 2nT 

where 

T = (E sin2 (q>) - w2p r2) . 
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E cl = - - sin (<p) cos (<p)' 
T 

and 

C
2 

= _ (-1- + vsin (<p) )-r-. 
R<f! r 2nT 

The coeffïcients H 11, H 12 and H22 of Eq. 4.21 are 
given by: 

- 2ncoth (z) 
H 11 = { 1 - coth2 (Z) sin2 ( <p)} 

cos ( <p) 
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H 12 = H21 = v coth (ï) 

and 
1 - coth2 (z) (1 - v2) 

H22 = ---- ----
2n cos ( <p) coth (z) 

where z is the complex variable as defined in Eq. 
4.20. 



Appendix B: The geometrical and material Figs. 4.10, 4.11 and 4.12: 
parameters of the loudspeaker cones that have inner radius ra = 12.5 mm 

been used in the numerical calculations outer radius 'h = 80 mm 

discussed in Chapter 4. semi-apex angle a = 60 degrees 
cone thickness h = 0.35 mm 

Young's modulus E = 2.0 109 Nlm 2 

mass density p = 600 kg/m3 

Poisson's ratio v = 0.3 

1 
loss factor 8 = 0 (Fig.4.10) 
loss factor 8 = 0.1 (Fig. 4.11) 

1 loss factor 8 = 0.1 (Fig. 4.12) 

ra Figs. 4.14, 4.15, 4.16 and 4.17: 
inner radius 'a = 12.5 mm 
outer radius 'h = 80 mm 
semi-apex angle a = 60 degrees 
cone thickness h = 0.35 mm 

Fig. 4.6: Young's modulus E = 3.5 109 Nl m2 

cone: mass density p = 440 kg/ m3 

inner radius 'a = 12.5 mm Poisson 's ratio v = 0.3 
outer radius 'b = 80 mm loss factor 8 = 0.1 
semi-apex angle a = 60 degrees 
cone thickness h = 0.55 mm radius of curvature Rep is infinite (Fig. 4.14) 

radius of curvature Rep = 100 mm concave (Fig. 4.15) 
Young's modulus E = 1.9 109 N/m2 radius of curvature Rep =-100 mm convex (Fig. 4.16 and 4.17) 
mass density p = 310 kg/m3 

Poisson's ratio v = 0.3 Fig. 4.18 
loss factor 8 = 0.1 cone: 

inner radius 'a = 12.5 mm 
outer edge suspension: outer radius 'h = 80 mm 
inner radius ra = 80.5 mm semi-apex angle a = 60 degrees 
outer radius 'h = 89.5 mm cone thickness h = 0.35 mm 
thickness h = 0.48 mm 
radius of curvature Rep = 4.5 mm Young's modulus E = 2.2 109 N/ m2 

mass density p = 1160 kg/ m3 

Young's modulus E = 8.0 106 N/ m2 Poisson 's ratio v = 0.3 
mass density p = 540 kg/ m3 loss factor 8 = 0.1 
Poisson's ratio v = 0.3 
loss factor 8 = 0.2 outer edge suspension: 

inner radius 'a = 80.5 mm 
Fig. 4.7: outer radius 'b = 89.5 mm 
inner radius 'a = 15 mm thickness h = 0.35 mm 
outer radius 'b = 80 mm radius of curvature Rep = 4.5 mm 
semi-apex angle a = 60 degrees 
cone thickness h = 0.35 mm Young's modulus E = 0.05 109 Nl m2 

mass density p = 1325 kg/ m3 

Young's modulus E = 4.5 109 N/ m2 Poisson 's ratio v = 0.5 
mass density p = 600 kg/ m3 loss factor 8 = 0.6 
Poisson 's ratio v = 0.3 
loss factor 8 = 0.1 

outer edge 

Fig. 4.8: 
cone : suspension: 

inner radius 'a = 17 mm 1 1 Rq,=4.5mm 
80.Smm 1 

outer radius 'b = 83 mm "' 1 1:."' = 100° " semi-apex angle a = 50 degrees 80 mm 
., 

cone thickness h = 0.23 mm 
Rq,=1mm Rq, = 1 mm 
/:.q,:60° l:.<f> :45° 

Young's modulus E = 2.2 109 N/ m2 

mass density p = 1160 kg/ m3 

Poisson 's ratio v = 0.3 i---
loss factor 8 = 0.1 12.Smm 
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Appendix C: Parameters of Eqs. 6.9, 6.18, 6.20, 6.22 and 6.23 

a = k0 REI Bl0 

f3 = (RERm + k0 LEo + BlÖ)IB/0 

y = (mRE + LE0 R,JI B/0 

8 = mLE/Blo 

a = -2 b1/Bl0 

b = (k1 REB10 + b1 k0 RJI BIÖ 

c = (b1RERm + 211k0 Bl0 + 2k1LE0 Bl0 + 3b1BIÖ)IB1Ö 

d = (b1 mRE + b1 LE0 Rm + 11 RmB10)/ BlÖ 

e = (b1 mLEo + /1 mB10)1 BlÖ 

f = (/1 RmB10 - b1 LE0 Rm)/ BIÖ 

g = (/1 mB/0 - b1 mLE0)/ BIÖ 

A = ( - 2 b2Bl0 - bDI BfÖ 

B = (k2REB10 + b2k0 RE + b1 k1 RE)BlÖ 

C = (b2RERm - b2k0 LE + 312k0 Bl0 + 3k2LE Bl0 + 3b2BlÖ + b111 k0 + 3k111 Bl0 + b1 k1 LE 
2 2 0 0 0 + 3b1 Bl0)! Bl0 

D = (b2mRE + b2LE0 Rm + l2RmB/0 + b111 Rm)/ BlÖ 

E = (b2mLE0 + 12mB10 + b111 m)/ BlÖ 

F = (2 12RmB10 - 2 b2LE0 R,JI BfÖ 

G = (212mB10 - 2 b2mLEJI BlÖ 

Y1 = a {q2(p1,P2) + q2(p1,P3) + q2(P2,P3)} 

Y2 = 2b {q1(p1)q2(p2,p3) + q1(P2)q2(P1,P3) + q1(p3)q2(P1,P2)} 

Y2 Y3 = c (p1 + P2 + P3) -
2b 

Y4 = d (pf + + pj + 2p2P3) {q1(P1) q2(p2,P3)} + 
+ d (pf + + pj + 2P1P3) {q1(P2) q2(P1,p3)} + 
+ d (pf + + pj + 2P1P2) {q1(p3) q2(p1,P2)} 

Ys = e (pf + + pj + 3p2P3(p2 + P3)) {q1(P1) q2(p2,p3)} + 
+ e (PT + + pj + 3p1p3(p1 + P3)) {q1(P2) qi(p1,p3)} + 
+ e (pf + + pj + 3P1P2(p1 + P2)) {q1(P3) qi(p1,P2)} 

Y6 = 2fp1(P2 + P3) {q1(p1) q2(p2,P3)} + 
+ 2fp2(P1 + P3) {q1(p2) qi(p1,P3)} + 
+ 2fp3(P1 + P2) {q1(p3) q2(p1>P2)} 

Y7 = g (PTP2 + PTP3 + + P1Pj + 2P1P2P3) {q1(P1) q2(p2,P3)} + 
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+ g (PTP2 + + + P2Pj + 2P1P2P3) {q1(p2) q2(P1,P3)} + 
+ g (PTP3 + P1Pj + + P2Pj + 2P1P2P3) {q1(p3) q2(P1,P2)} 



Y1 = 2A {q1(p1)q1(P2) + q1(P1)q1(P3) + q1(P2)q1(P3)} 

Y2 = 6B {q1(P1)q1(P2) q1(P3)} 

Y3 = 2C(p1 + P2 + P3) {q,(p1) q1(P2) q1(P3)} 

Y4 = 2D (PT + + {q1(P1) q1(P2) q1(P3)} 

Y5 = + + pj) {q,(p,) q1(P2) q,(p3)} 

Y6 = 2F(P1P2 + P1P3 + P2P3) {q1(P1) q1(P2) q1(p3)} 

Y1 = G {pT(P2 + P3) + + P3) + + P2)} {q1(P1) q1(P2) q1(P3)} 
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On the design of broadband electrodynamic loudspeakers and multiway loudspeaker systems 

Summary 

This thesis discusses the analysis and design of broadband electrodynamic 
loudspeakers and multiway loudspeaker systems. 
After an introduction in chapter 1, chapter 2 presents a description of a 
lumped parameter model of an electrodynamic loudspeaker, in terms of an 
analogous electric circuit. Such a simple model can be used to derive many 
properties of the loudspeaker and serves as a basis for f urther discussions. 
The application of the Wigner distribution in the analysis of the loud-
speaker response is discussed in chapter 3. The Wigner distribution of a 
signa! can be interpreted as a distribution of the signa! energy in time and 
frequency. It is a basic time-frequency distribution, and it has properties 
that allow simple physical interpretations. Furthermore the Wigner distri-
bution facilitates the interpretation of other time-frequency distributions 
since these distributions can be expressed as a convolution of the Wigner 
distribution and a weight function determined by the particular distribu-
tion considered. The Wigner distribution of the impulse response of a 
loudspeaker can therefore provide useful information about the transient 
behavior of the loudspeaker, and it enables a designer to formulate 
optimization criteria for this behavior. 
The influence of the diaphragm break-up on the sound radiation can be 
predicted by calculating numerically the vibrations of a nonrigid loud-
speaker diaphragm, which is the topic of chapter 4. 
In chapter 5 the influence of the cone depth on the sound radiation is treated 
in section 1. In that section the sound radiation from a radiating surface is 
calculated by solving the Helmholtz equation numerically. 
Sections 5.2 and 5.3 discuss the consequence of a crossover network in a 
multiway loudspeaker system for the transient response of the total system. 
Finally chapter 6 gives an overview of possible nonlinearities in a practical 
electrodynamic loudspeaker and presents a model of the nonlinear loud-
speaker behavior which can be used to predict the low frequency distortion 
of a loudspeaker. 



Het ontwerpen van breedbandige elektrodynamische luidsprekers en meerweg-luidsprekersystemen 

Samenvatting 

Dit proefschrift beschrijft de analyse en het ontwerp van elektrodynami-
sche luidsprekers en meerweg-luidsprekersystemen. 
Na een inleiding in hoofdstuk 1, geeft hoofdstuk 2 een beschrijving van het 
lumped-parameter model van een elektrodynamische luidspreker in de 
vorm van een elektrisch vervangingsschema. Een dergelijk eenvoudig 
model kan gebruikt worden om eigenschappen van een luidspreker te 
verklaren en dient als basis voor de verdere diskussies. 
Hoofdstuk 3 bevat een diskussie van de toepassing van de Wigner-distribu-
tie in de analyse van de responsie van een luidspreker. De Wigner distributie 
van een signaal kunnen we interpreteren als de verdeling van de signaal-
energie naar tijd en frequentie. Het is een basis tijd-frequentie verdeling en 
heeft een aantal eigenschappen welke een eenvoudige fysische interpretatie 
van de distributie mogelijk maken. Verder is de Wigner distributie geschikt 
voor het interpreteren van andere tijd-frequentie distributies, omdat die 
distributies geschreven kunnen worden als een konvolutie van de Wigner 
distributie en een weegfunktie welke bepaald wordt door de specifieke 
distributie. Daarom kan de Wigner distributie van een luidspreker nuttige 
informatie leveren omtrent het transient gedrag van die luidspreker en stelt 
het een ontwerper in staat om optimalisatie-kriteria voor dat gedrag te 
formuleren. 
De invloed van het opbreken van het luidsprekermembraan op de geluids-
afstraling kan voorspeld worden door numeriek de trillingen van een 
niet-stijf luidsprekermembraan te berekenen, hetgeen beschreven wordt in 
hoofdstuk 4. 
De invloed van de konusdiepte op de geluidsafstraling wordt beschreven 
in hoofdstuk 5. In dat hoofdstuk wordt de geluidsafstraling van een stralend 
oppervlak berekend door de Helmholtz vergelijking numeriek op te lossen. 
Hoofdstuk 5 behandelt ook de invloed van het overnamefilter in een 
meerweg-luidsprekersysteem op het transient gedrag van de totale systeem-
responsie. 
Als laatste geeft hoofdstuk 6 een model dat de niet lineariteiten van een 
elektrodynamische luidspreker beschrijft, waarmee de laagfrequente ver-
vorming van een luidspreker voorspeld kan worden. 
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Een geschikte grootheid voor het beoordelen van het (akoestisch) transient 
gedrag van een luidspreker in een reflektie-vrije ruimte is de Wigner-distri-
butie van de (akoestische) impulsresponsie van die luidspreker in die 
ruimte. 

(Dit proefschrift hoofdstuk 3). 

2 

De meest geschikte vorm van een luidsprekerkonus wordt bepaald door de 
mechanische eigenschappen van het konusmateriaal. 

(Dit proefschrift hoofdstuk 4). 

3 

Het maximale vermogen dat een luidspreker kan verwerken wordt gedefi-
nieerd als U2/ R. De grootheid U is de effectieve waarde van de maximaal 
toe te laten spanning van het testsignaal op de luidsprekerklemmen en R 
is een door de fabrikant op te geven nominale weerstand van de spreek-
spoel. De waarde van R mag niet groter zijn dan 1,25 maal de minimale 
waarde van de modulus van de ingangsimpedantie van de luidspreker in het 
(frekwentie-)werkgebied. Wat echter ontbreekt is een specifikatie van de 
minimale waarde van R. 

(1 EC 268-5, punten 3.2.2b en 15.1 ). 

4 

Een elektrodynamische luidspreker wordt meestal zodanig ontworpen dat 
in het werkgebied van de luidspreker de amplitude van de door de 
luidspreker geproduceerde geluidsdruk, gemeten in een punt in een reflek-
tie-vrije ruimte, als funktie van de frekwentie bij konstante elektrische 
ingangsspanning zo goed mogelijk onafhankelijk is van de frekwentie. Dit 
legt beperkingen op aan het rendement van die luidspreker. 

(LL. Beranek, Acoustics, McGraw-Hill, New York, 1954.) 

5 

Voor het verminderen van de niet-lineaire vervorming in een elektrodyna-
mische luidspreker wordt dikwijls gebruik gemaakt van een tegen koppeling 
gestuurd door de stroom door of de spanning over de spreekspoel. Een 



tegenkoppel ing gestuurd door het signaal van een aparte mechanische 
bewegingsopnemer op de spreekspoelkoker kan echter betere resultaten 
leveren, omdat deze ook de vervorming tengevolge van het plaatsafhanke-
lijke statische magneetveld onderdrukt. 

(P. Scherer and B. Dick, Controlling the sound pressure by controlling 
the movement of the diaphragm, Proc. of the 77th Conv. of the Audio 
Eng. Soc., no 2208, Hamburg, 1985.) 

6 

De neiging van een papieren luidsprekerkonus tot het genereren van 
subharmonischen neemt toe met de malingsgraad van het papier. Dit zou 
verband kunnen houden met het feit dat papier met een hogere malings-
graad een grotere stijfheid bezit. 

(P.O. Pedersen, Sub-Harmonies in Forced Oscillations in Dissipative 
Systems, Danmarks Naturvidenskabelige Samfund, lngeniorvidenska-
belige Skrifter A 35, Copenhagen, 1933.) 

7 

De eis dat, gemeten in een reflektie-vrije ruimte, de modulus van de 
overdrachtsfunktie van een elektro-akoestisch weergavesysteem onafhan-
kelijk is van de frekwentie, lijkt tegenstrijdig te zijn met het feit dat de 
overdrachtsfunktie van een ruimte waarin zo een systeem gebruikt wordt, 
zeer grillig is. Men moet echter, gebaseerd op psycho-akoestische gronden, 
onderscheid maken tussen het direkte geluid en de galm. 

(J. Blauert, Spatial Hearing, MIT Press 1983.) 

8 

De penetratie van digitale technieken in de totale elektro-akoestische keten, 
inclusief de generatie en de perceptie van geluid, heeft een natuurlijke grens: 
een geluidsgolf laat zich niet digitaliseren, het menselijk oor evenmin. 

(B. Blesser, Digitalization of Audio, J. Audio Eng. Soc., vol. 26, no 10, 
pag. 739, 1978.) 

9 

"The purpose of computing is insight, not numbers." (R.W. Hamming) 
Daarom verdient het aanbeveling om in een kollege numerieke wiskunde 
aan een Technische Hogeschool ook enige aandacht te besteden aan het 
gebruik van computeralgebra. 



10 

Het gebruik van niet-FORTRAN programmeertalen wordt bemoeilijkt 
doordat de meeste bestaande programmabibliotheken geschreven zijn in 
FORTRAN. Het verdient daarom aanbevehng bij de specifikatie van een 
programmeertaal ?ok de aanroepwijze van een in FORTRAN geschreven 
programma op te nemen. 

11 

Het optimaliseren van de responsiefunktie van een optisch systeem in 
gangbare rekenpaketten gebeurt via een minimalisatie van de golff rontfou-
ten of van de geometrische dwarsaberraties. Dit levert echter nogal 
uiteenlopende eindresultaten op. Het verdient dan ook aanbeveling om als 
doelfunktie van de minimalisatie een kombinatie van de genoemde fouten 
te nemen. 

(Code V User's manual, Chapter 5, Optica! Research Associates, Pasa-
dena California, 1982.) 

12 

In de akoestiek en soortgelijke disciplines wordt gebruik gemaakt van soms 
zeer verfijnde numerieke analyse- en optimalisatietechnieken. Een systema-
tische synthese zoals we die uit de netwerktheorie kennen, zal echter bij 
dergelijke compliceerde continue fysische systemen, door het grote aantal 
vrijheidsgraden, vrijwel onmogelijk zijn. Daarom zal de invoering van 
numerieke technieken in het ontwerpproces nooit de vindingrijkheid van de 
ontwerper overbodig maken. 

(R.P. de Wit, A.J.M. Kaizer and F.J . Op de Beek, Numerical Optimiza-
tion of the Cross-Over Filters in a Multiway Loudspeakersystem, 
Proceedings 75th Convention of the Audio Engineering Society, 
no. 2057, Paris, 1984.) 

13 

Bij het oplossen van knelpunten in ons wegennet wordt vaak eerst gedacht 
aan een vergroting van de capaciteit. Echter, gezien de krapte in de 
overheidsfinanciën zouden alle middelen om de bezettingsgraad van auto's 
te vergroten, bijvoorbeeld het "poolen" in het woon-werkverkeer, eveneens 
overwogen dienen te worden. 


