
Part1 
 

 I had to split it in to parts because of the 100kb upload limit. 
 This is a simple procedure to calculate “by hand” a third order Bessel or Butterworth filter in a MFB 
topology. I couldn’t find it in any book. (well…perhaps I could use some more reading) There is some work at 
the horizon but not as much as it may seem. You may want to use a pocket calculator able to solve 3rd order 
equations (and with a few ‘memories’ to store partial results) - like a Casio fx-991MS…. 
 Two good advices: always run a simulation of the circuit to check for any catastrophic errors. 
(experience talks here �) and use a bridge to match the components values and check DF vs. freq. of 
capacitors.  
 I’ll start with a single ended example and in Part2 I’ll show how to go for a differential configuration. 
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Some general formulas that apply to the 3rd order filter in Fig.1:  
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Now comes some “heavy” stuff. The generalized form for Bessel polynomials is: 
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 - don’t ask me any other details please, my maths… RIP (�). So the first 

polynomials of interest for implementing electronic filters are: 
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function of the circuit.  
 

11045105105 234
4 +∗+∗+∗+∗= xxxxP …etc. 

 The filter coefficients are a and b. For a Bessel response a
3 15

6= = 2.432881 and b 3 15=  = 

2.466212. For a Butterworth response a = b= 2.  
 For the Bessel the cut-off frequency (fc) is defined as the frequency at which the phase response 

reaches half of its maximum (or 
4

n
-

ππππ∗
, where n is the filter order). The –3dB point occurs earlier (for a 

third order f -3dB = 0.711887*fc ). 
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  For simplifying things: RRR == 21 ; 
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 Further on I made some notations: pAK1 ∗= ; pA2K 2 +∗=  and also for the unknowns (x, y, z) 
that we have to find: 
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Tip: at the end if you want to check quickly for errors, you can use this relation: 
pA

1
zyx

∗
=∗∗ (don’t 

use it as part of the solving 3 equations system indicated bellow!) 
Actually after writing the circuit eqn. and using the notations I made until now the following three 
equations will give us the solutions. I avoided the boring calculations to reach down to this point. (Huh! - 
imagine a few pages of this stuff edited in Word) You can use either mesh method or Υ to ∆ (and back) 
transformations…so after solving (1) it is easy to obtain x and then y from two simple 1st order equations: 
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( ) (2)    zKK2xb2 21 ∗+∗+=∗  

 
( ) (3)   zxK2KzyK4a2 121 ∗∗∗++∗∗∗=∗  



 
 Here usually I choose “p” as number smaller than unity from the 1% resistor tolerance series. By choosing 
“p” we force the ratio between R1(R2) and R4. Just a few examples: if p= 0.475 then at the end you will have 
plenty of pairs to choose from: (1.21k, 0.576k), (1k, 0.475k), (931, 442), (820, 390) etc.   
 Then you may want to choose A=1 (0dB gain => R3= 2R) as it is often the case and we can finally solve 
for z. We retain only the real solution of course. There’s a risk of getting negative values for x or y or even z. 
Anyway a 3rd order equation has always at least one real solution. The problem is to get a positive one. Usually 
for 9.0≤p  and for A reasonably small you’ll get valid solutions. 
The same equations if A= 1 can be written: 
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You can tune the filter by choosing ( R,f c ) and then fine-tune it by choosing ( xC,f c ). Then you can go 
down in tighter tolerances series and reiterate the calculations if you feel that you’re getting close to some 
nice standard available values.  
 

 


