How much free air does a dipole line need to stay a dipole? - diyAudio
 How much free air does a dipole line need to stay a dipole?
 User Name Stay logged in? Password
 Home Forums Rules Articles diyAudio Store Gallery Wiki Blogs Register Donations FAQ Calendar Search Today's Posts Mark Forums Read Search

 Planars & Exotics ESL's, planars, and alternative technologies

 Please consider donating to help us continue to serve you. Ads on/off / Custom Title / More PMs / More album space / Advanced printing & mass image saving
 13th September 2011, 04:20 PM #1 diyAudio Member   Join Date: Oct 2010 How much free air does a dipole line need to stay a dipole? I'm trying to figure out a design problem with a baffleless dipole line array design. I live in an apartment and so it's a bit difficult to get outside to do true free air polar measurements. My design goal includes good power response, not just good on-axis response. Anyone know how to calculate how much free air space between two baffleless dipole lines is required at a given frequency for each line to still operate, more or less, like the other line isn't there? Details of my challenge: Assume a dipole midrange planar line about 5.5" wide (and very long) and a planar tweeter dipole line about 2.6" wide and again very long. Further assume the crossover is a linear phase Neville Thiele 2nd order filter, with about 200db/octave slope. Assume the crossover occurs around 1200Hz. If I butt these two drivers together to make a single "baffle" that is 8-8.5" wide, then the entire crossover will occur above the dipole peak of the midrange driver, which will occur around ~850Hz. If I leave an open space between the mid and tweeter lines (say 1.5" of free air) then the half-wavelength freq will be ~1220Hz, which will also be about where the midrange has its dipole peak (half lambda at 5.5" wide is about 1200Hz). So in this example it appears I'm trading off 1) crossover occurring above the midrange dipole peak but with no first-pass lobing problems between the mid and tweeter, vs 2) crossover ~at midrange dipole peak but closer to the 'problem zone' where the inter-driver separation distance is much greater than 0.5 lambda and headed toward 0.66 and beyond. (0.66 lambda in this example occurs at ~1625Hz). See also John K's discussion at: Dipoles and Open Baffles Thoughts about which version would be less messy from a power response/lobing perspective?

 Posting Rules You may not post new threads You may not post replies You may not post attachments You may not edit your posts BB code is On Smilies are On [IMG] code is On HTML code is OffTrackbacks are Off Pingbacks are Off Refbacks are Off Forum Rules

 Similar Threads Thread Thread Starter Forum Replies Last Post Bent Planars & Exotics 8 29th March 2015 08:45 AM StigErik Multi-Way 105 14th September 2012 02:18 AM dkxdn Planars & Exotics 10 29th July 2011 12:56 PM charliemouse Multi-Way 25 7th July 2007 11:19 PM Shpoop Multi-Way 4 19th July 2004 12:18 PM

 New To Site? Need Help?

All times are GMT. The time now is 12:56 AM.