A guide to building the Pass F4 amplifier. - diyAudio
Go Back   Home > Forums > Amplifiers > Pass Labs

Pass Labs This forum is dedicated to Pass Labs discussion.

Please consider donating to help us continue to serve you.

Ads on/off / Custom Title / More PMs / More album space / Advanced printing & mass image saving
Reply
 
Thread Tools Search this Thread
Old 17th April 2013, 10:10 PM   #1
6L6 is offline 6L6  United States
diyAudio Member
 
6L6's Avatar
 
Join Date: Oct 2010
Location: Denver, Colorado
Default A guide to building the Pass F4 amplifier.

Building the Pass/Firstwatt F4

This is a fantastically good sounding amp - read more about it here before staring;

http://www.firstwatt.com/pdf/prod_f4_man.pdf

The thread at DIY audio -

F4 power amplifier

And this the the corrected schematic (The schematic in the Firstwatt article has a typo, also this one agrees with the PCB)

Click the image to open in full size.

Here you will find a build guide for the Pass / Firstwatt F4 power amplifier using PCBs and chassis from the DIYaudio store.

The 5U 'BIG Amp Chassis' is shown, because that's the one I have. It will fit comfortably in a 4U 'Jack of all chassis' and have enough heatsink as well.

~~~~~

There are plenty of places that you could start, but for the sake of illustration let's begin with the heatsink assemblies -

Click the image to open in full size.

This is the heatsink(s) from the 5U 'BIG Amp Chassis' It has a mirror-imaged set of pre-drilled heatsinks and brackets to hole them together and make a mounting point for the rest of the enclosure. The 4U is similar, but the heatsink is a single piece.



Click the image to open in full size.
This build will also utilize the 'DIY friendly' baseplate, here shown with the feet and hardware, and also the heatsink's brackets.

Click the image to open in full size.
There is a hardware package available for the pre-drilled back and heatsinks, including input and output jacks, IEC module, and hardware for the PCB and heatsinks.

Click the image to open in full size.
The contents of the hardware bag.

Click the image to open in full size.
Using the brass PCB standoffs, install them into the PCB mount holes as shown, to get the following pattern;

Click the image to open in full size.
Now there is a place to mount the amplifier PCB

Click the image to open in full size.
Speaking of PCB, it's a very nice layout, plenty of room, and the ability to use many sizes of resistors and caps. This is the front.

Click the image to open in full size.
Here is the back.

Click the image to open in full size.
Stuffing the PCB should be done in the usual order, from smallest device to biggest - so that would be diodes and resistors first.

Of note, I got the bigger (Dale/Vishay RN60) resistors to see how they would fit on the PCB. They are the size of the PRP resistors that are quite popular amongst the fancy parts crowd. They are great everywhere except the row flanking the small transistors right in the middle. They don't fit there side by side. You could mount them soldier style, or just mix in a few smaller resistors like I did. Or just get RN55's. They are the smaller size.

Click the image to open in full size.
Pots and transistors next. (yes, I didn't stuff the input pair when the photo was taken…)

Click the image to open in full size.
Ah, there they are.
The ziptie is just to help their thermal tracking.

Click the image to open in full size.
And finally the capacitors.

Click the image to open in full size.
There is a top and bottom to the Universal Mounting Spec holes, the board mounts as shown

Click the image to open in full size.
I find it helpful to bend the leads of the transistors first, and mount them (a little bit loose) to the heatsink.

Click the image to open in full size.
Like this

Click the image to open in full size.
And then mount the PCB. You can snug all the screws down and then solder and trim.

Ok, now lets move on to the Power Supply.

Click the image to open in full size.
Here is a photo of the PSU board, I am going to use integrated bridge rectifier blocks, so you need to remove the part of the PCB that mounts the diodes. The new PCB, not quite yet available at the time of this writing, will have a similar feature with the diodes, as well as room for more/bigger capacitors.

Click the image to open in full size.
As always, stuff the small components first - the light blue resistors are the filter resistors, the darker ones with the teflon are the bleeder resistors, and the small ones are for the LEDs.

This PSU board is the exact same DIYaudio PSU board, just without the top blue soldermask.

Click the image to open in full size.
This shows the INPUT edge (from the diode bridges)

The capacitors are Panasonic T-UP 33,000uf 35V

Click the image to open in full size.
Connecting the bridges to the PCB

Click the image to open in full size.

Click the image to open in full size.
This is the OUTPUT edge of the PSU - the colors are
Red V+
White GND
Green V-
The black connects the PSU GND to the CL-60 to the chassis.

Click the image to open in full size.
The wiring from the PSU to the amp PCB is clearly shown.

Click the image to open in full size.
Here you can see the bridges with the wires attached from the transformer secondary. Remember that the green attached to a bridge must have continuity with the blue attached to the same bridge. (As it's the 2 ends of the same piece of wire)


Click the image to open in full size.
As long as were are tailing about the transformer, here is a photo of the terminal block shown wired for 120v. The Blur lead is the AC Live, and the clear the AC neutral. The reds and blacks are the transformer primaries.

Transformer is an Antek 400VA 18v+18v, part number AN-4218.

Click the image to open in full size.

The last bit of the PSU wiring is the chassis connection, the black comes from the PSU GND, and the green is the AC safety earth.

The AC to primary wiring confuses everybody, so;

Let's look at the PSU schematic just to make sure everything is OK... Remember that I am wiring it for 120v operation, so the transformer primaries are in parallel. People wiring for 240 with a transformer like this, please ignore.

Click the image to open in full size.

Notes in red are mine.

Look at the connections of the transformer primary, through the thermistors and line cap, to the mains.

Hot AC is connected to the "120" (which in my case is the red leads on the primaries) One red primary is connected to AC hot through a thermistor.

Neutral AC is connected to the black "0" leads, one of which is connected to the AC through a thermistor.

AC Hot and Neutral have a cap across the leads.


So, yes, the AC will be connected to the center 2 posts, which is across the cap.

Click the image to open in full size.
(This photo lifted from my F5 thread, but it's the same PSU…)

Left to right we have post 1, 2, 3, 4

POST 1 - Transformer primary 'B 0' which will be connected to AC Neutral at post 2, through the thermistor between post 1 and 2.

POST 2 - AC Neutral in (not shown in photo), connected to Transformer primary 'A 0" , a thermistor to post 1, and a line cap to post 3

POST 3 - AC Hot in, connected to transformer primary "B 120", thermistor to post 4, and line cap to post 2

POST 4 - Transformer primary "A 120", connected to AC Hot through the thermistor to post 3

If you look at the red and black wires in the photo you will see that the Mains AC must to pass through a thermistor to connect to each of the 2 primaries. And that is the point of them, to keep inrush under control during powerup.

Ok!

Now we need to put everything together -

But first a bit more mechanical assembly.

Click the image to open in full size.
This is the pre-cut back plate and the thick front plate.

Click the image to open in full size.
Gather and mount the IEC plug.

Click the image to open in full size.

Click the image to open in full size.
The speaker posts.

Click the image to open in full size.

Click the image to open in full size.
And the RCA jacks.

Note that the shoulder washer goes on the inside, so the metal of the chassis doesn't touch the metal of the jack. There is a similar washer on the speaker posts.

Click the image to open in full size.

Click the image to open in full size.
The inside of the back panel.

Click the image to open in full size.
And the outside. Looks good, yes?

Click the image to open in full size.
The IEC module is wired as shown. This will switch both the Live and Neutral. The blue (live) and clear (neutral) go the the wiring block with the thermistors, cap and transformer primaries.

Click the image to open in full size.
The amp PCB completely wired.

Click the image to open in full size.
A bit closer.

Click the image to open in full size.
The top connections labeled.

Click the image to open in full size.
This happens to be the other channel, but the connections are all the same.

Remember that V- / GND / V+ is always left to right as you are looking at the format of the PCB

Click the image to open in full size.
I'm not entirely sure what I was trying to show here, other than the screw and washer. It looks cool. I will keep the photo in the guide.

Click the image to open in full size.


Click the image to open in full size.
A few notes on bias -
P1 controls the bias, measured across any of the 3W source resistors. Adjust for 0.13v when it's cold, and watch that it doesn't get higher than 0.2v once it's up to temperature in about an hour. Adjust for 0.2v when hot.

P2 is used to adjust the DC offset on the output to zero.

Click the image to open in full size.
Attach a DC voltmeter across the speaker outputs to measure offset.



Click the image to open in full size.
If you find that the P1 doesn't have enough range, I.E., you can't turn it up enough, replace R9 with a smaller resistor, I used 4.75K and it works well.


Click the image to open in full size.
Connect a voltmeter across any of the source resistors. The outboard ones are easier to clip across.

Adjust for about 0.13v cold, and once the amp is up to operating temperature, trim for 0.20v - It takes a long time to warm up, take your time.

Adjust P2 for zero offset, then re-trim P1

Here is a photo of it all connected and working -

Click the image to open in full size.

I'm driving the F4 with an O2 Headphone amp sourced from an iPod; Driving 85.5db speakers. Although it is a small room, it gets louder than I want to listen. It still can't drive it to clipping, but it does get really, really loud.

One thing worth mentioning, and it speaks very highly to the quality of the amp, is that it is completely non-fatiguing, and more interestingly, very easy to listen to turned up too loud… I don't realize how loud it actually is sometimes. Complete transparency is a word used a lot when describing this amp - but I have to agree. It's fantastic!





Please comment away if you desire.

Also please feel free to ask any F4 questions here, and if you would like to post photos of your F4 completions, old or new, please do!

Last edited by 6L6; 2nd May 2013 at 01:44 AM.
  Reply With Quote
Old 17th April 2013, 10:24 PM   #2
6L6 is offline 6L6  United States
diyAudio Member
 
6L6's Avatar
 
Join Date: Oct 2010
Location: Denver, Colorado
Placeholder for 6l6


Click the image to open in full size.
The eagle-eyed among you noticed that I had the perforated baseplate installed upside-down, so I needed to flip it over and mount it so the screwheads under the steel perf would not touch the actual baseplate.

The provided hardware is a bit short, so I needed to improvise - this is DIY, after all, so no big deal.

Click the image to open in full size.
You can see here the perforated baseplate installed correctly.

Click the image to open in full size.
When searching for screws, they always come in 2 lengths - too short and too long...

Click the image to open in full size.
But those screws on the 4 corners do need to be longer than the center screws because the chassis feet are mounted with them.

Click the image to open in full size.

Click the image to open in full size.
Amp bottom

Click the image to open in full size.
When complete, each side of the amp bottom should look like this.


Click the image to open in full size.
A neat photo highlighting the extrusion profile of the big heatsinks.


Click the image to open in full size.
That completes it, the chassis is quite simple to assemble, and the pre-drilled back makes things really simple.
The amp goes together with very little effort -- it's a rewarding project.
You can also see in these photos that the 5U 'Big Amp Chassis' is, in fact, as advertised, being quite enormous.
I used the 5U because I had it, and it will be used for a number of these guides. The 4U 'Jack of all Chassis' would be plenty for this amp.

Click the image to open in full size.

Click the image to open in full size.

Click the image to open in full size.
For now I am driving the F4 with an O2 Headphone amp, as it is the only 'preamp' I have that can swing enough volts (7) to give real volume, although not to clipping. Still, has enough drive for my current setup, so I'm not wishing for something else. It also sounds fantastic. Seriously.
An ImPasse will be built to drive this amp, and I am also very interested in the Pumpkin / Shunty.

So how does it sound? Well, there is not a lot to say because it's so incredibly neutral, it sounds a lot like the O2, which is very neutral and musical itself.

I have been finding the amp extremely difficult to listen to critically and listen to the amp, as I find myself singing along to whatever I play… Every time. It's really cool.

How does it compare to the F5? That's very hard to describe - you the F5 is a fantastic sounding amp, no question. Better than any other amp I have ever built, tube or SS. It (the F5) will make you understand the whole 'Class-A' mystique, and you will be very happy that you built it, because it delivers on it's promises. It truly is a great amp and a great design.

The F5, when compared to the F4 is, in my opinion, is a bit boring. The F4 is that good. . But remember it comes at a price, specifically that you will likely need a dedicated preamp for it. (Or you could bi -amp it with a flea-powered tube amp, but that's a different story. See the manual for more info.)


Some interesting measurements concerning bias levels -

Here are some quick and dirty measurements I did looking at various levels of bias on the F4. ( +/- 22.5V rails )

The conditions are, amplifier to normal temperature, one channel driven (because I cant read 2 at once), input to amplifier 3V 1.1kHz sinewave from 339A, distortion read across 4ohm 100W dummyload resistor, oscilloscope and FFT connected to HP 339A monitor, which was outputting the residual distortion waveform.

Click the image to open in full size.
Bias measured across a .47 source resistor. (This is 1/2 the normal level, for illustration's sake)

Click the image to open in full size.
Distortion (Meter is set to the .1 scale, look at the arc above the mirror, here showing .065%)

Click the image to open in full size.
Here is the shape of the distortion residual. (No distortion would look like a perfect sinewave.)

Click the image to open in full size.
FFT of the distortion residual. (please excuse the photo of the screen. The next time I do this I will get screenshots.) The 1st peak at 2.2k is the fundamental. (2.2k chosen as it aligns with the gridlines. ) Looking right, he 2nd peak is the 2nd harmonic, the 3rd peak the 3rd harmonic, and the 4th peak the 4th harmonic. Higher level harmonics are not visible, as they are very small and lost in the noise.


Now let's increase the bias to the recommended amount, 200mv measured across the source resistors.

Click the image to open in full size.

Click the image to open in full size.
Distortion has now decreased to .016%. All that has changed is the bias. What a marked difference!

Click the image to open in full size.
The distortion residual has lost it's humps and is looking very smooth.

Click the image to open in full size.
The 4th harmonic is no longer visible, and the 2nd and 3rd are greatly reduced.


Increasing further -

Click the image to open in full size.

Click the image to open in full size.
Distortion now .08%

Click the image to open in full size.
Residual very similar to above, but even more smooth. (A little bit, anyway…)

Click the image to open in full size.
FFT showing the 2nd and 3rd harmonic even lower. Neat!


So the logical thing is to just crank it all the way up, right? Well, yes and no. Here are the reasons (and people with more experience please correct me if I'm wrong.)

1) Heatsink - at some point you are going to get too hot. With the 5U that wasn't an issue. A good rule of thumb is the transistors 65C max and heatsinks 55C max.

2) Bias current vs. VA of transformer. You don't want your total bias current (in watts) to be more than 1/2 or maybe 2/3 or your transformer's VA rating.

3) Transistor dissipation. Make sure you look at the datasheet for the output transistors, they all have an absolute maximum and a de-rating as they get hotter. For long life don't set more than 1/2 the max dissipation.

4) Point of diminishing returns. In this example the measured distortion continued to decrease (down to .045 or so) as bias was increased to 370mV, but the gains were very small and it would added lots of heat. The sweet spot was closer to 300mV bias.

Last edited by wintermute; 25th April 2013 at 06:54 AM. Reason: add a post in that can be edited by a mod to continue 6l6's build.
  Reply With Quote
Old 17th April 2013, 10:46 PM   #3
PKI is offline PKI  United States
diyAudio Member
 
PKI's Avatar
 
Join Date: Aug 2011
Beautiful! as always :-)
  Reply With Quote
Old 18th April 2013, 01:30 AM   #4
zany is offline zany  Australia
diyAudio Member
 
Join Date: Oct 2010
awesome build guide... again! many thanks for all your efforts.
  Reply With Quote
Old 18th April 2013, 01:39 AM   #5
diyAudio Member
 
bnorrish's Avatar
 
Join Date: Oct 2012
Location: Boston
Awesome build. I should give this a shot - easy to build and swap out with my F5. Preamp outs on my Yamaha receiver would probably drive but the DIY Store could use a pre-amp board with some gain.
  Reply With Quote
Old 18th April 2013, 01:52 AM   #6
diyAudio Member
 
buzzforb's Avatar
 
Join Date: Oct 2010
Location: Burlington, NC
There are. BA1/2 and BA3. Both are very capable and can easily work as a preamp.
__________________
...Shape the sound , Man!
  Reply With Quote
Old 18th April 2013, 02:02 AM   #7
6L6 is offline 6L6  United States
diyAudio Member
 
6L6's Avatar
 
Join Date: Oct 2010
Location: Denver, Colorado
I would agree with Buzz - I looked very closely at the BA3 front-end as a preamp before deciding on the ImPasse... which was decided on for a bunch of non-performance related reasons. (Although it's performance is no slouch at all...)

Specifically, I am interested in a project with an input transformer, I have a ton of very premium 6SN7 and 6DJ8, I haven't built a tube project in a while, etc...
  Reply With Quote
Old 18th April 2013, 02:13 AM   #8
diyAudio Member
 
bnorrish's Avatar
 
Join Date: Oct 2012
Location: Boston
Quote:
Originally Posted by buzzforb View Post
There are. BA1/2 and BA3. Both are very capable and can easily work as a preamp.
Interesting - board is $7. I have not looked the the BAs that closely. Anyone post one of those to make standalone preamp? Need to add some sort of attenuation for volume. I am sure there are a few other details.
  Reply With Quote
Old 18th April 2013, 02:28 AM   #9
6L6 is offline 6L6  United States
diyAudio Member
 
6L6's Avatar
 
Join Date: Oct 2010
Location: Denver, Colorado
Like anything, put your selector switch then your pot/stepped attenuator before the input of the gain stage. Easy!

PSU could be done a million different ways, choose your preferred flavor.

I would be happy to help, if you would like a nudge in the right direction.
  Reply With Quote
Old 18th April 2013, 04:48 AM   #10
diyAudio Member
 
Join Date: Feb 2010
Really great pics and write-up ! I have a heat-sink question as I have not drilled my sinks yet. Could someone tell me the distance from the bottom for the mosfet bolt holes ? See pick IMG_1492_zpsdec762b0.jpg
  Reply With Quote

Reply


Hide this!Advertise here!
Thread Tools Search this Thread
Search this Thread:

Advanced Search

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off


Similar Threads
Thread Thread Starter Forum Replies Last Post
A Concise Guide to the Published Amplifier Circuits of Nelson Pass rsdio Pass Labs 41 30th July 2014 04:53 AM
An illustrated guide to building an F5 6L6 Pass Labs 739 17th July 2014 02:27 AM
My,PASS ALEPH J and f4 xr000 Pass Labs 1 25th December 2009 03:20 AM
Idiot´s guide to building Pass amps? judge Pass Labs 3 19th December 2004 11:33 PM


New To Site? Need Help?

All times are GMT. The time now is 09:23 AM.


vBulletin Optimisation provided by vB Optimise (Pro) - vBulletin Mods & Addons Copyright © 2014 DragonByte Technologies Ltd.
Copyright ©1999-2014 diyAudio

Content Relevant URLs by vBSEO 3.3.2