
Home  Forums  Rules  Articles  diyAudio Store  Gallery  Wiki  Blogs  Register  Donations  FAQ  Calendar  Search  Today's Posts  Mark Forums Read  Search 
Headphone Systems Everything to do with Headphones 

Please consider donating to help us continue to serve you.
Ads on/off / Custom Title / More PMs / More album space / Advanced printing & mass image saving 

Thread Tools  Search this Thread 
12th February 2017, 02:04 AM  #1 
diyAudio Member
Join Date: Mar 2016

Output Impedance & Planars
So I've read the following.
Musings on Headphone Amplifier Output Impedance  InnerFidelity NwAvGuy: Headphone & Amp Impedance So Ill explain my understanding. Under the assumption that the amp sends out an impulse in a really small time frame, the signal hits the driver. The driver will extend and make sound. But from the driver extending to its peak, and it returning, a back current will be generated (as it is an electro mechanical device ). Output impedance of the amplifier ideally is close to zero such that this current can be sank quickly, and minimize further oscillations. (If I short a generator, will it require more force due to back emf? How does a non zero load alleviate this?) Im still struggling with the following concepts. In the case of the dynamic driver, how do we get a different frequency response where impedance peaks? Aka if I have a impedance peak at 100hz, by increasing Zout there is a few db change up in frequency response at 100hz. Oscillation in the circuit? Would I be correct in saying that planars (since they are purely resistive) will experience next to no change? If there is change would it be to impulse response only since their impedance is flat across the frequency range? Where does nwavguy get the following numbers " For the output impedance to create a 1 dB change, you have antilog(1/20) = 0.89." I realize dB's are logarithmic, but doing some math I get 20 log (.89). What is 20 and .89? Last edited by Cata1yst; 12th February 2017 at 02:07 AM. 
12th February 2017, 04:27 AM  #2  
diyAudio Member
Join Date: Apr 2011
Location: Upper midwest

Quote:
Since Rout is constant, if Zspeaker increases, the voltage across the speaker increases. You're right, a constant Zspeaker results in a constant voltage across the speaker, since Rout is constant. The formula is: 1dB = 20 x log (0.89). The 20 is actually two scale factors multiplied together. We need a x2 factor to account for using voltage instead of power, since power is Vsquared/R. We also need a x10 factor to account for using dB (decibel) instead of B (bel). So, 2x10 accounts for the 20. The 0.89 is the factor of reduction of the amplifier output voltage due to the drop across the Rout. If the amp puts out 1V open circuit, then the voltage across the speaker is 0.89V, because 0.11V is dropped across the amplifier's Rout. Then the load response is 1dB down. Last edited by rayma; 12th February 2017 at 04:46 AM. 

12th February 2017, 02:16 PM  #3  
diyAudio Member
Join Date: Oct 2010

Quote:
Take a (perfect) voltage source and two resistors in series. The first resistor Zout is our output impedance, the second Zl our load impedance (the headphones). Set the source to 10V. Zout=0. What voltage drops across Zl? The full 10V, regardless of the resistance of Zl. Now we assume Zl=100 ohm and set Zout to 100 ohm as well. Now 5V drops across Zout, 5V across Zl. That is 6 dB through the headphones. In a dynamic headphone system, Zl varies with frequency. Usually, you see a peak in impedance around 100 Hz and a minimum around 1 kHz. So let's assume Zout=32 ohm, our headphone has 32 ohm at 1 kHz and 64 ohm at 100 Hz. That's 6 dB at 1 kHz, 3.5 dB at 100 Hz. Effectively a +2.5 dB boost at 100 Hz. The math: 64/(32+64) = 0.6666 20*log10(0.6666) = 3.5 dB ... that is how a deci bel is defined for an amplitude ratio. Some education in signal processing would help to understand why, but an ideal impulse contains all frequencies from 0 Hz (DC) to infinite Hz. So what is a spike in the time domain would be a flat line in the frequency domain. From above example we get a 100 Hz boost however. Any change in the frequency response leads to ringing in the time domain. (In a minimum phase system simple equalization back to a flat frequency response will perfectly undo that ringing however.) So far we've only talked about voltage. With the perfect voltage source (with Zout=0) the output voltage will perfectly follow the input signal. The current will be whatever the load draws with the simple I=V/R relationship. As you increase the output impedance you'll get closer to a perfect current source, that is that the output current will perfectly follow the input voltage and the output voltage will be whatever V=I*R dictates. So in the first case, around 100 Hz the load impedance is higher so less current will be output. Another way to look at this is that the efficiency near 100 Hz increases for the dynamic driver, needing less current as a result. This also means that the "ringing" mentioned earlier will happen in both cases. In the first case you'll see it in the output current, in the second case you'll see it in the output voltage. Quote:
Quote:
See the linked decibel Wikipedia article. It's just the inverse formula for amplitude ratios: 10^(x/20). Last edited by xnor; 12th February 2017 at 02:26 PM. 

Thread Tools  Search this Thread 


Similar Threads  
Thread  Thread Starter  Forum  Replies  Last Post 
MultiLoop Amp Output impedance  amendiola  Headphone Systems  20  17th July 2014 11:50 PM 
Measuring Power Amp Output Impedance  AndrewT  Solid State  18  11th April 2014 03:10 PM 
Can An Output Transformer Change A Voltage Amp's Output Impedance From 0.1 To 47 Ohms  kelticwizard  Everything Else  11  25th March 2007 06:17 AM 
OPAMP output impedance  hugeli60  Solid State  6  20th February 2004 06:56 PM 
How do I calculate (or measure) my amp's output impedance?  Saurav  Tubes / Valves  22  27th September 2003 04:55 AM 
New To Site?  Need Help? 