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Appendix A 

 

Single-pole Miller Compensation: A First-order Analysis 

  

The generic two-stage voltage gain block with minor-loop compensation (fig. 1) is modelled in 

figure A1 by a differential voltage controlled current source (VCCS) driving a TIS consisting of a 

current controlled current source (CCCS) and load resistor eqR , which is the means by which the 

TIS’s output current is expressed as a voltage.  

 

Resistor eqR  represents the modulus of the effective impedance at the output of the TIS, and 

comprises the parallel combination of the TIS’s output impedance and the output buffer’s input 

impedance. The TIS’s current gain .eqβ  is merely the product of the current gains of transistors T5 

and T6.  

 

 

 
 

Figure A1. First-order model of the single-pole compensated voltage gain block. 

 

It is assumed here that the minor feedback loop defined by CC  is stable, and that the amplifier’s 

unity-gain frequency Uf  is sufficiently low so that non-dominant poles have negligible effect on its 

open-loop transfer function. 

 

At DC the TIS, comprising T5 and T6 in figure A1, possesses a low input resistance compared to 

the TAS’s output resistance. As local feedback through CC  increases beyond the dominant pole 

frequency, the TIS’s input impedance rapidly tends to zero; the TIS’s input is then virtually at 

ground potential, and the entire output voltage may be deemed to appear across CC .  
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Invoking Kirchoff’s current Law with respect to the output node (fig. A1) 
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Similarly at the input node 
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Since shunt-applied negative feedback makes the TIS’s input node a virtual ground at the frequencies 

of interest, then 

 

outCCc vsCi =                                                                                                                                       (3a) 

                            

Substituting (3a) into (1a) 
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Substituting (3a) into (2a) 

 

0=−+ ToutCin ivsCi                                                                                                                           (5a) 

 

Equation (5a) is multiplied by eqβ as a prelude to eliminating Ti :  

 

0=β−β+β TeqeqoutCeqin ivsCi                                                                                                             (6a) 

 

Thus, adding equation (4a) to (6a) eliminates Ti : 
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Since ( )1>>βeq , then it may be assumed with negligible error that ( ) eqeq β≈+β 1 , and 
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First stage transconductance mdg  in figure A1 (with degeneration resistors 1eR  and 2eR )  is given 

by ( ) 1

1

−
+≈ eemd Rrg .  

 

The intrinsic emitter resistance er  in each TAS transistor is merely the reciprocal of the stage’s 

undegenerated transconductance mog , viz. moe gr 1≈ , and TCCmo VIKTqIg =≈ .  

 

Where K  is Boltzmann's constant (~ 2310381 −×.  joules/Kelvin), T  the absolute temperature, 

(Kelvin), q  the electronic charge (~ 191061 −×. coulomb) and TV  the thermal voltage (~ 26mV at 

room temperature). 

 

Thus, at room temperature, and with the component values in figure A1, 

( )[ ] mS.mA.gmd 8581002538
11

≈Ω+×≈
−−

.   

 

 

But 

 

dmdIN vgi −=                            

 

Thus, the amplifier’s forward path gain is given by 
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or 
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Where K is the forward path gain at DC: 

 

eqeqmd RgK β=                                                                                                                                  (11a) 

                            

 

From (10a) the dominant pole frequency Df  is given by 
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Unity-gain frequency Uf  is obtained by merely equating (9a) to unity:  
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⇒  
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In practice, only forward path gain well beyond the dominant pole frequency is of interest and, with 

respect to equation (9a), the condition ( )∞→β eqeq R  is invoked, so that 
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Equation (14a) becomes 

 

C

md
U

C

g
f

π
≈

2
                                                                                                                                      (16a) 

                            

Equation (15a) is valid only at frequencies well beyond the dominant pole. This is demonstrated by 

the plot of figure A2 using typical values (fig. A1); the finite gain of the TIS introduces significant 

error at DC and infrasonic frequencies. 

 

 

 
 

Figure A2. The simplification ( )∞→β eqeqR  gives negligible error in the forward-path transfer function at the 

frequencies of interest. 
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Pole Splitting 

 

The presence of the first non-dominant pole may be accommodated by performing a second order analysis in 

which the TIS is more accurately modelled by a voltage controlled current source (VCCS) with finite input and 

output shunt impedances 5453, , which give rise to two dominant poles (fig. A3). Capacitors 1eqC  and 2eqC  

represent the equivalent shunt capacitance at the input and output nodes of the TIS, while the effective shunt 

resistance is represented by 1eqR  and 2eqR  respectively. 

 

Tedious but rudimentary nodal analysis at the input and output of the TIS demonstrates that single-pole feedback 

compensation causes the first two dominant system poles to move apart, while the finite input voltage iv  

generates a so-called feedforward current fi  through CC . Ultimately, the forward current gives rise to a non-

minimum phase (RHP) zero when CC  short-circuits the TIS’s load, 22 1 eqeq sC//R , so that imf vgi ⋅= 1  and 

0=outv . 

 

 
 

Figure A3. Second-order model of the single-pole compensated generic voltage gain block. 

 

At the TIS’s input node 

 

011 =−−+−− eqieqiCoutCidmd RvsCvsCvsCvvg ....                                                                                           (17a) 

 

And at the TIS’s output node 

 

0221 =−−−− eqouteqoutimCoutCi RvsCvvgsCvsCv ....                                                                                         (18a) 

 

Solving (18a) for iv and substituting the result into (17a) eliminates iv :  
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Where K is the forward path gain at DC: 

 

211 eqeqmmd RRggK =                                                                                                                                              (21a) 

 

From equation (20a) 
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The denominator in (19a) is a second order polynomial and provided 21 eqeqC CCC ∨>> , the local loop is stable 

and assuming the poles are real it may be expressed as the product of two first-order factors: 
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By merely equating coefficients it is apparent that 

 

 ( )
Ceqeqm CRRgP 2111 1−≈ , ( )CeqceqeqeqCm CCCCCCCgP 212112 ++−≈  and Cm CgZ 1= . 

 

Where 1P  is the dominant pole, 2P  the first non-dominant pole and Z  the right half plane zero. 

 

Therefore, ( )Cm CgP 11 1∝  and decreases as the product ( )Cm Cg 1  increases, while  ( )Cm CgP 12 ∝  and increases 

with increasing ( )Cm Cg 1 . Rough estimates of the variables 1eqC , 2eqC , 1eqR  and 2eqR  in (fig. A3) were obtained 

from a simplified hybrid- π  (VCCS) BJT model, derived from 2N5551 datasheet characteristics, with 1mg  

modified to accommodate the current gain provided by emitter-follower T6 (fig. 1). SPICE simulation of figure 

A3 shows that 1P  moves down from 21KHz, in the absence of CC , to 7Hz with CC  in-situ, while 2P  moves from 

just 48KHz to over 70MHz (fig. A4). 

  

The system therefore maintains a much wider bandwidth with dominant pole feedback compensation than would 

accrue if such a characteristic were realised by merely increasing shunt-capacitance at the input or output nodes of 

the TIS. This is unacceptable 28  as it adversely loads the TIS’s collector, severely compromising second-stage 

linearity.  

 

Moreover, dominant pole shunt compensation at either the TIS’s input or output node would leave 2P  virtually 

unchanged, and, consequently, the system’s unity loop-gain bandwidth would necessarily have to be much less 

than 21KHz to guarantee stability when the major feedback loop is closed.  
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Figure A4. The apparent migration of dominant poles due to Miller-effect compensation on the forward path’s 

frequency response (red trace). The green trace represents the uncompensated forward path’s frequency response.  

 

The RHP zero (not shown in fig. A4) has the magnitude response of an LHP zero (i.e. magnitude response 

‘breaks up’) but the phase response of an LHP pole (i.e. phase response ‘breaks down’ or tends to -90 degrees in 

the limit) and might therefore be expected to compromise stability margins. This, however, is of no concern in 

discrete power amplifiers with an all-BJT second stage as 1mg  is invariably much larger than CC which ensures 

that the RHP zero resides well beyond the unity-gain bandwidth of the amplifier.  

 

Determining system singularities in this fashion helps develop a vivid appreciation of circuit behaviour, but is 

only of academic interest to the designer of discrete amplifiers, as the solutions depend on imprecisely known 

variables such as 1eqC  and 2eqC  which, moreover, also vary dynamically.  

 

In practice, the first-order approximation of equation (16a) is all that is required to determine the value of first 

stage transconductance and the corresponding size of compensation capacitor needed to ensure that non-dominant 

system singularities, including output stage poles, are relegated to well beyond the unity loop-gain frequency. For 

the practicing engineer, the design-stage analysis of second-order circuit behaviour is the province of SPICE 

simulators.    

 

 

 

 

 

 


