Appendix A
Single-pole Miller Compensation: A First-order Analysis

The generic two-stage voltage gain block with minor-loop compensation (fig. 1) is modelled in
figure A1 by a differential voltage controlled current source (VCCS) driving a TIS consisting of a
current controlled current source (CCCS) and load resistor Req, which is the means by which the
TIS’s output current is expressed as a voltage.

Resistor R,, represents the modulus of the effective impedance at the output of the TIS, and

comprises the parallel combination of the TIS’s output impedance and the output buffer’s input
impedance. The TIS’s current gain B, is merely the product of the current gains of transistors TS

and T6.
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Figure Al. First-order model of the single-pole compensated voltage gain block.

It is assumed here that the minor feedback loop defined by C, is stable, and that the amplifier’s

unity-gain frequency f,, is sufficiently low so that non-dominant poles have negligible effect on its
open-loop transfer function.

At DC the TIS, comprising TS and T6 in figure A1, possesses a low input resistance compared to
the TAS’s output resistance. As local feedback through C. increases beyond the dominant pole

frequency, the TIS’s input impedance rapidly tends to zero; the TIS’s input is then virtually at
ground potential, and the entire output voltage may be deemed to appear across C,. .
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Invoking Kirchoff’s current Law with respect to the output node (fig. A1)

. . 0-v,
_lCC _BeqlT +(R—eqt):0

ic, +Buis + ‘;{ —0 (1a)
eq

Similarly at the input node
L +icc —i; =0 (2a)

Since shunt-applied negative feedback makes the TIS’s input node a virtual ground at the frequencies
of interest, then

ic, =sC.v,, (3a)

Substituting (3a) into (1a)

SCob oy +Bugiy + ;{ =0 (4a)
eq

Substituting (3a) into (2a)

i, +sC.v,,—i; =0 (5a)
Equation (5a) is multiplied by {3, as a prelude to eliminating i, :

iBeg +SCV By ~Brgis =0 (60)

Thus, adding equation (4a) to (6a) eliminates i, :

iinBeq + SCCvautBeq + SCCvaut + vRout = 0 (73.)
eq
=
You ()= - PR
i 1+sC.R,,B,, +1)
Since (Beq >> 1), then it may be assumed with negligible error that (Beq + 1):: B., - and
-B.. R
v‘out (s) ~ Beq eq (Sa)
i, 1+sCCRqueq
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But

Uy = 8maVa

Thus, the amplifier’s forward path gain is given by

Y out (s) ~ gmdBeqReq

(9a)
v, 1+sC.B,,R,,
or
vo_ut(s O S (10a)
v, 1+sC.pB, R,
Where K is the forward path gain at DC:
K =gmdBeqReq (lla)
From (10a) the dominant pole frequency f,, is given by
fomo (122)
? 2nC.B,R,
Unity-gain frequency f,, is obtained by merely equating (9a) to unity:
R
_ 8uaPa R, (13a)
1+w,C.B,,R,,
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- (gmdBeqReq - 1)

~ 14a
fU ZJtC’C Beq Req ( )

In practice, only forward path gain well beyond the dominant pole frequency is of interest and, with
respect to equation (9a), the condition (BeqReq - oo) is invoked, so that

You (g ~ B (15a)
Ya  logyersr,) SCe

Equation (14a) becomes

fy =~ Emi_ (16a)

2nC,.

Equation (15a) is valid only at frequencies well beyond the dominant pole. This is demonstrated by

the plot of figure A2 using typical values (fig. A1); the finite gain of the TIS introduces significant
error at DC and infrasonic frequencies.
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Figure A2. The simplification (ﬁeqReq - oo) gives negligible error in the forward-path transfer function at the

frequencies of interest.
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Pole Splitting

The presence of the first non-dominant pole may be accommodated by performing a second order analysis in

which the TIS is more accurately modelled by a voltage controlled current source (VCCS) with finite input and

53,54

output shunt impedances ™", which give rise to two dominant poles (fig. A3). Capacitors C,, and C,,

represent the equivalent shunt capacitance at the input and output nodes of the TIS, while the effective shunt
resistance is represented by R, and R, respectively.

Tedious but rudimentary nodal analysis at the input and output of the TIS demonstrates that single-pole feedback
compensation causes the first two dominant system poles to move apart, while the finite input voltage v,

generates a so-called feedforward current i, through C.. Ultimately, the forward current gives rise to a non-
minimum phase (RHP) zero when C. short-circuits the TIS’s load, R,,// l/sC

eq2 so that i, =g, v, and
vV, =0.
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Figure A3. Second-order model of the single-pole compensated generic voltage gain block.
At the TIS’s input node
~8paVq —V:5Ce +v,,5C.—v,5C, —v, /R, =0 (17a)
And at the TIS’s output node
v, 5Co =V, 8Ce — 8, ¥, =V, .5C, —vm/Req2 =0 (18a)
Solving (18a) for v, and substituting the result into (17a) eliminates v, :
Y out (s)— g gmdgmlReququ (1 sC, /gml) (192)
v, s’R,,R,,,(C.C,,+C.C, +C,C,.)+51R,,(Cc+Co )+ R,,(Cc +C )+ 0 CoR R, o f+1

or
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Vo () K(1-sCc/g,) (20a)
2
v, $’R,R,,(C.C,pp +CCp +C o Cop )+ 51R,, (Co +C o )+ R,y (Co +C o )+ 8,0 CoR oy R, 1]

eql™"eq2 eq2 eql eql eql

Where K is the forward path gain at DC:

K :gmdgmlR R

eql™ eq2

(21a)
From equation (20a)

P,

Com0 _1/(Reqlceql) and P2|CC:0 = _1/(R242C242)'

vC
and assuming the poles are real it may be expressed as the product of two first-order factors:

The denominator in (19a) is a second order polynomial and provided C. >>C the local loop is stable

eql eq2 °

Denominator(s)=(1+s/P )1 +s/P,)=1+s(1/P, +1/P,)+s*/(PP,) (22a)
By merely equating coefficients it is apparent that

I)l = _1/(gm1Req1Req2CC )’ P2 = _gmlcC/(CquCqu +Ceq1Cc +Ceq2CC) and Z :gml/CC .

Where P, is the dominant pole, P, the first non-dominant pole and Z the right half plane zero.

P1| <1/ (ngCC) and decreases as the product (ngCC) increases, while |P2| o< (ngCC) and increases
ear» € R, and R, , in (fig. A3) were obtained

from a simplified hybrid-© (VCCS) BJT model, derived from 2NS551 datasheet characteristics, with g, _,
modified to accommodate the current gain provided by emitter-follower T6 (fig. 1). SPICE simulation of figure
A3 shows that P, moves down from 21KHz, in the absence of C, to 7Hz with C in-situ, while P, moves from

just 48KHz to over 70MHz (fig. A4).

Therefore,

with increasing (ngCC). Rough estimates of the variables C e

The system therefore maintains a much wider bandwidth with dominant pole feedback compensation than would
accrue if such a characteristic were realised by merely increasing shunt-capacitance at the input or output nodes of

the TIS. This is unacceptable ® as it adversely loads the TIS’s collector, severely compromising second-stage
linearity.

Moreover, dominant pole shunt compensation at either the TIS’s input or output node would leave P, virtually

unchanged, and, consequently, the system’s unity loop-gain bandwidth would necessarily have to be much less
than 21KHz to guarantee stability when the major feedback loop is closed.
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Figure A4. The apparent migration of dominant poles due to Miller-effect compensation on the forward path’s
frequency response (red trace). The green trace represents the uncompensated forward path’s frequency response.

The RHP zero (not shown in fig. A4) has the magnitude response of an LHP zero (i.e. magnitude response
‘breaks up’) but the phase response of an LHP pole (i.e. phase response ‘breaks down’ or tends to -90 degrees in
the limit) and might therefore be expected to compromise stability margins. This, however, is of no concern in
discrete power amplifiers with an all-BJT second stage as g, is invariably much larger than C_ which ensures

that the RHP zero resides well beyond the unity-gain bandwidth of the amplifier.

Determining system singularities in this fashion helps develop a vivid appreciation of circuit behaviour, but is
only of academic interest to the designer of discrete amplifiers, as the solutions depend on imprecisely known

variables such as C,, and C,, which, moreover, also vary dynamically.

In practice, the first-order approximation of equation (16a) is all that is required to determine the value of first
stage transconductance and the corresponding size of compensation capacitor needed to ensure that non-dominant
system singularities, including output stage poles, are relegated to well beyond the unity loop-gain frequency. For
the practicing engineer, the design-stage analysis of second-order circuit behaviour is the province of SPICE

simulators.
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