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be complete cancellation (the well-ordered phase rever-
sals of our two examples will not occur), but we can
reasonably expect the level will be low. The reason is
that the large phase jump from unit to unit distributes
the phase angle of each unit’s contribution “randomly.”
Thus the net contribution is kept low.

If we raise the frequency to the point where there is
exactly 1 wavelength spacing between tweeters, their
vectors will all come back into phase. Relative to the
necarest element, each subsequent element’s vector will
have one full cycle of additional phase shift. Thus all
units will add in phase and (for the far-field model) the
level at 90° will be just as strong as that at 0° [2].

The unit-to-urit path length difference is at its maxi-
mum when the array is viewed at 90°. For angles less
than this, the observed interunit spacing compresses by
the sine of the angle. When viewed at 60°, the observed
interunit spacing falls to 87% of the right-angle spacing.
Our scenario for exactly 1 wavelength spacing will still
occur, but at 1.16 times the frequency (1/0.866). Thus
as the frequency rises, our lobe bends inward (4970 Hz,
Fig. 13).

Clearly at twice the frequency of the first lobe, exactly
2 wavelengths will fit into the interunit spacing and a
second sidelobe will occur (8600 Hz, Fig. 14).

2 RELATIONSHIP BETWEEN FOURIER
TRANSFORM AND POLAR RESPONSE

Of course, rather than exciting our array with sine
waves, we could impulse excite it. The Fourier trans-
form of the received impulse response would then give
the frequency response of the array at that angle. By
inspection we can state that at any vertical angle other
than on axis, the impuise fed to an array of elements is
spread into a pulse train. The interpulse spacing is equal
to the interunit time delay of the elements as observed
from that vantage point (Fig. 16).

For any given frequency, the polar response equals the
magnitnde of the Fourier transform (at that frequency)
evaluated over the varying pulse traing spacing created
by the array’s rotation. Furthermore, varying the array
angle and, thus, varying the interpulse spacing is in
effect the same as varying the applied wavelength. The
Fourier transform for all frequencies can be related to
the polar response for a fixed frequency.

The author accepts that the last statement is a bit of
a stretch, but will offer an example as partial proof.

2.1 Mapping the Fourier Transform into a Polar
Response

Fig. 17 shows the discrete Fourier transform (DFT)
of a simple five-impulse sequence as might be observed
off axis from a five-tweeter array. Itis created by plotting
the DFT of a 128-point sequence of five samples of
magnitude 1.0 and 123 samples of magnitude 0.0. This
“zero padding” is used purely to expand the resolution
of the transform. The log magnitude plot of the 128-
point transform can be seen to be a mirror function with
symmetry around the Nyquist frequency.

J. Audio Eng. Soc., Vol. 45, No. 11, 1997 November

DISCRETE-ELEMENT LINE ARRAYS

Fig. 18 then shows the far-field polar response of
a similarly configured five-clement array. The array is
defined as follows:

* Five elements, each of unity magnitude
* An element-to-element spacing of 80 mm
+ 12.9-kHz excitation.

Note that from 0 through 90° the polar plot shows a
triple repetition of a pattern of major and minor lobes.
Between each pair of major lobes there are three minor
lobes from 12 to 14 dB down in level. This pattern
appears identical to the plot of the five-impulse DFT
(Fig. 17).

Using the speed of sound of 344 ms/s we calculate
that the 12.9-kHz wavelength is 0.02667 m. This was
chosen to be exactly one-third the interunit spacing, so
clearly when observing the array from the 90° angle,
there will be an integral number of wavelengths between
units (3 wavelengths). As a matter of interest, we can
calculate the additional angles at which other integral
numbers of wavelength can evenly fit into the observed
interunit spacing using the following formula. For 2
wavelengths to fit,
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SMITH
and for 1 wavelength to fit,
arcsin /s = 19.47° .
These angles compare well with the angles of the lobes
of Fig. 18.
For the general case, where an arbitrary number of

wavelengths is found within the element spacing, the
formula is

lobe angle = arcsin nv/df

where
n = all integers from 1 to d/A
v = speed of sound, = 344 m/s
d = element-to-element spacing, meters
F = frequency of polar curve.

It can be seen that the arcsin function allows us to
map the DFT of our pulse train into a far-field polar
response. In effect, the lobes and their repetitions can
be thought of as spatial aliasing of the DFT wherever
element-to-clement spacing is greater than one-half the
wavelength of interest. Clearly our lobing is a conse-
quence of our failure to observe the Nyquist criterion.

2.2 Weighted Coefficlents and the Magic of the
Bessel Array

So it seems that for any array with element spacing
greater than 2 wavelength we are committed to having
a polar response with inherent lobing. Recent papers,
though, have talked of Bessel arrays having polar re-
sponses with multiple elements that are unchanged from
the polar response of 2 single element [3]. Doesn’t this
violate our understanding of the cause of lobing?

The five-element Bessel array is defined as having the
following coefficient sequence;

+0.5 -1 +1 +1 +40.5.

level
(dB)
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The polar program was written such that each element
could be given any positive or negative real value. This
real value becomes the magnitude of the vector repre-
senting that element.

Fig. 19 shows the far-field polar response of a five-
element array with Bessel weighting. As described, the
polar response is essentially circular with minor ripples.
Apparently the Bessel array does circumvent our under-
standing that polar lobing must come with greater than
I/» wavelength element spacing. It was hoped that the
Fourier transform of the Bessel sequence would shed
some light on this apparent inconsistency.

The DFT of the Bessel sequence is plotted in Fig. 20
and can be compared to the plot of a 5 X 1.0 or un-
weighted sequence in Fig. 17. Notice that while the
unweighted sequence has maximum energy at low fre-
quencies, its energy reduces significantly by the Nyquist
frequency. Thus in the aliased view (showing the re-
sponse to several times the sampling frequency), it
would show a cycling or “lobing.” The Bessel array,
though, has a unique property of essentially constant
output from dc through the Nyquist frequency. No polar
lobing is apparent because energy does not fall with
rising frequency nor with the frequency’s polar equiva-
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Fig. 17. 128-point Fourier transform of five-impulse sequence.
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lent of changing angle. The slight ripple seen in the
Fourier transform is of course present in the polar re-
sponse and is mapped via the arcsin function into the
spans between the (nonexistent) “lobing angles.”

3 TOWARD THE OPTIMUM LINE ARRAY

Much of the literature on line arrays covers the use
of “tapering” schemes, whereby electrical or mechanical
means are used to vary the frequency response or level
of each element. Klepper and Steele [4] cite a University
column loudspeaker with full-range central elements
{coaxials) combined with limited-bandwidth outer units.
Their own design features a 13-unit column with fiber-
glass wedges that are progressively thicker near the ends
to provide a continuous frequency rolloff for elements
away from the center of the array. More current papers
use digital filtering and computer control for a more
sophisticated means to the same end [5].

Augspurger [6] makes the distinction between
frequency-independent tapering, which he calls shading,
and frequency-dependent tapering (modifying the fre-
quency response element by element). This new-found
understanding of the relationship between Fourier trans-
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form and polar response suggests a level tapering means
of achieving a smoother polar response: The inverse Fou-
rier transform of the desired polar curve defines the
weighting function of the required array.

References on line arrays often include polar re-
sponses based on the function sin x/x. For example,
Olson and Schaudinischky et al. show that the polar
form of a continuous line source follows a sin(sin a)/
sin @ pattern [1], [7]. With the understanding of the
interdependence of the polar response with the Fourier
transform of array weighting functions, this is under-
standable. The Fourier transform of a rectangular pulse
has the shape of sin x/x. The DFT of a sampled pulse
train of impulses of equal magnitude (which we will
later refer to as rectangular weighting) would have the
same form. So the polar response of a continuous line
source or a line source made up of equally driven ele-
ments should always have a sin x/x form. Since the Fou-
rier transform is reversible, the transform of a sin x/x
function is rectangular in shape (a fact used to create
“square” linear-phase CD oversampling filters). We
should be able to create an array with sin x/x weighting
that has a “rectangular” polar response. A rectangle plot-
ted in polar form would be a “pie”-shaped wedge with
no level change across the top and steep side drop-off.

Fig. 21 shows the coefficients of just such an array.
Twenty-three tweeters were driven by resistive networks
to approximate the center lobe and the first two sidelobes
each side of a sin x/x function. Fig. 22 shows the pre-
dicted polar response at 1 kHz. Results are impressive
with a level topped 60° beamwidth and a quick drop-
off with over 20-dB reduction of all side responses.
Measurement of the actual array shows good agreement
in frontal shape and 20-dB or better “out of band” rejec-
tion (Fig. 23). However, modeling the array at 8.6 kHz
(2 wavelength element spacing) shows the expected
beam reduction and emergence of sidelobes (Fig. 24).

Constant directivity is possible for such an array. It
would require that the sin x/x weighting scheme would
expand or contract in direct proportion to the applied
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Fig. 20. 128-point Fourier transform of five-clement Bessel sequence.
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wavelength. For example, by 2 kHz (the octave above
1 kHz) the weighting function could contract to give the
same profile over 11 tweeters, not 23. Digital methods
would be ideal for achieving this contracting weighting
function [5], [8]. Sidelobe creation can be forestalled
by greater element density, at least for the center of the
array, but not easily, and not at low cost.

4 NEAR-FIELD COMPUTER MODEL

So far we have explored the nature of the polar re-
sponse of arrays at low frequencies through the region
where sidelobes form. We have explained the cause of
lobing and used the Fourier transform to alter and im-
prove the shape of the forward lobe. Yet we still have
poor correlation of the initial predictions and the corres-
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Fig. 21. Coefficients for 23-element sin x/x array.

Fig. 22. Calculated far-field polar response of sin x/x array,
1 kHz.
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ponding measurements for the higher frequency range.
Although the multiple lobes are observed to form and
fold inward with increasing frequency, the extreme
sharpness of these lobes, predicted by the model, is
never observed. The actual high-frequency broadening
of the measured polar curve is still unexplained. The
perception that “arrays have uniform responses when
observed from within their endpoints” is not substanti-
ated by our polar model.

One way these remaining contradictions can be ration-
alized is if the near-field performance is significantly
different from the far-field performance. Recall that the
initial observation was that arrays were roughly uniform
in output within their endpoints ar rypical listening dis-
tances. To explore the effects of observation distance,
it was felt that a model with near-field considerations
would be a better one.

The far-field polar model assumed that all paths to the
observer are parallel. It also assumed that an individual
element’s distance differences due to the array’s rotation
impact the arrival phase, but not the level. Indeed, from
a significant observation distance this is true. Level vari-
ation requires a significant percentage variation in dis-
tance. This percentage distance change due to rotation
causing some elements to come nearer the observer (and
some farther) is made insignificant as the observation
distance becomes large.

Fig. 23. Measured polar response of 23-tweeter sin x/x array,
1 kHz.

Fig. 24. Calculated polar response of sin x/x array at 8.6 kHz.
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