Loudspeaker Phase Characteristics and Time
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Fourier Integral concepts are explored for the relution existing between a function in
the frequency domain and its time domain counterpart. A derivation is obtuined for 1he
effect of a loudspeaker’s imperfect frequency response as a specific type of time delay

distortion of the reproduced signal.

INTRODUCTION In an earlier paper [1] the dcfini-
tion of loudspeaker frequency response was expanded to
include the phase of the pressure wave produced by an
clectrical stimulus as well as the conventionally measured
amplitude. A technique of measurement was introduced
which allowed a measurement to be made of this more
complete response, and some examples were included of
the response of common types of loudspenker. Since the
proper role of a loudspeaker is the acoustic reproduction
of a time-depeadent signal, the measurecment of even
the more complete frequency response is academic unless
some inference can be obtained from this measurement
as to whether the loudspeaker does its job well. Ac-
cordingly a presentation without proof was made of a
means of visualizing the effect of imperfect loudspeaker
frequency response us producing a time delay distortion
equivalent to a frequency-dependent spatial distribution
of otherwise perfect loudspeakers. It is the purpose of
the present work to investigate the determination of
temporal response from the more complete frequency
response and develop this acoustic model.

In considering time response it must be remembered
that engineers work in a causal world where cause dis-
tinctly precedes effect and time advances in its own
inexorable fashion. No analysis performed on a network
as complicated as a Joudspeaker may be considered valid
if it violates causality and allows the clock to run
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backward. Because of considerable mathematical com-
plexity, the subject of time delay in a dispersive medivm
with absorption is generally avoided in most written
material. The reader of such material is Jeft instead with
some simplified relations using the frequency phuse spec-
trum, which for most systems vield time delay answers
close 1o observed behavior, Those systems for which the
answer violates a prior physical premise are considered
anomalous. When all that is uavailable on the frequency
response of a loudspeuker is the pressure amplitude spee-
trum one cannot utilize the simplified temporal relations,
and hence no questions arise. With the introduction of a
means for measuring the complete frequency response
one runs into immediate difficulty with application of the
simplificd concepts of time behavior because in many
cases it is found that causality cannot be maintained.

In order to understand the distortion which a loud-
speaker may impart to a time-dependent signal because
of its imperfect frequency response, it becomes necessary
to lock more closely at the concept of frequency-
dependent time delay and generate revisions required to

‘present an understandable acoustic eguivalent for an

actual loudspeaker. This paper proceeds by first demon-
strating why the common concept of group delay is not
applicable to minimum-phase systems with absorption.
Then a substitute for group delay is developed and is
shown to provide the proper solution for some systems
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commonly considered to have anomalous behavior. Fi-
nally, a network concept is introduced which leads to an
appropriate acoustic model for a loudspeaker.

GROUP DELAY, EXCESS DELAY, AND
OVERALL TIME DELAY

Historically the concept of time delay in a dispersive
medium was recognized as carly as 1839 by Hamilton.
but the distinction between phase delay and group delay
secems to have been put on a firm foundation by Lord
Rayleigh in publications in 1877 (2]. Rayleigh consid-
cred that group velocity represented the actual velocity
of propagation of groups of energy in a medium. Group
delay is defined to be the time delay in traversing a fixed
distance at this group velocity [3]. To understand group
delay one need only consider that the iransformation
from the analysis of a problem in the frequency domain
to the solution in the time domain involves a Fourier
Integral of the form

() =(1/21r) .FG(“,) ealw) gilct =) d,, 0D

This may fall into a class of integral cquations of the
type

f() = [ F(s)etoinds )

where s = g + iw, g(s) = x -+ iy is an analytic function, ¢ is
large, positive, and rcal, and F(s) varies slowly compared
with the exponential factor [4, 5].

Lord Kelvin’s method of stationary phase evaluates
integrals of this type by deforming the path of inte-
gration where possible through saddle points where x is
constant and

9x/0e=0x/00=0 and 8y, /'do=0y 'do=0 (3)

For this path the modulus of exp[sg(s)] is constant
while the phase varies. When all of these conditions are
met, not only may an asvmptotic solution be achieved
but what is more important, Eq. (3) shows that the
major contribution to the integral takes place where the
phase is stationary and

dg(w)/dw=0. (4)

When these conditions are applicable the major con-
tribution to the soluwtion of Eq. (1) occurs at a time 7
such that

1= —d¢(w)/do. (5)

Since time commences in the analysis at initiation of
input stimulus, this means that the time delay of the
signal through the network is this value of 7, called group
delay.

Since the principle of stationary phase is 4 commonly
used derivation of the network theory concept of group
delay, it is of utmost importance to note the restrictions
on the use of this derivation. The most important restric-
tion is that the modulus remain a slowly varying function
of frequency in that region of the frequency domain
Where the phase is changing the least. This means that
When working with a network element this condition may
be met by solutions which involve very long time delays,
such as transmission lines, or when applied to networks
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that have no amplitude variation with frequency, such as
all-pass lattices where «(w) in Eq. (1) is always a
constant.

In setting vp relations for a network with absorption
and short overall time delays, one gets an equation
deceptively similar to Eq. (2) but with a substantial real
as well as imaginary term in the cxponent. The time
function of Eq. (1) is an inversion integral evaluated
along a path which is the cntire imaginary axis from
— % through the origin to -+ <, closed to the left with a
semicircle of infinite radius and the origin as center. This
is done so as to encircle all singularities of the integrand
for time greater than zero. The path of integration is
restricted 10 the iw axis when the expression of Eq. (1) is
used and the real and imaginary parts of the exponent
are related by the Cauchy-Riemann differential relations.
Thus, even if a(w) is generally a slowly varying func-
tion, just at that point on the iw axis where the phase is
stationary, a(w) varies rapidly and one cannot use the
principle of stationary phase. If the time delay of the
network js small relative to several periods of the fre-
quency under analysis, which is a condition commonly
found in loudspeakers, then this inapplicability of station-
ary phase can lead to solutions for time delay which are
absurd. Consider for example the circuit of Fig. 1. This
network is certainly well behaved, vet the group delay is
negative from zero frequency to the geometric mean of
the transfer-function break points. Since obviously the
output cannot predict the input, the only logical solution
would be that the time delay of this network is not
represented by group delay. There will of course exist a
proper solution for time delay, but this requires a careful
cvaluation of the inversion integral through the saddle
points of Eq. (3) where one may ecither use Kelvin's
method of stationary phase with a path through the saddle
points with x constant, or the method of steepest descent
which chooses a path of integration so as to concentrate
the large values of x in the shortest possible interval
with y constant. The two methods are nearly equivalent.
since the paths cross the same saddle points and can be
deformed onc into the other provided contributions from
any singularities crossed are taken into account.

The minimum phase transfer function is the function
with the minimum accumulation of phase lag (negative
phase shift) as o proceeds from dc to infinity. Because of
this the accumulation of phase lag in a minimum phase
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Fig.’l. A simple minimum phase circuit and its group
delay, illustrating the inapplicability of group delay to such &
causal circuit.
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network may be negative as well as positive, as in the
case of the circuit of Fig. 1. Since the Cauchy-Riemann
cquations actually define a minimum phase network and
are necessary conditions that a circuit cannot predict the
occurrence of a signal, the behavior of phase accumula-
tion means that the group delay of Eq. (5) does not
provide a measure of time lag in a minimum phase
network.

While this might appear to destroy the concept of
group delay for minimum phase networks, consider now
the special non-minimum phase network called the all-
pass or flat network, with a constant amplitude of re-
sponse [6, 7, 8]. For this network there is accumulated
phase Jag at a rate which is not negative at any frequen-
¢y, vielding a group delay which is never negative. For
this network, since a(w) is constant. the principle of
stationary phase is valid on the imaginary axis. The time
delay thus calculated according to Eq. (5) is everywhere
meaningful; this time delay of an allpass network with
the transfer function

H(w) = e—10(w) (6)
will be defined as excess delay
'excess = dﬂ(m)/dm. ‘7)

One must be careful to observe that the excess delay is
the time clapsed from the injection of a transient to the
major contribution of the output waveshape. Therc may
be minor ripples, or forerunncrs to use a phrase of
Brillouin [9], which precede this major change as well as
the latecomers which provide the effect commonly
called ringing, but nonetheless the major change will
occur at the time which was called excess delay.

If a network is minimum phase, there exists a unique
relationship between amplitude and phase which allows a
complete determination of phase from amplitude. If a
network is non-minimum phase with a transfer function
H(w), there will exist a unique minimum phase network
G(w) with the same amplitude response, and an allpass
network with a phase response () in cascade such that
(o]

H(w) = G()e=i#ie) = f(y)e—ittdo—ifiv),  (8)

If the time delay characteristics of minimum phase

networks and allpass lattices are considered, one can

reconstruct the time behavior of any arbitrary physically

realizable network. There will exist some total time delay

of the network H(w) which will be called 1,,.,,,. There

will also exist some time delay for the minimum phase

network G (w) which will be called 1, 4. The relation

between these delays is
Lveran = 'min.plmsa + ’f\rorw

= L. phase T [00(0) /D). (9)

The commonly used group delay is the frequency slope
of the total measured phase of H{w). or from Eq. (5)

ferop = [0¢((u)/0(:)]’+ [t"(l‘(m)f‘ (')m] . (10)
which may be expressed as
'gmnp = lyveran + {[04)(“’)/‘/0“'] i, phuw}‘ (1 1)

Consequently the group delay will be quite close to the
overall time delay of the network if

t"“'r-"" >> { [0‘#)("')1/0("] ~ hui phnw} . ( 12)
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This is another verification that if a network has 3
sufficiently large overall time delay, then group delay
may be considered a satisfactory substitute provided that
the group delay of the equivalent minimum phase net-
work is reasonably well behaved.

TIME DELAY AS A DISTRIBUTION

Turn now to a consideration of time delay in a gener-
al network. Attempts at a direct derivation of time delay
do not scem particularly fruitful, since the classic definj-
tion requires that one make a sudden change in some
parameter and sce how long it takes before this change
appears in the output; however, the moment a discontin-
uity is created in a time derivative of an electrical
paramecter, one no longer has that parameter but a large
set of sideband frequencies which interfere with the
measurement. Thus one is led to look for another solu-
tion which involves the relationship existing between fre-
quency and time.

The relationship existing between a function in the
time domain f(¢) and the same function in the frequency
domain F(w). is given by the Fourier integrals

xr

1
() ==5— | Flw)e'dn (13)

-—
-

e 4

K4
and F(w) = { f(ye—idr. (14)
—&

There is an obvious symmetry which analytically lets a
function in time commute with a function in frequency.
Indeed, if a function were given in a dummy parameter
and one did not know whether it was of time or frequen-
cy. there would be no way of ascertaining the proper
domain. A remarkable fact would arise if one blindly
inserted this function into the wrong equation: if the
function were as well behaved as any related to a real
world containing dissipation, the answer would be cor-
rect in form. This is because functions may be trans-
ferred in the Fourier integral if the sign of one of the
parameters is reversed [11]. The implications of this are
enormous, as many facts laboriously proven in one
domain may automatically be transferred to the other
domain. For cxample, as pointed out in a previous paper
[12]. if one terminates a time series there exists a
frequency overshoot analogous to Gibbs' phenomenon.

The commutation of parameters. then, gives the re-
markable simplification that the analysis of a distribution
in time due 10 a complex transfer function is isomorphic
with the frequency distribution due to complex modula-
tion in time. This isomorphism considerably frees our
imagination when trying to cope with the concept of the
time delay of a frequency. If one imagines that the
variation of amplitude with frequency of a frequency
transfer function is analogous to the variation of ampli-
tude with time of a time transfer function, one can
imagine that there are “time sidebands” analogous to the
frequency sidebands of modulation theory. In the case
of frequency, all values from — = through zero to + %
are allowed and we conveniently identify negative fre-
quency as a phase reversal of a positive frequency. For
the parameter time it is conventiona) to start analysis for
a value of zero and assume no activity prior o this.
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This merely requires that the time function have an cven
and odd component which cancel cach other for all
times less than zero. For such a time function which docs
not allow prediction. this means that the frequency
function similarly has an even (amplitude) and odd
{phase) component, although these will not necessarily
cancel out at any frequency. This physical realizability
criterion also means that the frequency transfer function
must have complex conjugate poles and zeros in order to
satisfy the even-odd requirement.

The concept of time delay of a frequency component
is not complete, since the functions discussed so far are

voltages in terms of either frequency or time. Consider. .

however. a frequency function which has a distribution
that is forming as we observe in real time. This is called
the running transform F,(w) |13, 14]

4
Filw) =  f()erivtdr, (15)

-t

In this case there is a distinct relation between the
distribution of sideband energy and time. There will exist
a spectral distribution of frequencies corresponding to
an instant in time which may be single-valued. multiple-
valued, or a continuous distribution. By interchanging
time for frequency one may infer that the time delay of
a network for a given frequency may also be a distribu-
tion. This goes a long way toward clarifying the confu-
sion created by investigators who attempt to come up
with a single-valued number for the delay of a network.
In those regicns in which the actual delay distribution is
small or single-valued, the simple group delay scores very
well, but in regions of moderate to large dispersion
group delay falls down completely and even yields ab-
surdities.

By observing the conjugate behavior of time and fre-
quency it should be apparent to anyone familiar with
modulation theory that a network frequency transfer
function

F() = A(w)e—inlw) = patero—ione (16)
represents a  distribution of time delaved functions
around the value

f‘.'|.¢-u|- = [dd’("’) /dm-l. ( |7)

Furthermore. the group delay will represznt the absolute
delay of cach component only if :

(18)

The distribution around the group delay in Eq. (17) is
Certainly consonant with the paired echo concept of
Wheeler and MacColl [15] which treats the effect of
minor deviations from the ideal transfer function by
expanding the time function around these deviations.

alw) = constant.

DELAY IN MINIMUM PHASE NETWORK

Having recognized that the true network time delay of
Eq. (19) may not necessarily be single-valued and may
even be a finite distribution, we turn out attention to
deriving the form of a minimum phase time ¢ for
several simple expressions.

As shown carlier, the group delay of a network with
constant gain is the proper delay. Consider the single

min. phiase
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normahzed delgy 2/0

normahized frequency w/a

Fig. 2. Normalized plot of excess delay for a first-order
allpass lattice,

pole allpass lattice function

Liw)=(s—a)/(s+a)=(iv=a)/(inwta) fora=0. (19)

This is a constant gain function with a group delay
oronp = 20/ (t* + ). (20)

This is shown in Fig. 2. The time delay is maximum at
zero frequency, and there is no delay at infinite frequen-
cy. There is also the very useful fact that single pole
functions can be expressed as combinations of this lat-
tice, for example,

1 1 7 s—u
=———( 1— ) 2D
s+a 2a s+a
and
s+b 1 s—a
=——| (a+b)—(b—a) ] (22)
st+a Qa s+a

Equation (21) is that of a simple lowpass filter. and
Eq. (22) describes the circuit of Fig. 1 if a is greater
than b. The lefthand side of these equations is the
commonly encountered svstem transfer function H(s).
consisting of a frequency-dependent amplitude and phase
function. The system transfer function is the frequency
transform of the time response 1o an impulse of voltage
h(0): thus, i

H(s) = {h(nye=sdt.

-

(23)

Normaily we think of the system transfer function as
the quotient of output to input signal and use this con-
cept to generate the common form expressed by the
lefthand side by using a sinewave signal. This concept.
however. is only valid if a sinewave is used, since there
must in general be a time delay in a network; since Eq.
(23) does not contain an cxplicit time dependence it is
apparent that this time discrepancy is absorbed in the
complex frequency spectrum and thus locked up so that
we cannot readily predict time behavior without mathe-
matical manijpulation. The righthand sides of Egs. (21)
and (22) show alternate forms of the system iransfer
function, obtained purely from a special class of transfer
functions which represents a known frequency-dependent
time defay without a frequency-dependent amplitude.
(Using this form allowed us to unlock the time behavi-
or.)

Examining Eq. (21) it is apparent that the simple
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lowpass filter can be considered to consist of two parallel
constant-amplitude delay functions, one with no delay
and the other the delay of Eq. (20). At very high
frequencies these two delay signals cancel cach other
since they arrive at the same time and are of opposing
polarity, while at low frequencies there is not a simul-
tancous output and hence no complete cancellation, A
similar interpretation can be placed on Eq. (22).

Thus, the search for a mecaningful concept of time
delay in a circuit has revealed that there are simple
allpass functions which possess a frequency-dependent
time delay that fits out intuitive concept of delay; fur-
thermore, a simple minimum-phase network for which
the concept of group delay is invalid is now seen to be
represented as a combination of allpass delay functions.
Figure 3 shows the minimum phase time delay and group

Fig. 3. Minimum phase delay and group delay. The actual
minimum phase delay is double-valued and composed of a
straight-line 2ero delay and a bell-shaped delay of the form
of Fig. 2. The group delay is single-valued. a. Single-pole
lowpass circuit. b, Single-zero single-pole transfer function.

delay for the single-pole functions of Eqgs. (21) and
(22). The minimum phase delay is seen to be double-
valued for these single-pole functions. The strength of
these delayed signals is obtained from the coefficients of
Eqs. (21) and (22). It is immediately apparent that
group delay is quite misleading for the function of Fig.
I, since this goes 1o negative time over a substantial
rortion of the frequency spectrum. The actual delay, as
can be seen, never goes negative. Similarly, the group
delay of Fig. 3a, although never negative, is nonetheless
improper.

A NETWORK CONCEPT

The single-pole single-zero allpass lattice function of
Eq. (19) is a primitive function which can be used as a
building block for more complicated delays. Two lattices
in cascade may, like relations ( 21) and (22), be com-
posed of combinations of the constituent lattices; for
example, if g — b,

s—-a.s—h_ n+b.s—a_a+b.x-b (24)
sta s+b a=b s+a a—b s+b -

Similarly, one ¢an expand other products of lattices as
lincar combinations of the individual lattices.

134

At first glance this would appear to invalidate the
conclusion that the time delay of any allpass network ig
the frequency derivative of the phasc function, as the
latter is single-valued whereas Eq. (24) shows an expap.
sion which is definitely multiple-valued. Reconciliation
may be obtained by remembering that the principle of
stationary phase yields the time at which the largest
contribution will occur for the integral in Eq. (1). This
time will be that of Eq. (7). We might expect that there
will be prior contributions and these are discerned in
the expansion on the right hand side of Eq. (24). If 5
sufficiently complicated network of such allpass functions
were generated and an oscilloscope used to view the
network output with a sudden input transicnt, the output
waveform would be observed to have forerunners
preceding the main signal transition. The only condition
under which no forerunners would be observed is when
the individual lattice sections are identical, in which case
there can be no expansion such as Eq. (24). In other
words, there is no linear combination for an iterated
lattice,

[(s—a)/(s+a)]¥ (25)

and in this case the delay of Eq. (7) is the only delay. In
this special case. if the frequency parameter a is very
high, approaching infinity as rapidly as the number of
identical sections ». then in the limit as n becomes large
without limit this relation becomes the transfer function
of ideal delay, [10]

e Ts=e iTw for ¢ = 0. (26)

For all other iterated lattices the delay distribution will
be a summation of the constituent delays and in the limit
for such a dispersive network will be an integral expres-
sion (derived in an earlier paper [1]). The magnitude of
terms on the righthand side of Eq. (24) and any such
expansion is such that no single term contributes appreci-
ably to the resultant output prior to the time indicated
by Eq. (7). Instead each term is effectively nullificd by a
term representing a prior or later delay, and nullifica-
tion is not substantially removed until the time of Eq.
(7).

From the preceding discussion of forerunners it is
qQuite casy to see how it is possible for a network with
the transfer function and time delay of Fig. 3b to be
cascaded with a complementing network to produce a
constant-gain zero-delay output; thus.

(s+ b (s+a)(s+a) (s+h)=1. (27

While there is a finite delay component in Eq. (22),
there is no necessity to envision a negative time delay to
cancel the term of the form (24) which occurs in the
cascaded combination, since each and every forcrunner
except a unity-gain zero-delay forerunner is cancelled
completely. Seme remarkable facts may now be deduced
from the preceeding observations about network trans-
fer functions which have all poles and zeros on the real v
axis.

L. Any network with simple poles and zeros restricted
to the real «+ axis may be considered as cquivalent to a
parallel combination of first-order allpass lattices. There
will be one allpass lattice for each pole of the network
transfer function. The pole, and hence time delay dis-
tribution. of cuch lattice will be determined by the asso-
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ciate transfer function pole, while the strength and polar-
ity of each lattice will be determined by the joint dis-
tribution of zeros and poles.

2. Higher order poles in the transfer function will
vield scrics combinations of the associate lattices. with
the number of Iattice sections determined by the order of
the pole.

3. Series combinations of networks may be considered
as parallel combinations of the constituent lattices of
cach network.

Because of the associative property of the Fourier
transform. the foregoing conclusions concerning the dis-
tribution of equivalent networks mean that since each
lattice has a frequency-dependent time delay, the time
delay of the network output is not single-valued but a
multiple-valued combination of the primitive delays. Fig.
2 is a time-delay frequency distribution for the simple
one-pole function. Any other minimum phase network
which can be expressed as a rational function factorable
to the form

(s+a)(s+b)...
(S+a)($+ﬁ) e

will have a time delay frequency function expressible as
a sum of delays of the form of Eq. (20) and will have a
graphical plot of delay vs frequency such as Fig. 4. To

(28)

frequency
—

Fig. 4. The multivalued delays to be anticipated for a
transfer function with & multiplicity of simple poles at the
same frequency.

consider the time delay behavior of such a network. we
may thus draw the cquivalent network of Fig. 5, where
each lattice is considered a frequency-dependent delay
line with the delay of Eq. (20). A zero delay may be
assumed due to a lattice with a pole at zero frequency.
The gain and polarity of each delay line channel is
assumed to be determined by a summing amplificr. for
the sake of illustration only.

When dealing with a physical process which involves
propagation with a frequency-independent velocity, such
as sound in air, an equivalent interpretation of Fig. 5
would be that there is a distribution of otherwise perfect
sources which assume a frequency-dependent position in
space such that the delay due to the additional distance
travelled at the velocity of propagation is identical to
that of the equivalent delay line.

The allpass lattice of Eq. (19) has a single-pole and
single-zero configuration on the real axis. This, as was
seen, is quite satisfactory for discussing the time delay of
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K, = gain factor

Fig. 5. Symbolic representation of a network with a trans-
fer function expressible as a rational product of terms with
poles and zeros. This network may be interpreted as a
parallel combination of delay lines with constant amplitude
transfer function but a frequency-dependent delay as shown,
An input signal with spectral distribution F(w) will produce
the output G(w).

any minimum-phase network with poles on the real
axis, i.e., with the terms of Eq. (28) which do not have
an imaginary component. A loudspeaker, however, gen-
erally has poles with an imaginary componcnt, which
leads to peaks and dips in the frequency response and
damped ringing in the time response. For this case there
eXists one type of allpass lattice which, like Eq. (19) on
the real axis, can be used to represent the time delay of
any network with imaginary poles. This is the second-
order lattice with conjugate complex poles and zeros and
with the transfer function

(s—a+ib) (s—a—ib)
(s+a+ib) (s+a—ib)

There does not exist a simple one-parameter delay
such as represented by Eq. (20); instead the delay rela-
tion now depends upon the position of a and b. The form
of delay may be ascertained by allowing the expansion
of Eq. (29) to be considercd as two cascaded sections of
the type of Eq. (19) with appropriate shift in complex
frequency. Since the transfer function is now a sum of
phase shifts, the time delay from Eq. (201, is [7]

= 2a 2a
a®+(o—b)?  @+(ut+b)?
Obviously, if the term b approaches zero this becomes
the transfer function of Eq. (25) with # = 2, so that the
delay becomes twice that of Eq. (20). On the other

hand, if for a given value of b the term « approaches
zero, the phase shift in the vicinity of the frequency of b

(29)

(30)

8 (o
5. st N\ |
ol E \ g
@,
"J ’
€ / \‘ ’/ \
\
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Fig. 6. Representation of the form of the excess delay of a
second order allpass lattice.
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becomes very large for a small change in frequency. In
this case the time delay becomes large without limit, The
“nature of the delay time for various positions of the poles
is shown in Fig. 6.

The form of the delay for the case where b is very
much greater than a is the same as in Fig. 2, with the
contribution of excess delay occurring at the frequency
of b. This leads to the considerable simplification that as
long as one is considering local variations in a loudspeak-
¢r response, one may consider all activity centered at the
frequency of this variation and use the simple expres-
sion of Eq. (20). Because local loudspeaker fluctuations
in phase and amplitude are usually significant. the
cquivalent delay and consequently the effective acoustic
position relocation may be significant for the frequency
of strong local fluctuation. A physical interpretation of
this may be secured by observing what would happen if
the Joudspeaker were fed a transient signal which had in
its spectrum this frequency of unusual delay. The pres-
sure wave output would have all frequencies except this
component, since for a short time this component will
not have arrived. It is a calculable fact that removal of a
component is tantamount to adding a cancelling-out of
the phase-equivalent component to the original signal.
Consequently, the output pressure transient will be per-
ceived to have a “ringing” component at the frequency
that is removed. Within some period of time the com-
ponent frequency will arrive, gracefully one might add,
since it is really a distribution of the form of Fig. 2. and
the interpretation is that the ringing has now subsided. If
the signal is removed from the loudspeaker terminals,
the delayed component must persist for some time and
the interpretation of this waveform would be that there
is a ringing of the output with polarity reversed from the
start-up transient.

AR
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Z | i
..-—1// H :
-4 -2 o 2 +aq -4 -2 o 2 4
w/w, w /wy,
a b

Fig. 7. a. Complete plot of amplitude. phase, und time
delay (double valued) for the circuit of Fig. 1 with the
frequency of nuiximum absorplion at Jc. b. Equivalent am-
plitude and phase characteristic of the transfer function of an
clectromagnetic wave  passing through a single resonance
dielectric medium exhibiting anomalous dispersion in which
the group velocity by calculation c¢an exceed the velocity of
light in vacuum. The' frequency dependent time delay Guler
Brillouin |9)) which has been normalized to the same center
frequency of Fig. 7a is a continunm within the shaded region,
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ANOMALOUS DISPERSION

A particularly significant distribution of amplitude and
phase when discussing group delay is afforded by the
transfer function for a real passive diclectric medium
with a single simple resonance. The group velocity of 3
wave propagating in this medium could exceed the velo.
city of light and gave rise o the term “anomalouys
dispersion”™. The concept of group velocity established by
Lord Rayleigh was so firmly entrenched that this solu-
tion posed a serious challenge to the theory of relativity,
So great was this discrepancy that an exceedingly com.
plicated solution was worked by Sommerfeld and Brillouy.
in. Figure 7b is a plot of amplitude, phase. and time
delay as worked out by Brillouin [9]. He observed that
there was no unique delay, but depending upon sensitivi-
ty of apparatus there was a distribution of delays in the
shaded region. For comparison with the solution above,
Fig. 7a is a similar display for the function of Eq. (22
when a is greater thun b. The agreement is quite satisfac-
tory when one realizes that the index of refraction which
plays the role of the network transfer function involves
a square root of a function of the form of Eq. (22) and
hence does not have a simple pole and zero but branch
points. The branch points lead 1o the continuous distribu-

" tion, whereas simple poles and zeros yield singular func.

tions for time delay.

SUMMARY

A loudspeaker. when considered as a transducer of
clectrical signals 10 acoustic pressure, has a transfer
function which has a frequency-dependent amplitude and
phase response, The effect of these amplitude and phase
variations may be considered to be the introduction of a
time delay distortion in the reproduced pressure re-
sponse. The response of an actual loudspeaker will be
identical to the response one would have from an ensem-
ble of perfect loudspeakers each one of which assumes a
frequency-dependent position in space behind the actual
loudspeaker. The number of equivalent loudspeakers, and
hence the measure of time delay smearing, will increase
with the complexity of the amplitude and phase spec-
trum. In those portions of the frequency spectrum where
the actual loudspeaker is of minimum phase type, it is
always possible to muodify the response by mechanical or
electrical means such that all equivalent loudspeakers
merge into one position in space. When this is done there
is no frequency-dependent time delay distortion, and the
pressure response may be made essentially perfect. At-
tlempts at minimum phase equalization of those portions
of the frequency spectrum where the actual loudspeaker
is non-minimum phase will not coalesce the cquivalent
loudspeakers but will Jeave a spatial distribution which is
equivalent to a single perfect loudspeaker with a frequen-
cy-dependent position behind the actual loudspeaker.
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