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Abstract
The horn loudspeaker suffers from producing high distortions. Based on an physical model an
equivalent lumped parameter circuit is determined for a horn loaded compression driver. From the
nonlinear differential equation of this circuit, a compensation algorithm is implemented on a Digital
Signal Processor (DSP) for reducing nonlinear distortion caused by the behaviour of air. Test results
are given.

1 INTRODUCTION
Horn loaded compression drivers are widely used in the area where high sound level pressures
together with good directivity characteristics are needed. Additional advantage is the high efficiency
compared to direct radiator loudspeakers. Disadvantages are the higher costs and greater size. Major
disadvantage, however, is the production of high acoustical distortions, often worse than 30 percent
harmonic distortion. Instead of improving electro–acoustical transduction by mechanical
construction means, we connect a nonlinear circuit in series with the loudspeaker to reduce nonlinear
behaviour.
In this paper such a compensation circuit will be described which is based on an equivalent lumped
parameter model, using the electro–mechano–acoustical circuit based model of [1]–[3]. Our horn
loudspeaker is designed for the mid–frequency range i.e. 500–5000 Hz. In this frequency span the
wavelength is still large compared to the dimensions of the horn driver and therefore it is allowed to
model it using a lumped parameter circuit.
The compensation circuit is implemented on a DSP and is tested in series with the real horn
loudspeaker which is schematically depicted in Fig. 1. When we are capable of reducing nonlinear
distortion the driver may become more simple constructed which will also reduce the prize.

2 MODELING OF THE HORN LOUDSPEAKER
Two major parts of the horn loudspeaker are the compression driver and the horn as depicted in Fig.1.
The compression driver consists of a glass–fiber diaphragm which is excited by the electrodynamical
principle by means of a voice coil in a permanent magnetic field. In front of the diaphragm a phase
correction plug is placed to prevent dips in the sound pressure response due to interfering sound
waves traveling different paths. However, this correction plug introduces a thin air film between the
diaphragm and the plug itself. The thickness of this airfilm is a compromise between nonlinear
distortion and desired cavity volume for good (flat) frequency response. Because of high pressures
which occur in the compression driver this thin air film will introduce a nonlinearity caused by
adiabatic behaviour of air.
In order to determine the total equivalent lumped parameter circuit for the horn loudspeaker, we will
first examine the different domains  in detail.

2.1 MECHANICAL DOMAIN
The first domain which is considered is the mechanical domain. The electromagnetic driving force F
on the diaphragm is formed by the current i in the voice coil multiplied with the force factor: Bl. The
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force factor is the product of B: the effective flux density in the air gap and l: the effective voice coil
length. From electrical impedance measurements it appeared that the diaphragm does not behave as a
rigid damped mass–spring system but as a distributed mass–spring system. This was obtained from
resonance frequency shifts due to attachment of an extra mass to the diaphragm with and without the
horn mounted on the compression driver. Different authors in the past [4] came up with extensive
models for this behaviour. For keeping our model not too complicated we start with a simple
expansion of the rigid damped mass–spring model by dividing the diaphragm mass into a central
mass portion and an outer mass portion. The physical model of the mechanical domain is given in Fig.
2. The central mass M1 is coupled through the damped spring system Cm1–Rm1 to the outer mass M2
which is coupled to earth through the damped spring system Cm2–Rm2. Because of diaphragm
break–up the velocity of the central mass (v) differs from the velocity of the outer mass (v2). The total
resulting velocity is transformed into the acoustical domain and causes a volume velocity q=Sd⋅v.
The resulting force F is transformed into a pressure: p=F/Sd with Sd the diaphragm area.

2.2 ACOUSTICAL DOMAIN
For determination of a model for the acoustical part of the horn loudspeaker the horn driver was
dismounted. From measurement of the different physical dimensions a first initial guess of the
different acoustical parameter values was obtained. 
In Fig. 3 the total model for the acoustical domain is depicted. Comparison of measurements and
simulations of the equivalent network showed that this model gave the best results. Because it is
difficult to determine acoustical parameters from impedance measurements at forehand we must
calculate them from known acoustical elements and their formulas. 
The pressure p which is created from the movement of the diaphragm is applied to the compliance Cb,
formed by the chamber at the back of the diaphragm. The pressure pg in front of the diaphragm is not
the same as the pressure at the back because of a leakage channel between the compression driver
housing and the magnet: modeled by a resistance Rb and mass Mb. From the compliance Cg, formed
by a thin air film between diaphragm and phase correction plug, narrow channels lead to the throat of
the horn. These channels are modeled by the mass Mc and resistance Rc. Finally we have the
impedance at the throat of the horn: Zh.

2.2.1 HORN
To obtain a model which is not too complicated we use the assumption of plane waves propagating in
the horn to obtain the well known complex acoustical impedance at the throat of the exponential horn
[3]:
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With �o the density of air, c the speed of sound in air, St the cross–sectional area at the throat of the
horn and fc the cutoff frequency of the horn: below this frequency no sound waves propagate through
the horn. To model the impedance at the throat of the horn as a lumped element Eq. (1) can be modeled
as a series circuit of a resistance and a negative compliance (capacitor). This modeling is valid for
frequencies higher than the cutoff frequency, which in our case is between 450 and 500 Hz.

2.2.2 NONLINEAR COMPLIANCE
A nonlinear element in the acoustical domain is the nonlinear compliance in front of the horn. We
assume that the small air volumes in the horn driver behave as adiabatic processes. Therefore the
adiabatic compression relation between pressure pg and specific volume of air Vg is the basis for a
relation of the nonlinear compliance:
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with �=1.4 the adiabatic constant of air, po the static pressure and Vo the volume at rest. Using the
definition of the mechanical compliance we obtain:
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This pressure dependent compliance can be approximated by the first three terms of the binomial
series. A better approximation however is found by a second order polynomial approximation. This
approximation makes a greater error for small pressure variations but still the overall fit is better. A
nonlinear model based on this approximation will generate second and third order harmonics. A
reduction circuit based on this model will reduce these harmonics.
Note that this nonlinearity is fully modeled by parameters which are known or can be measured from
the physical dimensions of the horn driver. It is therefore possible, once we have optimized the linear
model and thus have the linear value of Cg, to calculate the nonlinear parameters.

2.3 EQUIVALENT LUMPED ELEMENT CIRCUIT
The electrical domain is the final domain in our consideration. It consists of the well known series
circuit of the voice coil resistance Re and inductance Le connected to a gyrator with gyrator constant
Bl which takes care of the coupling of the electrical domain to the mechanical domain.
Combining all three domains we obtain the total electro–mechano–acoustic equivalent circuit for the
horn loudspeaker. This circuit is depicted in Fig. (4).
For all different element values a first initial guess was obtained from electrical impedance
measurement with a network analyzer or from measuring physical dimensions. From impedance
measurement we obtain the impedance as well as the phase in the frequency span from 400 to 5000
Hz. Initial mechanical parameters values were determined from resonance frequency shifts caused
by attachment of an additional mass to the diaphragm. After removing this mass mechanical
compliances and damping constants had to be tuned because disassembling the driver caused
different strains in the diaphragm.
Using straightforward techniques from network theory we can transform the network of Fig. (4) into
an network without the transformer and gyrator. Mechanical and acoustical parameters are
transformed into their electrical equivalents which changes the network topology as well. The
pressure dependent compliance Cg(pg) is thereby transformed into a current dependent inductor
Lg(ig).

2.4 SIMULATION
The electrical input impedance of the network of Fig. (4) was simulated using the circuit simulation
program HSpice1. With the circuit simulator we have optimized the parameter values starting from
the initial parameter values obtained from impedance and physical dimensions measurement.
Parameter optimization on electrical impedance and phase continues until the relative error averaged
over all measurement points is smaller than 10–3. Final fitting results are depicted in Fig.(5). From
this it is seen that the equivalent circuit provides a good model for the horn loudspeaker in the
frequency interval between 1 and 5 kHz. The resonance between 400 and 1 kHz is caused by the
series circuit Mc, Rc and Zh. The discrepancy between measurement and simulation in this span is
therefore caused by the use of the simplified model of the input impedance of the exponential horn.
Also the leakage through the driver/magnet interface turned out to be greater than calculated; Rb has
become smaller. This could be caused by other leakage channels or by absorption caused by the

1 HSpice is a registered trademark of Meta–Software Inc.
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air–viscosity effects.

3 COMPENSATION CIRCUIT
In principle it is of course possible to design a compensation circuit based on the lumped element
circuit from section 2 using the Volterra series expansion as was done by Kaizer for a direct radiator
loudspeaker [5]. Main disadvantage of this method is the amount of work to determine the Volterra
kernels because the lumped element model contains many elements. Also, to obtain convergence at a
relative restricted number of coefficients, the use of the Volterra series expansion is restricted to
weakly nonlinear systems. The first measurements on the horn loudspeaker have revealed a strongly
nonlinear behaviour.
Therefore we will use a more ad hoc method to obtain a compensation circuit. This method was used
by Klippel for a direct radiator loudspeaker [6]. From the nonlinear differential equation obtained
from the equivalent network the linear and nonlinear parts are separated. From the nonlinear part a
compensation circuit is derived, which in series with the real horn loudspeaker, will give a linear
response. This compensation circuit is a nonlinear system containing linear frequency dependent
parts, and nonlinear frequency independent parts.
The nonlinear compensation filter will predistort the input signal of the horn loudspeaker such that
the total system: i.e. the cascade of filter and loudspeaker behaves as a linear system.
The transfer function of the filter is determined from the difference between the nonlinear differential
equation and the desired linear differential equation from which we obtain:

uout(t) � uin(t) �
1
M

� �
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With M the gain of the amplifier which is connected between compensation filter and loudspeaker,
uout the output voltage and uin the input voltage of the filter. The inverse Laplace operator �–1{}
transforms the impedances into the time domain and the symbol * denotes convolution. H1(s) and
H2(s) are linear transfer functions containing many pertinent parameters and ig(t) is the current
through Lg(ig) representing the transformed pressure in front of the diaphragm. Eq.(4) represents the
compensation algorithm which is implemented on a DSP. Besides the input signal uin(t) we need the
additional signal ig(t). This signal is synthesized from the input signal by means of linear filtering.
Addition and multiplication of two time signals is done using adders and multipliers while
convolution with a linear response and differentiation are performed using linear filters. 
Digital linear filters are obtained using the bilinear transform while the differentiator was
implemented as an equiripple FIR filter using the Remez–Parks algorithm [7].

4 RESULTS
Implementation of the algorithm on a digital signal processor was done using the high level design
and simulation package Signal Processing WorkSystem (SPW2). Using this package C–code was
generated for a TMS320C30 DSP which is located on a PC–board together with A/D and D/A
convertors, clock generation etc.
A sample–frequency of 9250 Hz appeared to be the maximum for the implementation of the
algorithm because of hardware problems. This means that reduction of second and third order
harmonics is possible up to approx. 1500 Hz.

4.1 SIMULATIONS
Before the compensation circuit was tested in series with the loudspeaker we implemented the model
of the horn loudspeaker on the DSP. From this we obtain a qualitative impression of the agreement
between distortion measured from the real loudspeaker and the model. 

2 SPW is a registered trademark of Comdisco Systems, Inc.
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The results are depicted in Fig.6 where second and third order harmonics together with the
fundamental response of the model as well as from the real loudspeaker are given as a function of the
fundamental frequency which is varied between 400 and 1500 Hz. As can be seen from this result the
agreement is quite good as we take into account that there has been no optimization of the nonlinear
parameters on distortion products. Especially in the frequency span from 600 to 1100 Hz the
qualitative agreement of second and third order harmonics is quite good.
The most probable major cause for the discrepancy between the model and the real measured
distortion products is that we did not model the influence of the horn on the higher harmonics nor on
the fundamental. Considering this we have obtained a fairly good fit using a rather simple model for
the horn loudspeaker.

4.2 MEASUREMENTS
Measurements on the horn loudspeaker were performed using a microphone at 2 cm in front of the
horn mouth. The loudspeaker was driven at a voltage of 2.5 Vpeak which gives distortion values up to
30 % around 1500 Hz. Above this frequency distortion rapidly decreases to a few percent so
distortion reduction is interesting up to a frequency of approx. 2 kHz. This is mainly caused by the
major resonance frequencies which all lie in this span including the resonance frequency of the cavity
in front of the diaphragm.
In the upper part of Fig.7 the measured second and third order harmonic distortion with and without
compensation circuit are depicted. As we expected from simulations it appears that reduction is the
best in the frequency span from 600 to approx. 1050 Hz with a maximum reduction of second order
harmonic distortion of approx. 15% around 900 Hz. Simulations already have shown that around this
frequency the cavity in front of the diaphragm has its resonance frequency and therefore the
distortion has a maximum. Other distortion maxima are not reduced. The maximum around 400Hz is
caused by the horn and around 1500 Hz by the mechanical resonances. Both were not included in the
nonlinear model so this result is not surprising. 
In the lower part of Fig.7 the second and third order distortion reduction at different driving levels are
depicted at a fixed frequency of 800 Hz. As we expected the performance of the reduction is limited
for lower driving levels because of the nonlinear polynomial approximation we used.
Considering the third order reduction obtained it is clear that it is less than the second. This could have
been predicted from the simulation. From Fig.6 it is clear that second order harmonics are better
predicted by the model than the third order. This is caused by the low sample frequency and the use of
the discrete linear filters near the fold over frequency. 
Considering both measured second and third order harmonics it is clear that at some frequency spans
the third order harmonics are greater than the second order. From these results it can be expected at
forehand that with Volterra modeling of this loudspeaker much terms will be needed before the series
will convergence.

5 CONCLUSIONS
The main conclusion we draw from this research up till now is that with a relatively simple model it is
possible to reduce nonlinear distortion of a horn loudspeaker. Although this is an encouraging result
we have not reached reduction of the distortions around 400 and 1500 Hz. If we want to compensate
at these frequencies also, extension of the nonlinear model and proper modeling of the horn itself are
inevitable.
The sensitivity of the determined nonlinear parameters turned out to be great so proper determination
of their value is important. 
Further expansion of the nonlinear model will be the first research objective where the maximum
number of instructions which can be executed in one sample period by the DSP happens to be a
practical limitation of the model expansion.
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Fig. 1 Cross sectional view of the used compression driver. The diaphragm couples to the throat of the first (small)
horn through a small cavity formed by the phase correction plug.

Fig. 2 Physical model of the Fig.3 Physical model of  
mechanical part of the horn driver acoustical part of the horn  
Driving force Fd represents the loudspeaker.
electro–magnetic driving force on
the diaphragm.
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Fig. 4 Total equivalent lumped element circuit obtained from combining the different domains.
Nonlinear element is the pressure dependent compliance Cg.

Fig. 5 Simulation results of the input impedance of the equivalent circuit optimized on impedance
measurements.
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Fig. 6 Measured fundamental (f1), 2nd (f2) and 3rd (f3) harmonics of real horn loudspeaker and from
the model on DSP.

Fig. 7 Measured second and third order harmonic distortion with and without compensation circuit.
Upper figures depict measurement with a voltage of 2.5 Vpeak at the loudspeaker and the lower at
different driving levels.


